Pub Date : 2024-01-10Print Date: 2023-12-01DOI: 10.1101/mcs.a006291
Juan J Alban, Alejandra Arango-Ramirez, Jorge A Olave-Rodriguez, Jose A Nastasi-Catanese, Lisa X Rodriguez
Here, we highlight the case of a 31-yr-old man who had clinical features of primary hypertrophic osteoarthropathy (PHOAR) and harbored a homozygous variant (c.38C > A, p.Ala13Glu) in the HPGD gene, as indicated by whole-exome sequencing (WES). This variant has been previously classified by our laboratory as a variant of uncertain significance (VUS). However, another patient with the same phenotype and the same homozygous variant in HPGD was subsequently reported. In reassessing the variant, the absence of this variant in the gnomAD population database, supporting computational predictions, observation in homozygosity in two probands, and specificity of the phenotype for HPGD, all provide sufficient evidence to reclassify the HPGD c.38C > A, p.Ala13Glu variant as likely pathogenic.
{"title":"Reclassification of the <i>HPGD</i> p.Ala13Glu variant causing primary hypertrophic osteoarthropathy.","authors":"Juan J Alban, Alejandra Arango-Ramirez, Jorge A Olave-Rodriguez, Jose A Nastasi-Catanese, Lisa X Rodriguez","doi":"10.1101/mcs.a006291","DOIUrl":"10.1101/mcs.a006291","url":null,"abstract":"<p><p>Here, we highlight the case of a 31-yr-old man who had clinical features of primary hypertrophic osteoarthropathy (PHOAR) and harbored a homozygous variant (c.38C > A, p.Ala13Glu) in the <i>HPGD</i> gene, as indicated by whole-exome sequencing (WES). This variant has been previously classified by our laboratory as a variant of uncertain significance (VUS). However, another patient with the same phenotype and the same homozygous variant in <i>HPGD</i> was subsequently reported. In reassessing the variant, the absence of this variant in the gnomAD population database, supporting computational predictions, observation in homozygosity in two probands, and specificity of the phenotype for <i>HPGD</i>, all provide sufficient evidence to reclassify the <i>HPGD</i> c.38C > A, p.Ala13Glu variant as likely pathogenic.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10020760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10Print Date: 2023-12-01DOI: 10.1101/mcs.a006308
Sharon Pei Yi Chan, Chen Ee Low, Chun En Yau, Tzu Ping Lin, Weining Wang, Sam Xin Xiu, Po Yin Tang, Baiwen Luo, Nur Fazlin Bte Mohamed Noor, Kristen Alexa Lee, Jianbang Chiang, Tan Boon Toh, Edward Kai-Hua Chow, Valerie Shiwen Yang
Metastatic porocarcinomas (PCs) are vanishingly rare, highly aggressive skin adnexal tumors with mortality rates exceeding 70%. Their rarity has precluded the understanding of their disease pathogenesis, let alone the conduct of clinical trials to evaluate treatment strategies. There are no effective agents for unresectable PCs. Here, we successfully demonstrate how functional precision medicine was implemented in the clinic for a metastatic PC with no known systemic treatment options. Comprehensive genomic profiling of the tumor specimen did not yield any actionable genomic aberrations. However, ex vivo drug testing predicted pazopanib efficacy, and indeed, administration of pazopanib elicited remarkable clinicoradiological response. Pazopanib and its class of drugs should be evaluated for efficacy in other cases of PC, and the rationale for efficacy should be determined when PC tumor models become available. A functional precision medicine approach could be useful to derive effective treatment options for rare cancers.
