Pub Date : 2024-07-15DOI: 10.1101/cshperspect.a041634
Katie A Greenzang, Stephen E Sallan
Over the last 75 years, pediatric cancer has gone from nearly universally fatal, to having a >80% chance of long-term survival. Below we share highlights in this 75-year history, beginning with the "birth" of chemotherapy in treating childhood leukemia, through the development of multiagent chemotherapy, risk-stratified therapy, the use of molecular strategies in diagnosis and treatment, and adapting treatment to the needs of particularly vulnerable patient groups such as adolescents and young adults (AYAs). While pediatric leukemia treatment demonstrates the ever-improving cures achieved through iterative incorporation of novel discoveries, this experience is contrasted with that of osteosarcoma, where scientific advances made over recent decades have yet to be translated into meaningful improvements in long-term survival. We conclude with a brief overview of current areas of focus, including precision medicine, immunotherapy, and other treatment advancements, yet describe the need to couple these scientific breakthroughs with consideration of equitable access and evaluation of the long-term impacts of these "newer" therapies in survivorship. Substantial further work is needed to achieve our goal of curing all children with cancer as harmlessly as possible.
{"title":"Principles in the Development of Contemporary Treatment of Childhood Malignancies: The First 75 Years.","authors":"Katie A Greenzang, Stephen E Sallan","doi":"10.1101/cshperspect.a041634","DOIUrl":"https://doi.org/10.1101/cshperspect.a041634","url":null,"abstract":"<p><p>Over the last 75 years, pediatric cancer has gone from nearly universally fatal, to having a >80% chance of long-term survival. Below we share highlights in this 75-year history, beginning with the \"birth\" of chemotherapy in treating childhood leukemia, through the development of multiagent chemotherapy, risk-stratified therapy, the use of molecular strategies in diagnosis and treatment, and adapting treatment to the needs of particularly vulnerable patient groups such as adolescents and young adults (AYAs). While pediatric leukemia treatment demonstrates the ever-improving cures achieved through iterative incorporation of novel discoveries, this experience is contrasted with that of osteosarcoma, where scientific advances made over recent decades have yet to be translated into meaningful improvements in long-term survival. We conclude with a brief overview of current areas of focus, including precision medicine, immunotherapy, and other treatment advancements, yet describe the need to couple these scientific breakthroughs with consideration of equitable access and evaluation of the long-term impacts of these \"newer\" therapies in survivorship. Substantial further work is needed to achieve our goal of curing all children with cancer as harmlessly as possible.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1101/cshperspect.a041551
Thomas Ruan, Kayvan R Keshari
Molecular imaging-the mapping of molecular and cellular processes in vivo-has the unique capability to interrogate cancer metabolism in its spatial contexts. This work describes the usage of the two most developed modalities for imaging metabolism in vivo: positron emission tomography (PET) and magnetic resonance (MR). These techniques can be used to probe glycolysis, glutamine metabolism, anabolic metabolism, redox state, hypoxia, and extracellular acidification. This review aims to provide an overview of the strengths and limitations of currently available molecular imaging strategies.
{"title":"Imaging Tumor Metabolism.","authors":"Thomas Ruan, Kayvan R Keshari","doi":"10.1101/cshperspect.a041551","DOIUrl":"https://doi.org/10.1101/cshperspect.a041551","url":null,"abstract":"<p><p>Molecular imaging-the mapping of molecular and cellular processes in vivo-has the unique capability to interrogate cancer metabolism in its spatial contexts. This work describes the usage of the two most developed modalities for imaging metabolism in vivo: positron emission tomography (PET) and magnetic resonance (MR). These techniques can be used to probe glycolysis, glutamine metabolism, anabolic metabolism, redox state, hypoxia, and extracellular acidification. This review aims to provide an overview of the strengths and limitations of currently available molecular imaging strategies.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1101/cshperspect.a041381
Emiliano Cocco, Elisa de Stanchina
The use of patient-derived xenografts (PDXs) has dramatically improved drug development programs. PDXs (1) reproduce the pathological features and the genomic profile of the parental tumors more precisely than other preclinical models, and (2) more faithfully predict therapy response. However, PDXs have limitations. These include the inability to completely capture tumor heterogeneity and the role of the immune system, the low engraftment efficiency of certain tumor types, and the consequences of the human-host interactions. Recently, the use of novel mouse strains and specialized engraftment techniques has enabled the generation of "humanized" PDXs, partially overcoming such limitations. Importantly, establishing, characterizing, and maintaining PDXs is costly and requires a significant regulatory, administrative, clinical, and laboratory infrastructure. In this review, we will retrace the historical milestones that led to the implementation of PDXs for cancer research, review the most recent innovations in the field, and discuss future avenues to tackle deficiencies that still exist.
