Pub Date : 2024-01-29DOI: 10.1016/j.colcom.2024.100767
Jinli Zhou , Junjie Zheng , Chenxiao Wang , Ge Zhang , Hongying Yang , Fan Xiong , Mengzhao Fan , Zheng Wang , Yunfei Li , Chaoran Yang
Biosensors based on electrospun nanofibers have found extensive applications in the field of biomarker detection. Nanofibers, owing to their advantages such as porosity, high surface area, and significant loading capacity, play a crucial role in immobilizing recognition elements, directly interacting with target analytes, enhancing antibody fixation positions, and improving the activity and lifespan of biomolecules. This, in turn, enables the high sensitivity and selectivity detection of major disease biomarkers. This review begins by summarizing the structure and processing methods of electrospun nanofiber biosensors, followed by an overview of the physical, chemical detection, and immobilization patterns in biomarker detection. Subsequently, a brief retrospective analysis of the research progress in biomarker detection is presented. Additionally, the application of electrospun nanofiber biosensors in various disease areas, including cancer, cardiovascular, neurological, metabolic, and infectious diseases, is discussed based on biomedical classifications. Finally, the challenges faced by electrospun nanofiber biosensors in biomarker detection are summarized, and the future directions for the development of electrospun nanofiber biosensors are highlighted
{"title":"Electrospun biosensors for biomarker detection","authors":"Jinli Zhou , Junjie Zheng , Chenxiao Wang , Ge Zhang , Hongying Yang , Fan Xiong , Mengzhao Fan , Zheng Wang , Yunfei Li , Chaoran Yang","doi":"10.1016/j.colcom.2024.100767","DOIUrl":"10.1016/j.colcom.2024.100767","url":null,"abstract":"<div><p>Biosensors based on electrospun nanofibers have found extensive applications in the field of biomarker detection. Nanofibers, owing to their advantages such as porosity, high surface area, and significant loading capacity, play a crucial role in immobilizing recognition elements, directly interacting with target analytes, enhancing antibody fixation positions, and improving the activity and lifespan of biomolecules. This, in turn, enables the high sensitivity and selectivity detection of major disease biomarkers. This review begins by summarizing the structure and processing methods of electrospun nanofiber biosensors, followed by an overview of the physical, chemical detection, and immobilization patterns in biomarker detection. Subsequently, a brief retrospective analysis of the research progress in biomarker detection is presented. Additionally, the application of electrospun nanofiber biosensors in various disease areas, including cancer, cardiovascular, neurological, metabolic, and infectious diseases, is discussed based on biomedical classifications. Finally, the challenges faced by electrospun nanofiber biosensors in biomarker detection are summarized, and the future directions for the development of electrospun nanofiber biosensors are highlighted</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"59 ","pages":"Article 100767"},"PeriodicalIF":4.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000025/pdfft?md5=d013c7ccaaffaeb9eae773a7c00d80d3&pid=1-s2.0-S2215038224000025-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139647400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.colcom.2024.100766
Y. Melikyan , H. Gharagulyan , A. Vasil'ev , V. Hayrapetyan , M. Zhezhu , A. Simonyan , D.A. Ghazaryan , M.S. Torosyan , A. Kharatyan , J. Michalicka , M. Yeranosyan
The evolution of dynamic processes in graphene-family materials are of great interest for both scientific purposes and technical applications. Scanning electron microscopy and transmission electron microscopy outstand among the techniques that allow both observing and controlling such dynamic processes in real time. On the other hand, functionalized graphene oxide emerges as a favorable candidate from graphene-family materials for such an investigation due to its distinctive properties, that encompass a large surface area, robust thermal stability, and noteworthy electrical and mechanical properties after its reduction. Here, we report on studies of surface structure and adsorption dynamics of L-Cysteine on electrochemically exfoliated graphene oxide's basal plane. We show that electron beam irradiation prompts an amorphization of functionalized graphene oxide along with the formation of micropatterns of controlled geometry composed of L-Cysteine-Graphene oxide nanostructures. The controlled growth and predetermined arrangement of micropatterns as well as controlled structure disorder induced by e beam amorphization, in its turn potentially offering tailored properties and functionalities paving the way for potential applications in nanotechnology, sensor development, and surface engineering. Our findings demonstrate that graphene oxide can cover L-Cysteine in such a way to provide a control on the positioning of emerging microstructures about 10–20 μm in diameter. Besides, Raman and SAED measurement analyses yield above 50% amorphization in a material. The results of our studies demonstrate that such a technique enables the direct creation of micropatterns of L-Cysteine-Graphene oxide eliminating the need for complicated mask patterning procedures.