{"title":"Pazopanib elicits remarkable response in metastatic porocarcinoma: a functional precision medicine approach.","authors":"Sharon Pei Yi Chan, Chen Ee Low, Chun En Yau, Tzu Ping Lin, Weining Wang, Sam Xin Xiu, Po Yin Tang, Baiwen Luo, Nur Fazlin Bte Mohamed Noor, Kristen Alexa Lee, Jianbang Chiang, Tan Boon Toh, Edward Kai-Hua Chow, Valerie Shiwen Yang","doi":"10.1101/mcs.a006308","DOIUrl":"10.1101/mcs.a006308","url":null,"abstract":"<p><p>Metastatic porocarcinomas (PCs) are vanishingly rare, highly aggressive skin adnexal tumors with mortality rates exceeding 70%. Their rarity has precluded the understanding of their disease pathogenesis, let alone the conduct of clinical trials to evaluate treatment strategies. There are no effective agents for unresectable PCs. Here, we successfully demonstrate how functional precision medicine was implemented in the clinic for a metastatic PC with no known systemic treatment options. Comprehensive genomic profiling of the tumor specimen did not yield any actionable genomic aberrations. However, ex vivo drug testing predicted pazopanib efficacy, and indeed, administration of pazopanib elicited remarkable clinicoradiological response. Pazopanib and its class of drugs should be evaluated for efficacy in other cases of PC, and the rationale for efficacy should be determined when PC tumor models become available. A functional precision medicine approach could be useful to derive effective treatment options for rare cancers.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72013653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10Print Date: 2023-12-01DOI: 10.1101/mcs.a006316
Wendy K Chung, Faranak F Herrera
Rare genetic conditions are challenging for the primary care provider to manage without proper guidelines. This clinical review is designed to assist the pediatrician, family physician, or internist in the primary care setting to manage the complexities of 16p11.2 deletion syndrome. A multidisciplinary medical home with the primary care provider leading the care and armed with up-to-date guidelines will prove most helpful to the rare genetic patient population. A special focus on technology to fill gaps in deficits, review of case studies on novel medical treatments, and involvement with the educational system for advocacy with an emphasis on celebrating diversity will serve the rare genetic syndrome population well.
{"title":"Health supervision for children and adolescents with 16p11.2 deletion syndrome.","authors":"Wendy K Chung, Faranak F Herrera","doi":"10.1101/mcs.a006316","DOIUrl":"10.1101/mcs.a006316","url":null,"abstract":"<p><p>Rare genetic conditions are challenging for the primary care provider to manage without proper guidelines. This clinical review is designed to assist the pediatrician, family physician, or internist in the primary care setting to manage the complexities of 16p11.2 deletion syndrome. A multidisciplinary medical home with the primary care provider leading the care and armed with up-to-date guidelines will prove most helpful to the rare genetic patient population. A special focus on technology to fill gaps in deficits, review of case studies on novel medical treatments, and involvement with the educational system for advocacy with an emphasis on celebrating diversity will serve the rare genetic syndrome population well.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138482092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10Print Date: 2023-12-01DOI: 10.1101/mcs.a006305
Hyunji Kim, Hwa Young Kim, Jae Hyun Kim, Soo Hyun Seo, Kyung Un Park
The diagnosis of maturity-onset diabetes of the young (MODY), a monogenic form of diabetes mellitus caused by a mutation in a single gene, is often uncertain until genetic testing is performed. We report a 13-yr-old Korean boy who was initially diagnosed with type 2 diabetes (T2DM). MODY was suspected because of his nonobese body habitus and family history of multiple affected members. Targeted panel sequencing of all MODY-related genes was performed using the NextSeq 550Dx platform (Illumina). Sanger sequencing was performed using blood samples from the parents, siblings, and other relatives. A frameshift variant in the 3' region of the last exon of PDX1 was detected in the patient and his family members with diabetes. PP1_Moderate criterion was applied and this variant was confirmed to be the genetic cause of diabetes in the family and classified as likely pathogenic. The study highlights the importance of genetic testing for nonobese, early-onset diabetic patients with multiple affected family members. Increased awareness and aggressive genetic testing for MODY are needed.
