Pub Date : 2024-09-16DOI: 10.1101/cshperspect.a041553
Walter W Chen, Michael E Pacold, David M Sabatini, Naama Kanarek
It is increasingly appreciated that cancer cells adapt their metabolic pathways to support rapid growth and proliferation as well as survival, often even under the poor nutrient conditions that characterize some tumors. Cancer cells can also rewire their metabolism to circumvent chemotherapeutics that inhibit core metabolic pathways, such as nucleotide synthesis. A critical approach to the study of cancer metabolism is metabolite profiling (metabolomics), the set of technologies, usually based on mass spectrometry, that allow for the detection and quantification of metabolites in cancer cells and their environments. Metabolomics is a burgeoning field, driven by technological innovations in mass spectrometers, as well as novel approaches to isolate cells, subcellular compartments, and rare fluids, such as the interstitial fluid of tumors. Here, we discuss three emerging metabolomic technologies: spatial metabolomics, single-cell metabolomics, and organellar metabolomics. The use of these technologies along with more established profiling methods, like single-cell transcriptomics and proteomics, is likely to underlie new discoveries and questions in cancer research.
{"title":"Technologies for Decoding Cancer Metabolism with Spatial Resolution.","authors":"Walter W Chen, Michael E Pacold, David M Sabatini, Naama Kanarek","doi":"10.1101/cshperspect.a041553","DOIUrl":"https://doi.org/10.1101/cshperspect.a041553","url":null,"abstract":"<p><p>It is increasingly appreciated that cancer cells adapt their metabolic pathways to support rapid growth and proliferation as well as survival, often even under the poor nutrient conditions that characterize some tumors. Cancer cells can also rewire their metabolism to circumvent chemotherapeutics that inhibit core metabolic pathways, such as nucleotide synthesis. A critical approach to the study of cancer metabolism is metabolite profiling (metabolomics), the set of technologies, usually based on mass spectrometry, that allow for the detection and quantification of metabolites in cancer cells and their environments. Metabolomics is a burgeoning field, driven by technological innovations in mass spectrometers, as well as novel approaches to isolate cells, subcellular compartments, and rare fluids, such as the interstitial fluid of tumors. Here, we discuss three emerging metabolomic technologies: spatial metabolomics, single-cell metabolomics, and organellar metabolomics. The use of these technologies along with more established profiling methods, like single-cell transcriptomics and proteomics, is likely to underlie new discoveries and questions in cancer research.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1101/cshperspect.a041600
Lucienne Chatenoud, Kevan C Herold, Jean-François Bach, Jeffrey A Bluestone
In November 2022, teplizumab became the first drug approved to delay the course of any autoimmune disease and to change the course of type 1 diabetes (T1D) since the discovery of insulin. The path to its approval took more than 30 years with both successes and failures along the way that would have normally led to its abandonment in other circumstances. Development of the drug was based on studies in preclinical models and parallels efforts in transplantation. From a series of innovative adaptations in response to issues related to adverse events and immunogenicity, humanized Fc receptors (FcR) nonbinding antibodies were developed with improved clinical outcomes and safety as well as new mechanisms. Importantly, as a result of these developments, teplizumab has been able to achieve efficacy over extended periods of time without global immune suppression. The approval of teplizumab represents a significant first step toward achieving escape from T1D and, in the future, reversal of the disease.
