Pub Date : 2025-11-03DOI: 10.1101/cshperspect.a041594
Thomas Delong, Maki Nakayama
Type 1 diabetes (T1D) is an autoimmune disease mediated by T cells destroying insulin-producing β cells. Identifying the antigenic epitopes targeted by autoreactive T cells is crucial for understanding pathogenesis, detecting biomarkers, and developing immunotherapies. This paper covers T-cell epitopes in T1D, focusing on pre-proinsulin and hybrid insulin peptides (HIPs) as major autoantigens. Substantial evidence highlights epitopes in the insulin B-chain and C-peptide as dominant targets for pathogenic CD4 and CD8 T cells infiltrating the islets. HIPs, formed by proinsulin fragments ligated to other peptides, constitute a novel class of epitopes detected in human and mouse islets. In addition, the paper also examines neoepitopes arising from posttranslational modifications, splice variants, and defective ribosomal products. A key challenge is differentiating genuinely pathogenic epitopes driving disease from nonpathogenic mimotopes. Identifying any essential, indispensable epitopes among this array could enable the development of antigen-specific immunotherapies targeting the root causative factors underlying T1D.
1 型糖尿病(T1D)是一种由 T 细胞破坏产生胰岛素的 β 细胞介导的自身免疫性疾病。确定自反应 T 细胞靶向的抗原表位对于了解发病机制、检测生物标记物和开发免疫疗法至关重要。本文介绍了 T1D 中的 T 细胞表位,重点是作为主要自身抗原的前胰岛素和混合胰岛素肽(HIPs)。大量证据表明,胰岛素 B 链和 C 肽中的表位是浸润胰岛的致病性 CD4 和 CD8 T 细胞的主要目标。由原胰岛素片段与其他肽连接而成的HIPs是在人类和小鼠胰岛中检测到的一类新型表位。此外,论文还研究了翻译后修饰、剪接变体和核糖体缺陷产物产生的新表位。一个关键的挑战是区分真正致病的表位与非致病的拟态表位。在这一系列表位中找出任何基本的、不可或缺的表位,就能开发出针对T1D根本致病因素的抗原特异性免疫疗法。
{"title":"Epitope Hierarchy in Type 1 Diabetes Pathogenesis.","authors":"Thomas Delong, Maki Nakayama","doi":"10.1101/cshperspect.a041594","DOIUrl":"10.1101/cshperspect.a041594","url":null,"abstract":"<p><p>Type 1 diabetes (T1D) is an autoimmune disease mediated by T cells destroying insulin-producing β cells. Identifying the antigenic epitopes targeted by autoreactive T cells is crucial for understanding pathogenesis, detecting biomarkers, and developing immunotherapies. This paper covers T-cell epitopes in T1D, focusing on pre-proinsulin and hybrid insulin peptides (HIPs) as major autoantigens. Substantial evidence highlights epitopes in the insulin B-chain and C-peptide as dominant targets for pathogenic CD4 and CD8 T cells infiltrating the islets. HIPs, formed by proinsulin fragments ligated to other peptides, constitute a novel class of epitopes detected in human and mouse islets. In addition, the paper also examines neoepitopes arising from posttranslational modifications, splice variants, and defective ribosomal products. A key challenge is differentiating genuinely pathogenic epitopes driving disease from nonpathogenic mimotopes. Identifying any essential, indispensable epitopes among this array could enable the development of antigen-specific immunotherapies targeting the root causative factors underlying T1D.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12588087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-03DOI: 10.1101/cshperspect.a041828
Sean Ekins, Thomas R Lane, Jason T Wong
There is an urgent need to develop additional treatments for tuberculosis (TB) to complement the small panel of approved drugs and to devise shorter treatment regimens. Within the last 20 years, we have seen an increased focus on using cheminformatics-based approaches to understand the properties of Mycobacterium tuberculosis (Mtb) active molecules and machine learning algorithms to subsequently learn from public data sets. We now demonstrate how we have continually used many machine learning approaches that have enabled us to select or synthesize new compounds for testing in vitro to validate our models and to identify new chemical matter. We now put our results into context with studies from other groups to make the case for using machine learning models more widely to aid in finding new Mtb inhibitors. TB research has been slow to adapt to these approaches to increase drug discovery efficiency, but it is better late than never.