{"title":"Patient-Derived-Xenografts in Mice: A Preclinical Platform for Cancer Research.","authors":"Emiliano Cocco, Elisa de Stanchina","doi":"10.1101/cshperspect.a041381","DOIUrl":"10.1101/cshperspect.a041381","url":null,"abstract":"<p><p>The use of patient-derived xenografts (PDXs) has dramatically improved drug development programs. PDXs (1) reproduce the pathological features and the genomic profile of the parental tumors more precisely than other preclinical models, and (2) more faithfully predict therapy response. However, PDXs have limitations. These include the inability to completely capture tumor heterogeneity and the role of the immune system, the low engraftment efficiency of certain tumor types, and the consequences of the human-host interactions. Recently, the use of novel mouse strains and specialized engraftment techniques has enabled the generation of \"humanized\" PDXs, partially overcoming such limitations. Importantly, establishing, characterizing, and maintaining PDXs is costly and requires a significant regulatory, administrative, clinical, and laboratory infrastructure. In this review, we will retrace the historical milestones that led to the implementation of PDXs for cancer research, review the most recent innovations in the field, and discuss future avenues to tackle deficiencies that still exist.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10213390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1101/cshperspect.a041643
Kim Tieu, Said S Salehe, Harry J Brown
The debilitating motor symptoms of Parkinson's disease (PD) result primarily from the degenerative nigrostriatal dopaminergic pathway. To elucidate pathogenic mechanisms and evaluate therapeutic strategies for PD, numerous animal models have been developed. Understanding the strengths and limitations of these models can significantly impact the choice of model, experimental design, and data interpretation. Herein, we systematically review the literature over the past decade. Some models no longer serve the purpose of PD models. The primary objectives of this review are: First, to assist new investigators in navigating through available animal models and making appropriate selections based on the objective of the study. Emphasis will be placed on common toxin-induced murine models. And second, to provide an overview of basic technical requirements for assessing the nigrostriatal pathway's pathology, structure, and function.
{"title":"Toxin-Induced Animal Models of Parkinson's Disease.","authors":"Kim Tieu, Said S Salehe, Harry J Brown","doi":"10.1101/cshperspect.a041643","DOIUrl":"https://doi.org/10.1101/cshperspect.a041643","url":null,"abstract":"<p><p>The debilitating motor symptoms of Parkinson's disease (PD) result primarily from the degenerative nigrostriatal dopaminergic pathway. To elucidate pathogenic mechanisms and evaluate therapeutic strategies for PD, numerous animal models have been developed. Understanding the strengths and limitations of these models can significantly impact the choice of model, experimental design, and data interpretation. Herein, we systematically review the literature over the past decade. Some models no longer serve the purpose of PD models. The primary objectives of this review are: First, to assist new investigators in navigating through available animal models and making appropriate selections based on the objective of the study. Emphasis will be placed on common toxin-induced murine models. And second, to provide an overview of basic technical requirements for assessing the nigrostriatal pathway's pathology, structure, and function.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1101/cshperspect.a041301
Boris Rosin, Eyal Banin, Jose-Alain Sahel
With the rapid expansion of methods encompassed by the term gene therapy, new trials exploring the safety and efficacy of these methods are initiated more frequently. As a result, important questions arise pertaining the design of these trials and patient participation. One of the most important aspects of any clinical trial is the ability to measure the trial's outcome in a manner that will reflect the effect of the treatment and allow its quantification, whether the trial is aimed at preservation or restoration of retinal cells (photoreceptors and others), vision, or both. Here we will review the existing methods for quantification of trial outcomes, stressing the importance of assessing the participant's visual function and not just visual acuity. We will also describe the key considerations in trial design. Finally, as patient safety remains the primary concern in any trial participation, we will outline the key principles in that regard.