{"title":"The Teplizumab Saga: The Challenge of Not Getting Lost in Clinical Translation.","authors":"Lucienne Chatenoud, Kevan C Herold, Jean-François Bach, Jeffrey A Bluestone","doi":"10.1101/cshperspect.a041600","DOIUrl":"https://doi.org/10.1101/cshperspect.a041600","url":null,"abstract":"<p><p>In November 2022, teplizumab became the first drug approved to delay the course of any autoimmune disease and to change the course of type 1 diabetes (T1D) since the discovery of insulin. The path to its approval took more than 30 years with both successes and failures along the way that would have normally led to its abandonment in other circumstances. Development of the drug was based on studies in preclinical models and parallels efforts in transplantation. From a series of innovative adaptations in response to issues related to adverse events and immunogenicity, humanized Fc receptors (FcR) nonbinding antibodies were developed with improved clinical outcomes and safety as well as new mechanisms. Importantly, as a result of these developments, teplizumab has been able to achieve efficacy over extended periods of time without global immune suppression. The approval of teplizumab represents a significant first step toward achieving escape from T1D and, in the future, reversal of the disease.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1101/cshperspect.a041598
Mark Peakman, Pere Santamaria
Type 1 diabetes (T1D) is driven by an immunologically complex, diverse, and self-sustaining immune response directed against tissue autoantigens, leading to loss or dysfunction of β cells. To date, the single approved immune intervention in T1D is based on a strategy that is similar to that used in other related autoimmune diseases, namely, the attenuation of immune cell activation. As a next-generation approach that is more focused on underlying mechanisms of loss of tolerance, antigen-specific immunotherapy is designed to establish or restore bystander immunoregulation in a highly tissue- and target-specific fashion. Here, we describe the basis for this alternative approach, which could also have potential for complementarity if used in combination with more conventional immune modulators, and highlight recent advances, knowledge gaps, and next steps in clinical development.
{"title":"Autoantigen-Specific Immunotherapies for the Prevention and Treatment of Type 1 Diabetes.","authors":"Mark Peakman, Pere Santamaria","doi":"10.1101/cshperspect.a041598","DOIUrl":"https://doi.org/10.1101/cshperspect.a041598","url":null,"abstract":"<p><p>Type 1 diabetes (T1D) is driven by an immunologically complex, diverse, and self-sustaining immune response directed against tissue autoantigens, leading to loss or dysfunction of β cells. To date, the single approved immune intervention in T1D is based on a strategy that is similar to that used in other related autoimmune diseases, namely, the attenuation of immune cell activation. As a next-generation approach that is more focused on underlying mechanisms of loss of tolerance, antigen-specific immunotherapy is designed to establish or restore bystander immunoregulation in a highly tissue- and target-specific fashion. Here, we describe the basis for this alternative approach, which could also have potential for complementarity if used in combination with more conventional immune modulators, and highlight recent advances, knowledge gaps, and next steps in clinical development.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A majority of cancer research is focused on defining the cellular and molecular basis of cancer cells and the signals that control oncogenic transformation; as a consequence, we know very little about the dynamic behavior of cancer cells in vivo. To begin to view and understand the mechanisms and interactions that control cancer initiation, growth, and metastatic progression and how these processes are influenced by the microenvironment and the signals derived from it, it is essential to develop strategies that allow imaging of the cancer cells in the context of the living microenvironment. Here, we discuss emerging work designed to visualize how cancer cells function within the microenvironment to discover how these interactions act coordinately to enable aberrant growth and to understand how they could be targeted to design new approaches to intercept the disease.
{"title":"Imaging Approaches in Cancer Biology.","authors":"Nirakar Rajbhandari, Emily Diaz, Marcie Kritzik, Tannishtha Reya","doi":"10.1101/cshperspect.a041349","DOIUrl":"10.1101/cshperspect.a041349","url":null,"abstract":"<p><p>A majority of cancer research is focused on defining the cellular and molecular basis of cancer cells and the signals that control oncogenic transformation; as a consequence, we know very little about the dynamic behavior of cancer cells in vivo. To begin to view and understand the mechanisms and interactions that control cancer initiation, growth, and metastatic progression and how these processes are influenced by the microenvironment and the signals derived from it, it is essential to develop strategies that allow imaging of the cancer cells in the context of the living microenvironment. Here, we discuss emerging work designed to visualize how cancer cells function within the microenvironment to discover how these interactions act coordinately to enable aberrant growth and to understand how they could be targeted to design new approaches to intercept the disease.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141075798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1101/cshperspect.a041287
Stephen P Daiger, Lori S Sullivan, Elizabeth L Cadena, Sara J Bowne
This is a brief history of the work by many investigators throughout the world to find genes and mutations causing inherited retinal diseases (IRDs). It largely covers 40 years, from the late-1980s through today. Perhaps the best reason to study history is to better understand the present. The "present" for IRDs is exceptionally complex. Mutations in hundreds of genes are known to cause IRDs; tens of thousands of disease-causing mutations have been reported; clinical consequences are highly variable, even within the same family; and genetic testing, counseling, and clinical care are highly advanced but technically challenging. The aim of this review is to account for how we have come to know and understand, at least partly, this complexity.