{"title":"Novel pathogenic <i>PDX1</i> gene variant in a Korean family with maturity-onset diabetes of the young.","authors":"Hyunji Kim, Hwa Young Kim, Jae Hyun Kim, Soo Hyun Seo, Kyung Un Park","doi":"10.1101/mcs.a006305","DOIUrl":"10.1101/mcs.a006305","url":null,"abstract":"<p><p>The diagnosis of maturity-onset diabetes of the young (MODY), a monogenic form of diabetes mellitus caused by a mutation in a single gene, is often uncertain until genetic testing is performed. We report a 13-yr-old Korean boy who was initially diagnosed with type 2 diabetes (T2DM). MODY was suspected because of his nonobese body habitus and family history of multiple affected members. Targeted panel sequencing of all MODY-related genes was performed using the NextSeq 550Dx platform (Illumina). Sanger sequencing was performed using blood samples from the parents, siblings, and other relatives. A frameshift variant in the 3' region of the last exon of <i>PDX1</i> was detected in the patient and his family members with diabetes. PP1_Moderate criterion was applied and this variant was confirmed to be the genetic cause of diabetes in the family and classified as likely pathogenic. The study highlights the importance of genetic testing for nonobese, early-onset diabetic patients with multiple affected family members. Increased awareness and aggressive genetic testing for MODY are needed.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815283/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10131533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10Print Date: 2023-12-01DOI: 10.1101/mcs.a006290
Emilia Modolo Pinto, Enilze M S F Ribeiro, Jinling Wang, Aaron H Phillips, Richard W Kriwacki, Gerard P Zambetti
TP53 plays a critical role as a tumor suppressor by controlling cell cycle progression, DNA repair, and apoptosis. Post-translational modifications such as acetylation of specific lysine residues in the DNA binding and carboxy-terminus regulatory domains modulate its tumor suppressor activities. In this study, we addressed the functional consequences of the germline TP53 p.K164E (NM_000546.5: c.490A>G) variant identified in a patient with early-onset breast cancer and a significant family history of cancer. K164 is a conserved residue located in the L2 loop of the p53 DNA binding domain that is post-translationally modified by acetylation. In silico, in vitro, and in vivo analyses demonstrated that the glutamate substitution at K164 marginally destabilizes the p53 protein structure but significantly impairs sequence-specific DNA binding, transactivation, and tumor cell growth inhibition. Although p.K164E is currently considered a variant of unknown significance by different clinical genetic testing laboratories, the clinical and laboratory-based findings presented here provide strong evidence to reclassify TP53 p.K164E as a likely pathogenic variant.
{"title":"Clinical and functional analysis of the germline <i>TP53</i> p.K164E acetylation site variant.","authors":"Emilia Modolo Pinto, Enilze M S F Ribeiro, Jinling Wang, Aaron H Phillips, Richard W Kriwacki, Gerard P Zambetti","doi":"10.1101/mcs.a006290","DOIUrl":"10.1101/mcs.a006290","url":null,"abstract":"<p><p><i>TP53</i> plays a critical role as a tumor suppressor by controlling cell cycle progression, DNA repair, and apoptosis. Post-translational modifications such as acetylation of specific lysine residues in the DNA binding and carboxy-terminus regulatory domains modulate its tumor suppressor activities. In this study, we addressed the functional consequences of the germline <i>TP53</i> p.K164E (NM_000546.5: c.490A>G) variant identified in a patient with early-onset breast cancer and a significant family history of cancer. K164 is a conserved residue located in the L2 loop of the p53 DNA binding domain that is post-translationally modified by acetylation. In silico, in vitro, and in vivo analyses demonstrated that the glutamate substitution at K164 marginally destabilizes the p53 protein structure but significantly impairs sequence-specific DNA binding, transactivation, and tumor cell growth inhibition. Although p.K164E is currently considered a variant of unknown significance by different clinical genetic testing laboratories, the clinical and laboratory-based findings presented here provide strong evidence to reclassify <i>TP53</i> p.K164E as a likely pathogenic variant.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815290/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138482091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10Print Date: 2023-12-01DOI: 10.1101/mcs.a006292
Dana R Tower, Ronald W Day, Tighe Marrone, Rachel Palmquist, Lincoln D Nadauld, Joshua L Bonkowsky, Sabrina Malone Jenkins