{"title":"Current Status of Clinical Trials Design and Outcomes in Retinal Gene Therapy.","authors":"Boris Rosin, Eyal Banin, Jose-Alain Sahel","doi":"10.1101/cshperspect.a041301","DOIUrl":"10.1101/cshperspect.a041301","url":null,"abstract":"<p><p>With the rapid expansion of methods encompassed by the term gene therapy, new trials exploring the safety and efficacy of these methods are initiated more frequently. As a result, important questions arise pertaining the design of these trials and patient participation. One of the most important aspects of any clinical trial is the ability to measure the trial's outcome in a manner that will reflect the effect of the treatment and allow its quantification, whether the trial is aimed at preservation or restoration of retinal cells (photoreceptors and others), vision, or both. Here we will review the existing methods for quantification of trial outcomes, stressing the importance of assessing the participant's visual function and not just visual acuity. We will also describe the key considerations in trial design. Finally, as patient safety remains the primary concern in any trial participation, we will outline the key principles in that regard.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216172/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10215521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1101/cshperspect.a041548
Alina M Winkelkotte, Kamal Al-Shami, Adriano B Chaves-Filho, Felix C E Vogel, Almut Schulze
Lipids have essential functions as structural components of cellular membranes, as efficient energy storage molecules, and as precursors of signaling mediators. While deregulated glucose and amino acid metabolism in cancer have received substantial attention, the roles of lipids in the metabolic reprogramming of cancer cells are less well understood. However, since the first description of de novo fatty acid biosynthesis in cancer tissues almost 70 years ago, numerous studies have investigated the complex functions of altered lipid metabolism in cancer. Here, we will summarize the mechanisms by which oncogenic signaling pathways regulate fatty acid and cholesterol metabolism to drive rapid proliferation and protect cancer cells from environmental stress. The review also discusses the role of fatty acid metabolism in metabolic plasticity required for the adaptation to changing microenvironments during cancer progression and the connections between fatty acid and cholesterol metabolism and ferroptosis.
{"title":"Interactions of Fatty Acid and Cholesterol Metabolism with Cellular Stress Response Pathways in Cancer.","authors":"Alina M Winkelkotte, Kamal Al-Shami, Adriano B Chaves-Filho, Felix C E Vogel, Almut Schulze","doi":"10.1101/cshperspect.a041548","DOIUrl":"https://doi.org/10.1101/cshperspect.a041548","url":null,"abstract":"<p><p>Lipids have essential functions as structural components of cellular membranes, as efficient energy storage molecules, and as precursors of signaling mediators. While deregulated glucose and amino acid metabolism in cancer have received substantial attention, the roles of lipids in the metabolic reprogramming of cancer cells are less well understood. However, since the first description of de novo fatty acid biosynthesis in cancer tissues almost 70 years ago, numerous studies have investigated the complex functions of altered lipid metabolism in cancer. Here, we will summarize the mechanisms by which oncogenic signaling pathways regulate fatty acid and cholesterol metabolism to drive rapid proliferation and protect cancer cells from environmental stress. The review also discusses the role of fatty acid metabolism in metabolic plasticity required for the adaptation to changing microenvironments during cancer progression and the connections between fatty acid and cholesterol metabolism and ferroptosis.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1101/cshperspect.a041591
Maria Skjøtt Hansen, Pravil Pokharel, Jon Piganelli, Lori Sussel
In this review, we explore the complex interplay between the immune system and pancreatic β cells in the context of type 1 diabetes (T1D). While T1D is predominantly considered a T-cell-mediated autoimmune disease, the inability of human leukocyte antigen (HLA)-risk alleles alone to explain disease development suggests a role for β cells in initiating and/or propagating disease. This review delves into the vulnerability of β cells, emphasizing their susceptibility to endoplasmic reticulum (ER) stress and protein modifications, which may give rise to neoantigens. Additionally, we discuss the role of viral infections as contributors to T1D onset, and of genetic factors with dual impacts on the immune system and β cells. A greater understanding of the interplay between environmental triggers, autoimmunity, and the β cell will not only lead to insight as to why the islet β cells are specifically targeted by the immune system in T1D but may also reveal potential novel therapeutic interventions.