{"title":"Tuberculosis Drug Discovery in the Age of Artificial Intelligence.","authors":"Sean Ekins, Thomas R Lane, Jason T Wong","doi":"10.1101/cshperspect.a041828","DOIUrl":"10.1101/cshperspect.a041828","url":null,"abstract":"<p><p>There is an urgent need to develop additional treatments for tuberculosis (TB) to complement the small panel of approved drugs and to devise shorter treatment regimens. Within the last 20 years, we have seen an increased focus on using cheminformatics-based approaches to understand the properties of <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>) active molecules and machine learning algorithms to subsequently learn from public data sets. We now demonstrate how we have continually used many machine learning approaches that have enabled us to select or synthesize new compounds for testing in vitro to validate our models and to identify new chemical matter. We now put our results into context with studies from other groups to make the case for using machine learning models more widely to aid in finding new <i>Mtb</i> inhibitors. TB research has been slow to adapt to these approaches to increase drug discovery efficiency, but it is better late than never.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12713521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145437360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-03DOI: 10.1101/cshperspect.a041805
Ben J Marais, H Simon Schaaf
Tuberculosis (TB) is a major cause of disease and death in young children from TB-endemic countries, especially in areas affected by poverty, social disruption, and human immunodeficiency virus (HIV) infection. This article reviews the disease burden and the natural history of disease in children with TB. It also provides guidance regarding the diagnosis, treatment, and prevention of TB in children.
{"title":"Pediatric Tuberculosis: Epidemiology, Disease Spectrum, Diagnosis, and Management.","authors":"Ben J Marais, H Simon Schaaf","doi":"10.1101/cshperspect.a041805","DOIUrl":"https://doi.org/10.1101/cshperspect.a041805","url":null,"abstract":"<p><p>Tuberculosis (TB) is a major cause of disease and death in young children from TB-endemic countries, especially in areas affected by poverty, social disruption, and human immunodeficiency virus (HIV) infection. This article reviews the disease burden and the natural history of disease in children with TB. It also provides guidance regarding the diagnosis, treatment, and prevention of TB in children.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145437339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-06DOI: 10.1101/cshperspect.a041949
Oscar J Pundel, Benjamin G Neel
High-grade serous ovarian carcinoma (HGSC) remains an incompletely understood, highly lethal disease. Historically, a lack of fidelitous in vitro and in vivo models representing HGSC biology and therapy response has been a major barrier to progress. As we discuss below, multiple (if not most) early studies used-and some investigators continue to use-human "ovarian cancer cell lines" that lack key genomic/genetic features of HGSC, rendering their conclusions questionable. The frequently deployed ID8 syngeneic mouse model is similarly suspect, as it derives from ovarian surface epithelium (OSE) and is Trp53 wild-type. In contrast, most, if not all, HGSC arises in fallopian tube epithelium (FTE), and bona fide HGSC is universally TP53 mutant or silenced. Over the past 10 years, attempts have been made to rectify these historical deficiencies, including careful assessment of the genetic composition of standard ovarian cancer cell lines and the development of mouse and human organoids, genetically engineered mouse models (GEMMs), and patient-derived xenografts (PDXs). In this review, we discuss these advances, exploring their differences, strengths, and weaknesses. We also describe "next-generation" approaches to more faithfully model HGSC cells in the context of a more realistic tumor microenvironment.