Alveolar capillary dysplasia (ACD) is a fatal disorder that typically presents in the neonatal period with refractory hypoxemia and pulmonary hypertension. Lung biopsy is traditionally required to establish the diagnosis. We report a 22-mo-old male who presented with anemia, severe pulmonary hypertension, and right heart failure. He had a complicated hospital course resulting in cardiac arrest and requirement for extracorporeal membrane oxygenation. Computed tomography of the chest showed a heterogenous pattern of interlobular septal thickening and pulmonary edema. The etiology of his condition was unknown, lung biopsy was contraindicated because of his medical fragility, and discussions were held to move to palliative care. Rapid whole-genome sequencing (rWGS) was performed. In 2 d it resulted, revealing a novel FOXF1 gene pathogenic variant that led to the presumptive diagnosis of atypical ACD. Cases of atypical ACD have been reported with survival in patients using medical therapy or lung transplantation. Based on the rWGS diagnosis and more favorable potential of atypical ACD, aggressive medical treatment was pursued. The patient was discharged home after 67 d in the hospital; he is currently doing well more than 30 mo after his initial presentation with only one subsequent hospitalization and no requirement for lung transplantation. Our case reveals the potential for use of rWGS in a critically ill child in which the diagnosis is unknown. rWGS and other advanced genetic tests can guide clinical management and expand our understanding of atypical ACD and other conditions.
{"title":"Rapid genome diagnosis of alveolar capillary dysplasia leading to treatment in a child with respiratory and cardiac failure.","authors":"Dana R Tower, Ronald W Day, Tighe Marrone, Rachel Palmquist, Lincoln D Nadauld, Joshua L Bonkowsky, Sabrina Malone Jenkins","doi":"10.1101/mcs.a006292","DOIUrl":"10.1101/mcs.a006292","url":null,"abstract":"<p><p>Alveolar capillary dysplasia (ACD) is a fatal disorder that typically presents in the neonatal period with refractory hypoxemia and pulmonary hypertension. Lung biopsy is traditionally required to establish the diagnosis. We report a 22-mo-old male who presented with anemia, severe pulmonary hypertension, and right heart failure. He had a complicated hospital course resulting in cardiac arrest and requirement for extracorporeal membrane oxygenation. Computed tomography of the chest showed a heterogenous pattern of interlobular septal thickening and pulmonary edema. The etiology of his condition was unknown, lung biopsy was contraindicated because of his medical fragility, and discussions were held to move to palliative care. Rapid whole-genome sequencing (rWGS) was performed. In 2 d it resulted, revealing a novel <i>FOXF1</i> gene pathogenic variant that led to the presumptive diagnosis of atypical ACD. Cases of atypical ACD have been reported with survival in patients using medical therapy or lung transplantation. Based on the rWGS diagnosis and more favorable potential of atypical ACD, aggressive medical treatment was pursued. The patient was discharged home after 67 d in the hospital; he is currently doing well more than 30 mo after his initial presentation with only one subsequent hospitalization and no requirement for lung transplantation. Our case reveals the potential for use of rWGS in a critically ill child in which the diagnosis is unknown. rWGS and other advanced genetic tests can guide clinical management and expand our understanding of atypical ACD and other conditions.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10016684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10Print Date: 2023-12-01DOI: 10.1101/mcs.a006303
Robert Kleyner, Nathaniel Ung, Mohammad Arif, Elaine Marchi, Karen Amble, Maureen Gavin, Ricardo Madrid, Gholson Lyon
Inositol 1,4,5-triphosphate receptor type 1 (ITPR1) is an endoplasmic reticulum-bound intracellular inositol triphosphate receptor involved in the regulation of intracellular calcium. Pathogenic variants in ITPR1 are associated with spinocerebellar ataxia (SCA) types 15/16 and 29 and have recently been implicated in a facial microsomia syndrome. In this report, we present a family with three affected individuals found to have a heterozygous missense c.800C > T (predicted p.Thr267Met) who present clinically with a SCA29-like syndrome. All three individuals presented with varying degrees of ataxia, developmental delay, and apparent intellectual disability, as well as craniofacial involvement-an uncommon finding in patients with SCA29. The variant was identified using clinical exome sequencing and validated with Sanger sequencing. It is presumed to be inherited via parental germline mosaicism. We present our findings to provide additional evidence for germline mosaic inheritance of SCA29, as well as to expand the clinical phenotype of the syndrome.