{"title":"The Chicken or the Egg Dilemma: Understanding the Interplay between the Immune System and the β Cell in Type 1 Diabetes.","authors":"Maria Skjøtt Hansen, Pravil Pokharel, Jon Piganelli, Lori Sussel","doi":"10.1101/cshperspect.a041591","DOIUrl":"https://doi.org/10.1101/cshperspect.a041591","url":null,"abstract":"<p><p>In this review, we explore the complex interplay between the immune system and pancreatic β cells in the context of type 1 diabetes (T1D). While T1D is predominantly considered a T-cell-mediated autoimmune disease, the inability of human leukocyte antigen (HLA)-risk alleles alone to explain disease development suggests a role for β cells in initiating and/or propagating disease. This review delves into the vulnerability of β cells, emphasizing their susceptibility to endoplasmic reticulum (ER) stress and protein modifications, which may give rise to neoantigens. Additionally, we discuss the role of viral infections as contributors to T1D onset, and of genetic factors with dual impacts on the immune system and β cells. A greater understanding of the interplay between environmental triggers, autoimmunity, and the β cell will not only lead to insight as to why the islet β cells are specifically targeted by the immune system in T1D but may also reveal potential novel therapeutic interventions.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1101/cshperspect.a041411
Kathleen M McAndrews, Krishnan K Mahadevan, Raghu Kalluri
The tumor microenvironment (TME) is a complex ecosystem of both cellular and noncellular components that functions to impact the evolution of cancer. Various aspects of the TME have been targeted for the control of cancer; however, TME composition is dynamic, with the overall abundance of immune cells, endothelial cells (ECs), fibroblasts, and extracellular matrix (ECM) as well as subsets of TME components changing at different stages of progression and in response to therapy. To effectively treat cancer, an understanding of the functional role of the TME is needed. Genetically engineered mouse models have enabled comprehensive insight into the complex interactions within the TME ecosystem that regulate disease progression. Here, we review recent advances in mouse models that have been employed to understand how the TME regulates cancer initiation, progression, metastasis, and response to therapy.
{"title":"Mouse Models to Evaluate the Functional Role of the Tumor Microenvironment in Cancer Progression and Therapy Responses.","authors":"Kathleen M McAndrews, Krishnan K Mahadevan, Raghu Kalluri","doi":"10.1101/cshperspect.a041411","DOIUrl":"10.1101/cshperspect.a041411","url":null,"abstract":"<p><p>The tumor microenvironment (TME) is a complex ecosystem of both cellular and noncellular components that functions to impact the evolution of cancer. Various aspects of the TME have been targeted for the control of cancer; however, TME composition is dynamic, with the overall abundance of immune cells, endothelial cells (ECs), fibroblasts, and extracellular matrix (ECM) as well as subsets of TME components changing at different stages of progression and in response to therapy. To effectively treat cancer, an understanding of the functional role of the TME is needed. Genetically engineered mouse models have enabled comprehensive insight into the complex interactions within the TME ecosystem that regulate disease progression. Here, we review recent advances in mouse models that have been employed to understand how the TME regulates cancer initiation, progression, metastasis, and response to therapy.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216184/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139402161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1101/cshperspect.a041539
Jessie Yanxiang Guo, Eileen White
Macroautophagy (autophagy hereafter) is an intracellular nutrient scavenging pathway induced by starvation and other stressors whereby cellular components such as organelles are captured in double-membrane vesicles (autophagosomes), whereupon their contents are degraded through fusion with lysosomes. Two main purposes of autophagy are to recycle the intracellular breakdown products to sustain metabolism and survival during starvation and to eliminate damaged or excess cellular components to suppress inflammation and maintain homeostasis. In contrast to most normal cells and tissues in the fed state, tumor cells up-regulate autophagy to promote their growth, survival, and malignancy. This tumor-cell-autonomous autophagy supports elevated metabolic demand and suppresses tumoricidal activation of the innate and adaptive immune responses. Tumor-cell-nonautonomous (e.g., host) autophagy also supports tumor growth by maintaining essential tumor nutrients in the circulation and tumor microenvironment and by suppressing an antitumor immune response. In the setting of cancer therapy, autophagy is a resistance mechanism to chemotherapy, targeted therapy, and immunotherapy. Thus, tumor and host autophagy are protumorigenic and autophagy inhibition is being examined as a novel therapeutic approach to treat cancer.