{"title":"E-beam induced micropattern generation and amorphization of L-cysteine-functionalized graphene oxide nano-composites","authors":"Y. Melikyan , H. Gharagulyan , A. Vasil'ev , V. Hayrapetyan , M. Zhezhu , A. Simonyan , D.A. Ghazaryan , M.S. Torosyan , A. Kharatyan , J. Michalicka , M. Yeranosyan","doi":"10.1016/j.colcom.2024.100766","DOIUrl":"https://doi.org/10.1016/j.colcom.2024.100766","url":null,"abstract":"<div><p>The evolution of dynamic processes in graphene-family materials are of great interest for both scientific purposes and technical applications. Scanning electron microscopy and transmission electron microscopy outstand among the techniques that allow both observing and controlling such dynamic processes in real time. On the other hand, functionalized graphene oxide emerges as a favorable candidate from graphene-family materials for such an investigation due to its distinctive properties, that encompass a large surface area, robust thermal stability, and noteworthy electrical and mechanical properties after its reduction. Here, we report on studies of surface structure and adsorption dynamics of L-Cysteine on electrochemically exfoliated graphene oxide's basal plane. We show that electron beam irradiation prompts an amorphization of functionalized graphene oxide along with the formation of micropatterns of controlled geometry composed of L-Cysteine-Graphene oxide nanostructures. The controlled growth and predetermined arrangement of micropatterns as well as controlled structure disorder induced by e beam amorphization, in its turn potentially offering tailored properties and functionalities paving the way for potential applications in nanotechnology, sensor development, and surface engineering. Our findings demonstrate that graphene oxide can cover L-Cysteine in such a way to provide a control on the positioning of emerging microstructures about 10–20 μm in diameter. Besides, Raman and SAED measurement analyses yield above 50% amorphization in a material. The results of our studies demonstrate that such a technique enables the direct creation of micropatterns of L-Cysteine-Graphene oxide eliminating the need for complicated mask patterning procedures.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"58 ","pages":"Article 100766"},"PeriodicalIF":4.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000013/pdfft?md5=5512de2de846f20f4b79a869e7276b99&pid=1-s2.0-S2215038224000013-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139549325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.colcom.2023.100765
Hongjie Lin , Ke Xu , Wenhua Chen , Cunjiong Fang , Pengju Liu
The ultrathin and porous graphitic carbon nitride (g-C3N4) nanosheets with structural design and abundant nitrogen dopants were synthesized via a one-step calcination procedure. The exfoliated and doped g-C3N4 (NT-CN) displayed enhanced photocatalytic activity for degradation of hydrochloride tetracycline and rhodamine B degradation in the complex water matrixes with different pH values or even in the presence of various anions (Cl−, CO2–3, NO- 3, and SO2–4). N-doped porous structure provided an extremely high surface area and enhanced basicity, enabling NT-CN catalyst to adsorb the abundant active species and pollutants. Moreover, NT-CN exhibited a wide band gap with a strong negative CB minimum of −1.07 eV that facilitated the formation of more photoexcited electrons. During the reaction process, the generated electrons reacted with dissolved O2 to produce the ·O2− species, and then transformed into highly reactive and stable 1O2 species, which play a predominant role in eliminating pollutants.