{"title":"<i>ITPR1</i>-associated spinocerebellar ataxia with craniofacial features-additional evidence for germline mosaicism.","authors":"Robert Kleyner, Nathaniel Ung, Mohammad Arif, Elaine Marchi, Karen Amble, Maureen Gavin, Ricardo Madrid, Gholson Lyon","doi":"10.1101/mcs.a006303","DOIUrl":"10.1101/mcs.a006303","url":null,"abstract":"<p><p>Inositol 1,4,5-triphosphate receptor type 1 (<i>ITPR1</i>) is an endoplasmic reticulum-bound intracellular inositol triphosphate receptor involved in the regulation of intracellular calcium. Pathogenic variants in <i>ITPR1</i> are associated with spinocerebellar ataxia (SCA) types 15/16 and 29 and have recently been implicated in a facial microsomia syndrome. In this report, we present a family with three affected individuals found to have a heterozygous missense c.800C > T (predicted p.Thr267Met) who present clinically with a SCA29-like syndrome. All three individuals presented with varying degrees of ataxia, developmental delay, and apparent intellectual disability, as well as craniofacial involvement-an uncommon finding in patients with SCA29. The variant was identified using clinical exome sequencing and validated with Sanger sequencing. It is presumed to be inherited via parental germline mosaicism. We present our findings to provide additional evidence for germline mosaic inheritance of SCA29, as well as to expand the clinical phenotype of the syndrome.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815276/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41193558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10Print Date: 2023-12-01DOI: 10.1101/mcs.a006311
Katherine Reid, Olga Camacho-Vanegas, Deep Pandya, Sandra Catalina Camacho, Rui Fang Qiao, Tamara Kalir, Maria M Padron-Rhenals, Ann-Marie Beddoe, Peter Dottino, John A Martignetti
Although the progressive histologic steps leading to endometrial cancer (EndoCA), the most common female reproductive tract malignancy, from endometrial hyperplasia are well-established, the molecular changes accompanying this malignant transformation in a single patient have never been described. We had the unique opportunity to investigate the paired histologic and molecular features associated with the 12-yr development of EndoCA in a postmenopausal female who could not undergo hysterectomy and instead underwent progesterone treatment. Using a specially designed 58-gene next-generation sequencing panel, we analyzed a total of 10 sequential biopsy samples collected over this time frame. A total of eight pathogenic/likely pathogenic mutations in seven genes, APC, ARID1A, CTNNB1, CDKN2A, KRAS, PTEN, and TP53, were identified. A PTEN nonsense mutation p.W111* was present in all samples analyzed except histologically normal endometrium. Apart from this PTEN mutation, the only other recurrent mutation was KRAS G12D, which was present in six biopsy samplings, including histologically normal tissue obtained at the patient's first visit but not detectable in the cancer. The PTEN p.W111* mutant allele fractions were lowest in benign, inactive endometrial glands (0.7%), highest in adenocarcinoma (36.9%), and, notably, were always markedly reduced following progesterone treatment. To our knowledge, this report provides the first molecular characterization of EndoCA development in a single patient. A single PTEN mutation was present throughout the 12 years of cancer development. Importantly, and with potential significance toward medical and nonsurgical management of EndoCA, progesterone treatments were consistently noted to markedly decrease PTEN mutant allele fractions to precancerous levels.