{"title":"Models of High-Grade Serous Ovarian Carcinoma.","authors":"Oscar J Pundel, Benjamin G Neel","doi":"10.1101/cshperspect.a041949","DOIUrl":"https://doi.org/10.1101/cshperspect.a041949","url":null,"abstract":"<p><p>High-grade serous ovarian carcinoma (HGSC) remains an incompletely understood, highly lethal disease. Historically, a lack of fidelitous in vitro and in vivo models representing HGSC biology and therapy response has been a major barrier to progress. As we discuss below, multiple (if not most) early studies used-and some investigators continue to use-human \"ovarian cancer cell lines\" that lack key genomic/genetic features of HGSC, rendering their conclusions questionable. The frequently deployed ID8 syngeneic mouse model is similarly suspect, as it derives from ovarian surface epithelium (OSE) and is <i>Trp53</i> wild-type. In contrast, most, if not all, HGSC arises in fallopian tube epithelium (FTE), and bona fide HGSC is universally <i>TP53</i> mutant or silenced. Over the past 10 years, attempts have been made to rectify these historical deficiencies, including careful assessment of the genetic composition of standard ovarian cancer cell lines and the development of mouse and human organoids, genetically engineered mouse models (GEMMs), and patient-derived xenografts (PDXs). In this review, we discuss these advances, exploring their differences, strengths, and weaknesses. We also describe \"next-generation\" approaches to more faithfully model HGSC cells in the context of a more realistic tumor microenvironment.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145238495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01DOI: 10.1101/cshperspect.a041585
Kayla V Hamilton, Akiko Shimamura, Jessica A Pollard
Hematologic malignancies (HMs) have been increasingly recognized in association with an underlying genetic predisposition syndrome (GPS) in individuals of all ages. It is critical for hematology and oncology providers to be aware of the diagnostic findings, physical examination findings, and aspects of family history that raise suspicion for an underlying GPS. Moreover, recognition of how somatic gene panel testing, frequently done at the time of HM diagnosis, may raise suspicion for an underlying germline condition based on the mutation profile reported, is prudent. With knowledge of an underlying germline condition, the chemotherapy used for a given HM may be impacted and the role of hematopoietic stem cell transplant more critically considered. Off-therapy monitoring after HM treatment is completed will also likely be impacted. In this work, we review key features of several GPSs associated with increased risks for HM while also outlining the diagnostic workup to identify GPSs and treatment considerations for affected patients. Armed with this knowledge, treating providers may evaluate the possibility of a GPS in patients with leukemia/lymphoma and modify their treatment plan accordingly.
{"title":"Genetic Predisposition to Hematologic Malignancies.","authors":"Kayla V Hamilton, Akiko Shimamura, Jessica A Pollard","doi":"10.1101/cshperspect.a041585","DOIUrl":"10.1101/cshperspect.a041585","url":null,"abstract":"<p><p>Hematologic malignancies (HMs) have been increasingly recognized in association with an underlying genetic predisposition syndrome (GPS) in individuals of all ages. It is critical for hematology and oncology providers to be aware of the diagnostic findings, physical examination findings, and aspects of family history that raise suspicion for an underlying GPS. Moreover, recognition of how somatic gene panel testing, frequently done at the time of HM diagnosis, may raise suspicion for an underlying germline condition based on the mutation profile reported, is prudent. With knowledge of an underlying germline condition, the chemotherapy used for a given HM may be impacted and the role of hematopoietic stem cell transplant more critically considered. Off-therapy monitoring after HM treatment is completed will also likely be impacted. In this work, we review key features of several GPSs associated with increased risks for HM while also outlining the diagnostic workup to identify GPSs and treatment considerations for affected patients. Armed with this knowledge, treating providers may evaluate the possibility of a GPS in patients with leukemia/lymphoma and modify their treatment plan accordingly.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01DOI: 10.1101/cshperspect.a041555
Ralph J DeBerardinis, Karen H Vousden, Navdeep S Chandel
Fueled by technological and conceptual advancements over the past two decades, research in cancer metabolism has begun to answer questions dating back to the time of Otto Warburg. But, as with most fields, new discoveries lead to new questions. This review outlines the emerging challenges that we predict will drive the next few decades of cancer metabolism research. These include developing a more realistic understanding of how metabolic activities are compartmentalized within cells, tissues, and organs; how metabolic preferences in tumors evolve during cancer progression from nascent, premalignant lesions to advanced, metastatic disease; and, most importantly, how we can best translate basic observations from preclinical models into novel therapies that benefit patients with cancer. With modern tools and an incredible amount of talent focusing on these problems, the upcoming decades should bring transformative discoveries.