{"title":"Structural engineering and nitrogen doping of graphitic carbon nitride for photocatalytic degradation of organic pollutants under visible light","authors":"Hongjie Lin , Ke Xu , Wenhua Chen , Cunjiong Fang , Pengju Liu","doi":"10.1016/j.colcom.2023.100765","DOIUrl":"https://doi.org/10.1016/j.colcom.2023.100765","url":null,"abstract":"<div><p>The ultrathin and porous graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) nanosheets with structural design and abundant nitrogen dopants were synthesized via a one-step calcination procedure. The exfoliated and doped g-C<sub>3</sub>N<sub>4</sub> (NT-CN) displayed enhanced photocatalytic activity for degradation of hydrochloride tetracycline and rhodamine B degradation in the complex water matrixes with different pH values or even in the presence of various anions (Cl<sup>−</sup>, CO2–3, NO- 3, and SO2–4). N-doped porous structure provided an extremely high surface area and enhanced basicity, enabling NT-CN catalyst to adsorb the abundant active species and pollutants. Moreover, NT-CN exhibited a wide band gap with a strong negative CB minimum of −1.07 eV that facilitated the formation of more photoexcited electrons. During the reaction process, the generated electrons reacted with dissolved O<sub>2</sub> to produce the ·O<sub>2</sub><sup>−</sup> species, and then transformed into highly reactive and stable <sup>1</sup>O<sub>2</sub> species, which play a predominant role in eliminating pollutants.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"58 ","pages":"Article 100765"},"PeriodicalIF":4.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038223000729/pdfft?md5=6793dcedb73efa6638ee14f121d3cfa1&pid=1-s2.0-S2215038223000729-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139107863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-26DOI: 10.1016/j.colcom.2023.100764
Xiaoan Zhao , Shenghua Xu , Hongwei Zhou
We propose a novel technique to determine the absolute fast aggregation rate directly from the growth curve of the aggregate size. Our approach is convenient and effective as it eliminates the need for calculations of optical properties and does not require a precise zero point of aggregation time, which are both essential in traditional light-scattering methods. Through comparisons with conventional turbidity measurements, the reliability and precision of this new approach are verified for both homogeneous and heterogeneous aggregation.
{"title":"A new method for measuring fast aggregation rate based on the growth of the colloidal aggregate size","authors":"Xiaoan Zhao , Shenghua Xu , Hongwei Zhou","doi":"10.1016/j.colcom.2023.100764","DOIUrl":"https://doi.org/10.1016/j.colcom.2023.100764","url":null,"abstract":"<div><p>We propose a novel technique to determine the absolute fast aggregation rate directly from the growth curve of the aggregate size. Our approach is convenient and effective as it eliminates the need for calculations of optical properties and does not require a precise zero point of aggregation time, which are both essential in traditional light-scattering methods. Through comparisons with conventional turbidity measurements, the reliability and precision of this new approach are verified for both homogeneous and heterogeneous aggregation.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"58 ","pages":"Article 100764"},"PeriodicalIF":4.5,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038223000717/pdfft?md5=38d7973f5cf2727db35da937cac8174d&pid=1-s2.0-S2215038223000717-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139050459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rare earth-doped bioactive ceramics are promising biomaterials due to their unique optical properties, biocompatibility, antioxidants, and antibacterial activity. In this study, a series of SiO2-CaO-Er2O3 nanofiber mats were fabricated by sol-gel electrospinning. The morphology, flexibility, physicochemical and biological properties of the nanofibers were investigated. The flexibility of the nanofiber mats containing 5 and 10 wt% of Er2O3 was better than that of samples without or with >10 wt% Er2O3. The chemical property assay indicated that addition of Er can lead to changes in the degree of crystallinity and the degree of silica network polymerization, which further affect the flexibility. Photoluminescent spectra showed that the Er-doped nanofibers exist green and near infrared emissions. The in vitro bio experiments demonstrated that Er-doped nanofibers present excellent biocompatibility, and the mineralization experiment demonstrated that Er-doped nanofibers present favorable mineralization activity. Therefore, these SiO2-CaO-Er2O3 flexible nanofibers may be promising candidates for biomedical applications.