{"title":"History of Finding Genes and Mutations Causing Inherited Retinal Diseases.","authors":"Stephen P Daiger, Lori S Sullivan, Elizabeth L Cadena, Sara J Bowne","doi":"10.1101/cshperspect.a041287","DOIUrl":"10.1101/cshperspect.a041287","url":null,"abstract":"<p><p>This is a brief history of the work by many investigators throughout the world to find genes and mutations causing inherited retinal diseases (IRDs). It largely covers 40 years, from the late-1980s through today. Perhaps the best reason to study history is to better understand the present. The \"present\" for IRDs is exceptionally complex. Mutations in hundreds of genes are known to cause IRDs; tens of thousands of disease-causing mutations have been reported; clinical consequences are highly variable, even within the same family; and genetic testing, counseling, and clinical care are highly advanced but technically challenging. The aim of this review is to account for how we have come to know and understand, at least partly, this complexity.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41106182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1101/cshperspect.a041623
Kevan C. Herold, Jeffrey P. Krischer
Type 1 diabetes (T1D) is a chronic autoimmune disease with a metabolic outcome. Studies over the past decades, have identified the contributions of genetics, environmental factors, and disorders of innate and adaptive immunity that collectively cause β-cell killing. The risk for T1D can be genetically identified but genotypes alone do not identify factors that lead to disease progression. The incidence of T1D has been increasing in the past few decades, which may be due to reduced exposure to infections and other environmental factors that can reduce autoimmunity (hygiene hypothesis). Once initiated, the disease pathogenesis progresses through stages that have been defined on the bases of immunologic (i.e., autoantibodies) and metabolic markers (glucose tolerance). The stages only loosely capture the risk for the time to diagnosis of disease, do not directly reflect disease activity, and there may be variance in the rate of progression within stages. In a general way, the stages can be used to identify patients at risk in whom interventions may be considered to modulate progression. This was achieved with the approval of teplizumab, a humanized anti-CD3 monoclonal antibody, for delaying the diagnosis of T1D.
{"title":"The Pathogenesis of Type 1 Diabetes","authors":"Kevan C. Herold, Jeffrey P. Krischer","doi":"10.1101/cshperspect.a041623","DOIUrl":"https://doi.org/10.1101/cshperspect.a041623","url":null,"abstract":"Type 1 diabetes (T1D) is a chronic autoimmune disease with a metabolic outcome. Studies over the past decades, have identified the contributions of genetics, environmental factors, and disorders of innate and adaptive immunity that collectively cause β-cell killing. The risk for T1D can be genetically identified but genotypes alone do not identify factors that lead to disease progression. The incidence of T1D has been increasing in the past few decades, which may be due to reduced exposure to infections and other environmental factors that can reduce autoimmunity (hygiene hypothesis). Once initiated, the disease pathogenesis progresses through stages that have been defined on the bases of immunologic (i.e., autoantibodies) and metabolic markers (glucose tolerance). The stages only loosely capture the risk for the time to diagnosis of disease, do not directly reflect disease activity, and there may be variance in the rate of progression within stages. In a general way, the stages can be used to identify patients at risk in whom interventions may be considered to modulate progression. This was achieved with the approval of teplizumab, a humanized anti-CD3 monoclonal antibody, for delaying the diagnosis of T1D.","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":"44 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1101/cshperspect.a041588
Irina Kusmartseva, Amanda Posgai, Mingder Yang, Richard Oram, Mark Atkinson, Alberto Pugliese, Carmella Evans-Molina
The Network for Pancreatic Organ Donors with Diabetes (nPOD) has helped shape the contemporary understanding of type 1 diabetes (T1D) pathogenesis in humans through the procurement, distribution to scientists, and collaborative study of human pancreata and disease-related tissues from organ donors with T1D and islet autoantibody positivity. Since its inception in 2007, nPOD has collected tissues from 600 donors, and these resources have been distributed across 22 countries to more than 290 projects, resulting in nearly 350 publications. Research projects supported by nPOD span the breadth of diabetes research, including studies on T1D immunology and β-cell biology, and have uniquely unveiled abnormalities in other pancreatic cell types. In this article, we will detail the history and programmatic features of nPOD, as well as highlight key scientific findings from nPOD studies. We will present our view for the future of nPOD and discuss how the success of the program has established a precedent whereby knowledge gaps in biomedical research can be addressed through the study of human tissues.