{"title":"Cancer Metabolism: Aspirations for the Coming Decade.","authors":"Ralph J DeBerardinis, Karen H Vousden, Navdeep S Chandel","doi":"10.1101/cshperspect.a041555","DOIUrl":"10.1101/cshperspect.a041555","url":null,"abstract":"<p><p>Fueled by technological and conceptual advancements over the past two decades, research in cancer metabolism has begun to answer questions dating back to the time of Otto Warburg. But, as with most fields, new discoveries lead to new questions. This review outlines the emerging challenges that we predict will drive the next few decades of cancer metabolism research. These include developing a more realistic understanding of how metabolic activities are compartmentalized within cells, tissues, and organs; how metabolic preferences in tumors evolve during cancer progression from nascent, premalignant lesions to advanced, metastatic disease; and, most importantly, how we can best translate basic observations from preclinical models into novel therapies that benefit patients with cancer. With modern tools and an incredible amount of talent focusing on these problems, the upcoming decades should bring transformative discoveries.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616689/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01DOI: 10.1101/cshperspect.a041600
Lucienne Chatenoud, Kevan C Herold, Jean-François Bach, Jeffrey A Bluestone
In November 2022, teplizumab became the first drug approved to delay the course of any autoimmune disease and to change the course of type 1 diabetes (T1D) since the discovery of insulin. The path to its approval took more than 30 years with both successes and failures along the way that would have normally led to its abandonment in other circumstances. Development of the drug was based on studies in preclinical models and parallels efforts in transplantation. From a series of innovative adaptations in response to issues related to adverse events and immunogenicity, humanized Fc receptors (FcR) nonbinding antibodies were developed with improved clinical outcomes and safety as well as new mechanisms. Importantly, as a result of these developments, teplizumab has been able to achieve efficacy over extended periods of time without global immune suppression. The approval of teplizumab represents a significant first step toward achieving escape from T1D and, in the future, reversal of the disease.
{"title":"The Teplizumab Saga: The Challenge of Not Getting Lost in Clinical Translation.","authors":"Lucienne Chatenoud, Kevan C Herold, Jean-François Bach, Jeffrey A Bluestone","doi":"10.1101/cshperspect.a041600","DOIUrl":"10.1101/cshperspect.a041600","url":null,"abstract":"<p><p>In November 2022, teplizumab became the first drug approved to delay the course of any autoimmune disease and to change the course of type 1 diabetes (T1D) since the discovery of insulin. The path to its approval took more than 30 years with both successes and failures along the way that would have normally led to its abandonment in other circumstances. Development of the drug was based on studies in preclinical models and parallels efforts in transplantation. From a series of innovative adaptations in response to issues related to adverse events and immunogenicity, humanized Fc receptors (FcR) nonbinding antibodies were developed with improved clinical outcomes and safety as well as new mechanisms. Importantly, as a result of these developments, teplizumab has been able to achieve efficacy over extended periods of time without global immune suppression. The approval of teplizumab represents a significant first step toward achieving escape from T1D and, in the future, reversal of the disease.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12487705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-22DOI: 10.1101/cshperspect.a041954
Serge Przedborski, Stanley Fahn
Parkinson's disease (PD), once stigmatized and hidden, is now widely acknowledged by patients and recognized by the public. Yet, fundamental questions about the disease's origins, mechanisms, and progression remain unanswered. The second edition of Parkinson's Disease provides an integrated, accessible resource for clinicians and research scientists. It offers a comprehensive bench-to-bedside overview of PD, with contributions from leading experts in the clinical spectrum and the pathology, genetics, and neurobiological aspects of the condition. New chapters reflect recent advances in areas such as disease progression, biomarkers, cell-based therapies, lipid biology, and the gut-brain axis. The book emphasizes the need for interdisciplinary collaboration and serves as an educational entry point to the field and a strategic guide to future PD research.