{"title":"Deep molecular tracking over the 12-yr development of endometrial cancer from hyperplasia in a single patient.","authors":"Katherine Reid, Olga Camacho-Vanegas, Deep Pandya, Sandra Catalina Camacho, Rui Fang Qiao, Tamara Kalir, Maria M Padron-Rhenals, Ann-Marie Beddoe, Peter Dottino, John A Martignetti","doi":"10.1101/mcs.a006311","DOIUrl":"10.1101/mcs.a006311","url":null,"abstract":"<p><p>Although the progressive histologic steps leading to endometrial cancer (EndoCA), the most common female reproductive tract malignancy, from endometrial hyperplasia are well-established, the molecular changes accompanying this malignant transformation in a single patient have never been described. We had the unique opportunity to investigate the paired histologic and molecular features associated with the 12-yr development of EndoCA in a postmenopausal female who could not undergo hysterectomy and instead underwent progesterone treatment. Using a specially designed 58-gene next-generation sequencing panel, we analyzed a total of 10 sequential biopsy samples collected over this time frame. A total of eight pathogenic/likely pathogenic mutations in seven genes, <i>APC</i>, <i>ARID1A</i>, <i>CTNNB1</i>, <i>CDKN2A</i>, <i>KRAS</i>, <i>PTEN</i>, and <i>TP53</i>, were identified. A <i>PTEN</i> nonsense mutation p.W111* was present in all samples analyzed except histologically normal endometrium. Apart from this <i>PTEN</i> mutation, the only other recurrent mutation was <i>KRAS</i> G12D, which was present in six biopsy samplings, including histologically normal tissue obtained at the patient's first visit but not detectable in the cancer. The <i>PTEN</i> p.W111* mutant allele fractions were lowest in benign, inactive endometrial glands (0.7%), highest in adenocarcinoma (36.9%), and, notably, were always markedly reduced following progesterone treatment. To our knowledge, this report provides the first molecular characterization of EndoCA development in a single patient. A single <i>PTEN</i> mutation was present throughout the 12 years of cancer development. Importantly, and with potential significance toward medical and nonsurgical management of EndoCA, progesterone treatments were consistently noted to markedly decrease <i>PTEN</i> mutant allele fractions to precancerous levels.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-11Print Date: 2023-06-01DOI: 10.1101/mcs.a006279
Leslie N Martinez-Gutierrez, Blake C Burgher, Manuel J Glynias, Daniel Alvarado, Elizabeth A Griffiths, Sean T Glenn, Pamela J Sung
Acute myeloid leukemias (AMLs) frequently harbor activating mutations in Fms-like tyrosine kinase 3 (FLT3). The use of FLT3 inhibitors (FLT3i) is the standard of care for treatment of newly diagnosed and relapsed patients with AML. Differentiation responses including clinical differentiation syndrome have been previously reported with FLT3i when used as single agents in relapsed disease. We present a case of hypereosinophilia in a patient on FLT3i therapy with persistent FLT3 polymerase chain reaction (PCR) positivity in peripheral blood. We sorted mature leukocytes by lineage to determine if the eosinophils were leukemia-derived. FLT3 PCR and next-generation sequencing analysis demonstrated monocytic differentiation of the FLT3-ITD leukemic clone with reactive hypereosinophilia that was derived from a preleukemic SF3B1, FLT3 wild-type clone. Our case is the first to definitively demonstrate the emergence of clonal FLT3-ITD monocytes with FLT3i and the first to demonstrate a differentiation response following decitabine, venetoclax, and gilteritinib triplet therapy.