掺稀土的生物活性陶瓷具有独特的光学特性、生物相容性、抗氧化性和抗菌活性,是一种前景广阔的生物材料。本研究采用溶胶-凝胶电纺丝技术制备了一系列 SiO2-CaO-Er2O3 纳米纤维毡。研究了纳米纤维的形态、柔韧性、理化和生物特性。含 5 和 10 wt% Er2O3 的纳米纤维毡的柔韧性优于不含或含 10 wt% Er2O3 的样品。化学性质分析表明,添加 Er 会导致结晶度和二氧化硅网络聚合度发生变化,从而进一步影响柔韧性。光致发光光谱显示,掺有 Er 的纳米纤维具有绿色和近红外辐射。体外生物实验表明,掺铒纳米纤维具有良好的生物相容性;矿化实验表明,掺铒纳米纤维具有良好的矿化活性。因此,这些 SiO2-CaO-Er2O3 柔性纳米纤维有望在生物医学领域得到应用。
{"title":"Structural, chemical and biological properties of SiO2-CaO-Er2O3 flexible ceramic nanofibers for biomedical applications","authors":"Lihuan Wang, Feng Gan, Jinpeng Mo, Jing Zhao, Xi Yu, Hui Yu","doi":"10.1016/j.colcom.2023.100763","DOIUrl":"https://doi.org/10.1016/j.colcom.2023.100763","url":null,"abstract":"<div><p>Rare earth-doped bioactive ceramics are promising biomaterials due to their unique optical properties, biocompatibility, antioxidants, and antibacterial activity. In this study, a series of SiO<sub>2</sub>-CaO-Er<sub>2</sub>O<sub>3</sub> nanofiber mats were fabricated by sol-gel electrospinning. The morphology, flexibility, physicochemical and biological properties of the nanofibers were investigated. The flexibility of the nanofiber mats containing 5 and 10 wt% of Er<sub>2</sub>O<sub>3</sub> was better than that of samples without or with >10 wt% Er<sub>2</sub>O<sub>3</sub>. The chemical property assay indicated that addition of Er can lead to changes in the degree of crystallinity and the degree of silica network polymerization, which further affect the flexibility. Photoluminescent spectra showed that the Er-doped nanofibers exist green and near infrared emissions. The <em>in vitro</em> bio experiments demonstrated that Er-doped nanofibers present excellent biocompatibility, and the mineralization experiment demonstrated that Er-doped nanofibers present favorable mineralization activity. Therefore, these SiO<sub>2</sub>-CaO-Er<sub>2</sub>O<sub>3</sub> flexible nanofibers may be promising candidates for biomedical applications.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"58 ","pages":"Article 100763"},"PeriodicalIF":4.5,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038223000705/pdfft?md5=e7760d081f0f2deeb7d0d30780794e06&pid=1-s2.0-S2215038223000705-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139050458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-23DOI: 10.1016/j.colcom.2023.100762
Rui Ding , Xue-qi Zhang , Jing Lv , Xuan Liang , An-lan Ji , Yu-chen Zhang , Jie Fu , Xiao Lv , Lan Yao , Sheng-ying Yang , Guo-qing Mao , Heng Yang , Jie Liu , Hai-bin Yu
The anti-corrosion coatings based on core-sheath fibers prepared by electrospinning methods are developed for the indication and repair of large-scale damage to coatings. The cores are the composite fluorescent agents composed of AIE-gens and CHEF-gens, which exhibit strong fluorescence characteristics sensitive to corrosion due to the CHEF and FRET effects. The composite fluorescent agents provided information about the location of damages when the coatings, with the fibers as the core materials, are damaged. The sheaths are photothermal materials, composed of photothermal responsive acid doped polyaniline and shape memory polyurethane. The photothermal properties of acid doped polyaniline, under the irradiation of an infrared laser, contributes to heating in the damaged areas. The softened and activated polyurethane simultaneously lead to interpenetration and entanglement of molecular chains at the closed damage sites, resulting in complete repair of the damaged coatings.