{"title":"Role of Tumor Cell Intrinsic and Host Autophagy in Cancer.","authors":"Jessie Yanxiang Guo, Eileen White","doi":"10.1101/cshperspect.a041539","DOIUrl":"10.1101/cshperspect.a041539","url":null,"abstract":"<p><p>Macroautophagy (autophagy hereafter) is an intracellular nutrient scavenging pathway induced by starvation and other stressors whereby cellular components such as organelles are captured in double-membrane vesicles (autophagosomes), whereupon their contents are degraded through fusion with lysosomes. Two main purposes of autophagy are to recycle the intracellular breakdown products to sustain metabolism and survival during starvation and to eliminate damaged or excess cellular components to suppress inflammation and maintain homeostasis. In contrast to most normal cells and tissues in the fed state, tumor cells up-regulate autophagy to promote their growth, survival, and malignancy. This tumor-cell-autonomous autophagy supports elevated metabolic demand and suppresses tumoricidal activation of the innate and adaptive immune responses. Tumor-cell-nonautonomous (e.g., host) autophagy also supports tumor growth by maintaining essential tumor nutrients in the circulation and tumor microenvironment and by suppressing an antitumor immune response. In the setting of cancer therapy, autophagy is a resistance mechanism to chemotherapy, targeted therapy, and immunotherapy. Thus, tumor and host autophagy are protumorigenic and autophagy inhibition is being examined as a novel therapeutic approach to treat cancer.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139520131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1101/cshperspect.a041602
S Alice Long, Peter S Linsley
Biomarkers are critical to the staging and diagnosis of type 1 diabetes (T1D). Functional biomarkers offer insights into T1D immunopathogenesis and are often revealed using "omics" approaches that integrate multiple measures to identify involved pathways and functions. Application of the omics biomarker discovery may enable personalized medicine approaches to circumvent the more recently appreciated heterogeneity of T1D progression and treatment. Use of omics to define functional biomarkers is still in its early years, yet findings to date emphasize the role of cytokine signaling and adaptive immunity in biomarkers of progression and response to therapy. Here, we share examples of the use of omics to define functional biomarkers focusing on two signatures, T-cell exhaustion and T-cell help, which have been associated with outcomes in both the natural history and treatment contexts.
{"title":"Integrating Omics into Functional Biomarkers of Type 1 Diabetes.","authors":"S Alice Long, Peter S Linsley","doi":"10.1101/cshperspect.a041602","DOIUrl":"10.1101/cshperspect.a041602","url":null,"abstract":"<p><p>Biomarkers are critical to the staging and diagnosis of type 1 diabetes (T1D). Functional biomarkers offer insights into T1D immunopathogenesis and are often revealed using \"omics\" approaches that integrate multiple measures to identify involved pathways and functions. Application of the omics biomarker discovery may enable personalized medicine approaches to circumvent the more recently appreciated heterogeneity of T1D progression and treatment. Use of omics to define functional biomarkers is still in its early years, yet findings to date emphasize the role of cytokine signaling and adaptive immunity in biomarkers of progression and response to therapy. Here, we share examples of the use of omics to define functional biomarkers focusing on two signatures, T-cell exhaustion and T-cell help, which have been associated with outcomes in both the natural history and treatment contexts.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141075805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}