{"title":"The Human Pancreas in Type 1 Diabetes: Lessons Learned from the Network of Pancreatic Organ Donors with Diabetes","authors":"Irina Kusmartseva, Amanda Posgai, Mingder Yang, Richard Oram, Mark Atkinson, Alberto Pugliese, Carmella Evans-Molina","doi":"10.1101/cshperspect.a041588","DOIUrl":"https://doi.org/10.1101/cshperspect.a041588","url":null,"abstract":"The Network for Pancreatic Organ Donors with Diabetes (nPOD) has helped shape the contemporary understanding of type 1 diabetes (T1D) pathogenesis in humans through the procurement, distribution to scientists, and collaborative study of human pancreata and disease-related tissues from organ donors with T1D and islet autoantibody positivity. Since its inception in 2007, nPOD has collected tissues from 600 donors, and these resources have been distributed across 22 countries to more than 290 projects, resulting in nearly 350 publications. Research projects supported by nPOD span the breadth of diabetes research, including studies on T1D immunology and β-cell biology, and have uniquely unveiled abnormalities in other pancreatic cell types. In this article, we will detail the history and programmatic features of nPOD, as well as highlight key scientific findings from nPOD studies. We will present our view for the future of nPOD and discuss how the success of the program has established a precedent whereby knowledge gaps in biomedical research can be addressed through the study of human tissues.","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":"57 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1101/cshperspect.a041586
Tae Gun Kang, Benjamin Youngblood
Type 1 diabetes (T1D) serves as an exemplar of chronic autoimmune disease characterized by insulin deficiency due to pancreatic β-cell destruction, leading to hyperglycemia and progressive organ failure. Until recently, therapeutic efforts to mitigate the root cause of disease have been limited by the challenges in studying mechanisms involved in immune tolerance in humans. The current clinical advances, and existing challenges, highlight a need to incorporate new insights into mechanisms into correlative studies that assess immune tolerance in the setting of delayed β-cell destruction. Among several factors known to promote T1D, autoreactive T cells play a critical role in initiating and sustaining disease through their direct recognition and destruction of β cells. Emerging research defining the genetic and epigenetic etiology of long-lived β-cell-specific T cells is providing new insight into mechanisms that promote lifelong disease and future opportunities for targeted therapeutic intervention. This article will provide an overview of recent progress toward understanding the development of autoreactive T cells and epigenetic mechanisms stabilizing their developmental state during T1D pathogenesis.
