We describe a pattern recognition system for classifying immunofluorescence images of HEp-2 cells into six classes: homogeneous, speckled, nucleolar, centromere, golgi, and nuclear membrane. We use locality-constrained linear coding to encode multiple local features and two-level cell pyramids to capture spatial structure of cells. An ensemble of linear support vector machines is used to classify each cell image. Leave-one-specimen-out experiments on the I3A Contest Task 1 training data set predicted a mean class accuracy of 80.25%.
{"title":"HEp-2 Cell Classification Using Multi-resolution Local Patterns and Ensemble SVMs","authors":"Siyamalan Manivannan, Wenqi Li, Shazia Akbar, Ruixuan Wang, Jianguo Zhang, S. McKenna","doi":"10.1109/I3A.2014.18","DOIUrl":"https://doi.org/10.1109/I3A.2014.18","url":null,"abstract":"We describe a pattern recognition system for classifying immunofluorescence images of HEp-2 cells into six classes: homogeneous, speckled, nucleolar, centromere, golgi, and nuclear membrane. We use locality-constrained linear coding to encode multiple local features and two-level cell pyramids to capture spatial structure of cells. An ensemble of linear support vector machines is used to classify each cell image. Leave-one-specimen-out experiments on the I3A Contest Task 1 training data set predicted a mean class accuracy of 80.25%.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114174501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A pattern recognition system was developed to classify immunofluorescence images of HEp-2 specimens into seven classes: homogeneous, speckled, nucleolar, centromere, golgi, nuclear membrane, and mitotic spindle. Root-SIFT features together with multi-resolution local patterns were used to capture local shape and texture information. Sparse coding with max-pooling was applied to get an image representation from these local features. Specimens were classified using a linear support vector machine. Leave-one-specimen-out experiments on the I3A Contest Task 2 data set predicted a mean class accuracy of 89.9%.
{"title":"HEp-2 Specimen Classification Using Multi-resolution Local Patterns and SVM","authors":"Siyamalan Manivannan, Wenqi Li, Shazia Akbar, Ruixuan Wang, Jianguo Zhang, S. McKenna","doi":"10.1109/I3A.2014.20","DOIUrl":"https://doi.org/10.1109/I3A.2014.20","url":null,"abstract":"A pattern recognition system was developed to classify immunofluorescence images of HEp-2 specimens into seven classes: homogeneous, speckled, nucleolar, centromere, golgi, nuclear membrane, and mitotic spindle. Root-SIFT features together with multi-resolution local patterns were used to capture local shape and texture information. Sparse coding with max-pooling was applied to get an image representation from these local features. Specimens were classified using a linear support vector machine. Leave-one-specimen-out experiments on the I3A Contest Task 2 data set predicted a mean class accuracy of 89.9%.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116895214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}