{"title":"Parkinson's Disease, Second Edition.","authors":"Serge Przedborski, Stanley Fahn","doi":"10.1101/cshperspect.a041954","DOIUrl":"https://doi.org/10.1101/cshperspect.a041954","url":null,"abstract":"<p><p>Parkinson's disease (PD), once stigmatized and hidden, is now widely acknowledged by patients and recognized by the public. Yet, fundamental questions about the disease's origins, mechanisms, and progression remain unanswered. The second edition of <i>Parkinson's Disease</i> provides an integrated, accessible resource for clinicians and research scientists. It offers a comprehensive bench-to-bedside overview of PD, with contributions from leading experts in the clinical spectrum and the pathology, genetics, and neurobiological aspects of the condition. New chapters reflect recent advances in areas such as disease progression, biomarkers, cell-based therapies, lipid biology, and the gut-brain axis. The book emphasizes the need for interdisciplinary collaboration and serves as an educational entry point to the field and a strategic guide to future PD research.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145124504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-02DOI: 10.1101/cshperspect.a041657
Benjamin Morris, Alejandro Gutierrez
Cancer is caused by mutations that drive aberrant growth, proliferation, and invasion, thus overriding regulatory mechanisms that normally link these processes to organismal needs and cellular physiology. This imposes demands for the production of energy and biomass and for survival in microenvironments that are often nonphysiologic and nutrient-poor, which are met by rewiring of cellular metabolism. The resultant dependence of tumor cells on altered metabolism can induce sensitivity to specific metabolic perturbations that can be exploited for cancer therapy. Some cancers are caused by mutations that impart a novel function to metabolic enzymes, leading to the production of a tumor-promoting metabolite that is dispensable in normal cells, representing an ideal therapeutic target. Tumors can also exploit metabolic regulation of cellular immunity to evade antitumor immune responses, and deciphering this biology has revealed potential targets for therapeutic intervention. Here, we discuss a number of illustrative examples highlighting the therapeutic potential and the challenges of targeting metabolism for cancer therapy.
{"title":"Cancer Therapies Targeting Cellular Metabolism.","authors":"Benjamin Morris, Alejandro Gutierrez","doi":"10.1101/cshperspect.a041657","DOIUrl":"10.1101/cshperspect.a041657","url":null,"abstract":"<p><p>Cancer is caused by mutations that drive aberrant growth, proliferation, and invasion, thus overriding regulatory mechanisms that normally link these processes to organismal needs and cellular physiology. This imposes demands for the production of energy and biomass and for survival in microenvironments that are often nonphysiologic and nutrient-poor, which are met by rewiring of cellular metabolism. The resultant dependence of tumor cells on altered metabolism can induce sensitivity to specific metabolic perturbations that can be exploited for cancer therapy. Some cancers are caused by mutations that impart a novel function to metabolic enzymes, leading to the production of a tumor-promoting metabolite that is dispensable in normal cells, representing an ideal therapeutic target. Tumors can also exploit metabolic regulation of cellular immunity to evade antitumor immune responses, and deciphering this biology has revealed potential targets for therapeutic intervention. Here, we discuss a number of illustrative examples highlighting the therapeutic potential and the challenges of targeting metabolism for cancer therapy.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-02DOI: 10.1101/cshperspect.a041626
D E Betsy Pugel, John D Rummel
Exploring our solar system and returning pieces of it to Earth is a central part of the existential quest to search for life beyond our home planet. Understanding the biosafety and biocontamination implications of landing on a planetary body or in bringing pieces of our solar system back to our home planet are the two themes that are central to planetary protection, a discipline that is unique to spacefaring nations. The nature of planetary protection is twofold: (1) to ensure that we minimize our own terrestrial microbial footprint on other planets and moons (planetary bodies) in our solar system (forward contamination), and (2) to ensure that we minimize the potential impact of returning samples from another planet or moon to Earth (backward contamination). The discipline of planetary protection focuses on who is the biological "invader" and when does their arrival indicate an "invasion"? The degree to which there is potential for biological or organic interactions that result in biocontamination or changes in biosafety posture is the central topic of this work.
{"title":"Who Are the Space Invaders? Planetary Protection and the Role of Biological Interactions between Extraterrestrial and Terrestrial Biospheres.","authors":"D E Betsy Pugel, John D Rummel","doi":"10.1101/cshperspect.a041626","DOIUrl":"10.1101/cshperspect.a041626","url":null,"abstract":"<p><p>Exploring our solar system and returning pieces of it to Earth is a central part of the existential quest to search for life beyond our home planet. Understanding the biosafety and biocontamination implications of landing on a planetary body or in bringing pieces of our solar system back to our home planet are the two themes that are central to planetary protection, a discipline that is unique to spacefaring nations. The nature of planetary protection is twofold: (1) to ensure that we minimize our own terrestrial microbial footprint on other planets and moons (planetary bodies) in our solar system (forward contamination), and (2) to ensure that we minimize the potential impact of returning samples from another planet or moon to Earth (backward contamination). The discipline of planetary protection focuses on who is the biological \"invader\" and when does their arrival indicate an \"invasion\"? The degree to which there is potential for biological or organic interactions that result in biocontamination or changes in biosafety posture is the central topic of this work.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":"15 9","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144945414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}