1 型糖尿病(T1D)是慢性自身免疫性疾病的典范,其特点是胰岛β细胞破坏导致胰岛素缺乏,从而引发高血糖和渐进性器官衰竭。直到最近,由于在研究人体免疫耐受机制方面存在挑战,缓解疾病根源的治疗工作一直受到限制。目前的临床进展和现有的挑战突出表明,有必要将对机制的新认识纳入相关研究,以评估延迟β细胞破坏情况下的免疫耐受性。在已知的几种促进 T1D 的因素中,自反应 T 细胞通过直接识别和破坏 β 细胞,在引发和维持疾病方面起着至关重要的作用。界定长寿命 β 细胞特异性 T 细胞的遗传和表观遗传学病因学的新兴研究为了解促进终生疾病的机制和未来靶向治疗干预的机会提供了新的视角。本文将概述最近在了解自反应性 T 细胞的发育以及在 T1D 发病过程中稳定其发育状态的表观遗传学机制方面取得的进展。
{"title":"Genetics and Epigenetics of Type 1 Diabetes Self-Reactive T Cells","authors":"Tae Gun Kang, Benjamin Youngblood","doi":"10.1101/cshperspect.a041586","DOIUrl":"https://doi.org/10.1101/cshperspect.a041586","url":null,"abstract":"Type 1 diabetes (T1D) serves as an exemplar of chronic autoimmune disease characterized by insulin deficiency due to pancreatic β-cell destruction, leading to hyperglycemia and progressive organ failure. Until recently, therapeutic efforts to mitigate the root cause of disease have been limited by the challenges in studying mechanisms involved in immune tolerance in humans. The current clinical advances, and existing challenges, highlight a need to incorporate new insights into mechanisms into correlative studies that assess immune tolerance in the setting of delayed β-cell destruction. Among several factors known to promote T1D, autoreactive T cells play a critical role in initiating and sustaining disease through their direct recognition and destruction of β cells. Emerging research defining the genetic and epigenetic etiology of long-lived β-cell-specific T cells is providing new insight into mechanisms that promote lifelong disease and future opportunities for targeted therapeutic intervention. This article will provide an overview of recent progress toward understanding the development of autoreactive T cells and epigenetic mechanisms stabilizing their developmental state during T1D pathogenesis.","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":"78 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1101/cshperspect.a041774
Ana Westenberger, Norbert Brüggemann, Christine Klein
The genetic architecture of Parkinson's disease (PD) comprises five autosomal dominantly inherited forms with a clinical picture overall resembling idiopathic disease (PARK-SNCA, PARK-LRRK2, PARK-VPS35, PARK-CHCHD2, and PARK-RAB32) and three recessive types (PARK-PRKN, PARK-PINK1, and PARK-PARK7), several monogenic forms causing atypical parkinsonism, as well as a plethora of known genetic risk factors, most notably SNCA and GBA1 including a recently discovered risk variant unique to individuals of African descent, as well as polygenic scores. The Movement Disorder Society Genetic mutation database (MDSGene) (www.mdsgene.org) provides PD genotype–phenotype relationships, whereas global PD genetics networks, such as the Global Parkinson's Genetics Program (www.gp2.org) elucidate PD genetic factors at an unprecedented scale. Two large studies in relatively unselected, multicenter PD samples estimate the frequency of genetic forms, including PARK-GBA1, at ∼15%. PD genetics are becoming increasingly actionable, with the first gene-targeted clinical trials underway. Furthermore, PD genetics has recently been incorporated into a new biological classification of PD.