{"title":"Evaluation of hypereosinophilia in a case of <i>FLT3</i>-mutant acute myeloid leukemia treated with gilteritinib.","authors":"Leslie N Martinez-Gutierrez, Blake C Burgher, Manuel J Glynias, Daniel Alvarado, Elizabeth A Griffiths, Sean T Glenn, Pamela J Sung","doi":"10.1101/mcs.a006279","DOIUrl":"10.1101/mcs.a006279","url":null,"abstract":"<p><p>Acute myeloid leukemias (AMLs) frequently harbor activating mutations in <i>Fms-like tyrosine kinase 3</i> (<i>FLT3</i>). The use of FLT3 inhibitors (FLT3i) is the standard of care for treatment of newly diagnosed and relapsed patients with AML. Differentiation responses including clinical differentiation syndrome have been previously reported with FLT3i when used as single agents in relapsed disease. We present a case of hypereosinophilia in a patient on FLT3i therapy with persistent <i>FLT3</i> polymerase chain reaction (PCR) positivity in peripheral blood. We sorted mature leukocytes by lineage to determine if the eosinophils were leukemia-derived. <i>FLT3</i> PCR and next-generation sequencing analysis demonstrated monocytic differentiation of the <i>FLT3-ITD</i> leukemic clone with reactive hypereosinophilia that was derived from a preleukemic <i>SF3B1</i>, <i>FLT3</i> wild-type clone. Our case is the first to definitively demonstrate the emergence of clonal <i>FLT3-ITD</i> monocytes with FLT3i and the first to demonstrate a differentiation response following decitabine, venetoclax, and gilteritinib triplet therapy.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5f/97/MCS006279Mar.PMC10393187.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9926720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hereditary connective tissue disorders have overlapping phenotypes, particularly in regard to musculoskeletal features. This contributes to the challenge of phenotype-based clinical diagnoses. However, some hereditary connective tissue disorders have distinct cardiovascular manifestations that require early intervention and specific management. Molecular testing has increased the ability to categorize and diagnose distinct hereditary connective tissue disorders. A 42-yr-old female with a clinical diagnosis of Larsen syndrome from birth presented for genetic testing based on her recent diagnosis of premenopausal breast cancer. She had a past medical history of multiple carotid dissections. As she never had confirmatory molecular genetic testing for Larsen syndrome, whole-exome sequencing was utilized to assess both hereditary cancer predisposition syndromes and connective tissue disorders. A homozygous pathogenic variant in the FKBP14 gene was identified associated with FKBP14 kyphoscoliotic Ehlers-Danlos syndrome. We recommend that patients with a clinical diagnosis of Larsen syndrome undergo broad-based molecular sequencing for multiple hereditary connective tissue disorders. Molecular diagnosis is particularly crucial for all individuals who have a history of significant vascular events in the setting of a clinical diagnosis only. Early diagnosis of a hereditary connective tissue disorder with vascular features allows for screening and subsequent prevention of cardiovascular events.
{"title":"<i>FKBP14</i> kyphoscoliotic Ehlers-Danlos syndrome misdiagnosed as Larsen syndrome: a case report.","authors":"Amy Wiegand, Rama Kastury, Arpita Neogi, Arya Mani, Allen Bale, Allison Cox","doi":"10.1101/mcs.a006281","DOIUrl":"10.1101/mcs.a006281","url":null,"abstract":"<p><p>Hereditary connective tissue disorders have overlapping phenotypes, particularly in regard to musculoskeletal features. This contributes to the challenge of phenotype-based clinical diagnoses. However, some hereditary connective tissue disorders have distinct cardiovascular manifestations that require early intervention and specific management. Molecular testing has increased the ability to categorize and diagnose distinct hereditary connective tissue disorders. A 42-yr-old female with a clinical diagnosis of Larsen syndrome from birth presented for genetic testing based on her recent diagnosis of premenopausal breast cancer. She had a past medical history of multiple carotid dissections. As she never had confirmatory molecular genetic testing for Larsen syndrome, whole-exome sequencing was utilized to assess both hereditary cancer predisposition syndromes and connective tissue disorders. A homozygous pathogenic variant in the <i>FKBP14</i> gene was identified associated with <i>FKBP14</i> kyphoscoliotic Ehlers-Danlos syndrome. We recommend that patients with a clinical diagnosis of Larsen syndrome undergo broad-based molecular sequencing for multiple hereditary connective tissue disorders. Molecular diagnosis is particularly crucial for all individuals who have a history of significant vascular events in the setting of a clinical diagnosis only. Early diagnosis of a hereditary connective tissue disorder with vascular features allows for screening and subsequent prevention of cardiovascular events.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393184/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9920968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}