{"title":"Genetics of Parkinson's Disease: From Causes to Treatment","authors":"Ana Westenberger, Norbert Brüggemann, Christine Klein","doi":"10.1101/cshperspect.a041774","DOIUrl":"https://doi.org/10.1101/cshperspect.a041774","url":null,"abstract":"The genetic architecture of Parkinson's disease (PD) comprises five autosomal dominantly inherited forms with a clinical picture overall resembling idiopathic disease (PARK-<em>SNCA</em>, PARK-<em>LRRK2</em>, PARK-<em>VPS35</em>, PARK-<em>CHCHD2</em>, and PARK-<em>RAB32</em>) and three recessive types (PARK-<em>PRKN</em>, PARK-<em>PINK1</em>, and PARK-<em>PARK7</em>), several monogenic forms causing atypical parkinsonism, as well as a plethora of known genetic risk factors, most notably <em>SNCA</em> and <em>GBA1</em> including a recently discovered risk variant unique to individuals of African descent, as well as polygenic scores. The Movement Disorder Society Genetic mutation database (MDSGene) (www.mdsgene.org) provides PD genotype–phenotype relationships, whereas global PD genetics networks, such as the Global Parkinson's Genetics Program (www.gp2.org) elucidate PD genetic factors at an unprecedented scale. Two large studies in relatively unselected, multicenter PD samples estimate the frequency of genetic forms, including PARK-<em>GBA1</em>, at ∼15%. PD genetics are becoming increasingly actionable, with the first gene-targeted clinical trials underway. Furthermore, PD genetics has recently been incorporated into a new biological classification of PD.","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":"1 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1101/cshperspect.a041593
Mia J. Smith, Joanne Boldison, F. Susan Wong
While autoreactive T cells are known to induce β-cell death in type 1 diabetes (T1D), self-reactive B cells also play an important role in the pathogenesis of T1D. Studies have shown that individuals living with T1D have an increased frequency of self-reactive B cells that escape from the bone marrow and populate peripheral organs, become activated, and participate in disease. These failed tolerance mechanisms may be attributed to genetic risk alleles that are associated with the development of T1D. Once in the periphery, these self-reactive B cells act as important antigen-presenting cells to autoreactive T cells and produce autoantibodies that are used to predict individuals at risk for or diagnosed with T1D. Here, we discuss the evidence that B cells are important in the pathogenesis of T1D, how these cells escape normal tolerance mechanisms, their role in disease progression, and how targeting these cells and/or monitoring them as biomarkers for response to therapy will be of clinical benefit.
众所周知,自身反应性 T 细胞会诱导 1 型糖尿病(T1D)β 细胞死亡,而自身反应性 B 细胞在 T1D 的发病机制中也扮演着重要角色。研究表明,T1D 患者体内自我反应性 B 细胞的出现频率增加,这些 B 细胞从骨髓中逃逸出来,在外周器官中增殖、活化并参与疾病的发生。这些失效的耐受机制可能与 T1D 发病相关的遗传风险等位基因有关。一旦进入外周,这些自我反应性 B 细胞就会成为自反应性 T 细胞的重要抗原递呈细胞,并产生自身抗体,用于预测有 T1D 风险或被诊断为 T1D 的个体。在这里,我们将讨论 B 细胞在 T1D 发病机制中起重要作用的证据、这些细胞如何逃避正常的耐受机制、它们在疾病进展中的作用,以及靶向这些细胞和/或监测它们作为治疗反应的生物标志物将如何对临床有益。
{"title":"The Role of B Lymphocytes in Type 1 Diabetes","authors":"Mia J. Smith, Joanne Boldison, F. Susan Wong","doi":"10.1101/cshperspect.a041593","DOIUrl":"https://doi.org/10.1101/cshperspect.a041593","url":null,"abstract":"While autoreactive T cells are known to induce β-cell death in type 1 diabetes (T1D), self-reactive B cells also play an important role in the pathogenesis of T1D. Studies have shown that individuals living with T1D have an increased frequency of self-reactive B cells that escape from the bone marrow and populate peripheral organs, become activated, and participate in disease. These failed tolerance mechanisms may be attributed to genetic risk alleles that are associated with the development of T1D. Once in the periphery, these self-reactive B cells act as important antigen-presenting cells to autoreactive T cells and produce autoantibodies that are used to predict individuals at risk for or diagnosed with T1D. Here, we discuss the evidence that B cells are important in the pathogenesis of T1D, how these cells escape normal tolerance mechanisms, their role in disease progression, and how targeting these cells and/or monitoring them as biomarkers for response to therapy will be of clinical benefit.","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":"195 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}