基于电纺丝方法制备的芯-鞘纤维的防腐蚀涂层被开发出来,用于指示和修复涂层的大规模损坏。其核心是由 AIE-基团和 CHEF-基团组成的复合荧光剂,由于 CHEF 和 FRET 效应,复合荧光剂表现出对腐蚀敏感的强荧光特性。当以纤维为核心材料的涂层受到破坏时,复合荧光剂可提供有关损坏位置的信息。护套是光热材料,由光热响应性酸掺杂聚苯胺和形状记忆聚氨酯组成。在红外线激光的照射下,掺酸聚苯胺的光热特性有助于加热受损区域。软化和活化的聚氨酯同时导致分子链在封闭的受损部位相互渗透和缠结,从而完全修复受损涂层。
{"title":"Self-healing coating with the ability to mark damaged locations, based on electrospun photothermal fibers and AIE agents","authors":"Rui Ding , Xue-qi Zhang , Jing Lv , Xuan Liang , An-lan Ji , Yu-chen Zhang , Jie Fu , Xiao Lv , Lan Yao , Sheng-ying Yang , Guo-qing Mao , Heng Yang , Jie Liu , Hai-bin Yu","doi":"10.1016/j.colcom.2023.100762","DOIUrl":"https://doi.org/10.1016/j.colcom.2023.100762","url":null,"abstract":"<div><p>The anti-corrosion coatings based on core-sheath fibers prepared by electrospinning methods are developed for the indication and repair of large-scale damage to coatings. The cores are the composite fluorescent agents composed of AIE-gens and CHEF-gens, which exhibit strong fluorescence characteristics sensitive to corrosion due to the CHEF and FRET effects. The composite fluorescent agents provided information about the location of damages when the coatings, with the fibers as the core materials, are damaged. The sheaths are photothermal materials, composed of photothermal responsive acid doped polyaniline and shape memory polyurethane. The photothermal properties of acid doped polyaniline, under the irradiation of an infrared laser, contributes to heating in the damaged areas. The softened and activated polyurethane simultaneously lead to interpenetration and entanglement of molecular chains at the closed damage sites, resulting in complete repair of the damaged coatings.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"58 ","pages":"Article 100762"},"PeriodicalIF":4.5,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038223000699/pdfft?md5=7021d0beb7e508ab2d1ea5df55718681&pid=1-s2.0-S2215038223000699-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139033966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12DOI: 10.1016/j.colcom.2023.100761
Shihui Jiao , Mingyu Shang , Yan Chen , Guangsheng Pang
The in situ anchoring of metal elements on the surface of nanomaterials is a state-of-the-art technology that can significantly enhance the performance of materials. We have successfully fabricated noble metal-ion modified rutile TiO2 nanobars, which exhibit exceptional catalytic activity in both H2 generation and CO oxidation. Firstly, we synthesized Ti3+ self-doped rutile TiO2-x nanobars by a simple solvothermal method using Zn as a reductant, resulting in highly crystalline structures with a significant proportion of (110) surfaces. The reduced nanobars chemically absorb the noble metal cations with the addition of a solution of a noble metal salt in the absence of light to form in situ noble metal-ion modified catalysts. TiO2 nanobars with 1 wt% Pt2+ and Pd2+ exhibited excellent performance in photocatalytic H2 generation from water and low temperature CO oxidation. Moreover, the samples modified with low noble metal ions (0.1 wt%) also show effective activity in H2 generation.
{"title":"In situ noble metal-ion modified TiO2 rutile nanobars with highly exposed {110} facets: Synthesis, structure, and catalytic properties","authors":"Shihui Jiao , Mingyu Shang , Yan Chen , Guangsheng Pang","doi":"10.1016/j.colcom.2023.100761","DOIUrl":"https://doi.org/10.1016/j.colcom.2023.100761","url":null,"abstract":"<div><p>The in situ anchoring of metal elements on the surface of nanomaterials is a state-of-the-art technology that can significantly enhance the performance of materials. We have successfully fabricated noble metal-ion modified rutile TiO<sub>2</sub> nanobars, which exhibit exceptional catalytic activity in both H<sub>2</sub> generation and CO oxidation. Firstly, we synthesized Ti<sup>3+</sup> self-doped rutile TiO<sub>2-x</sub> nanobars by a simple solvothermal method using Zn as a reductant, resulting in highly crystalline structures with a significant proportion of (110) surfaces. The reduced nanobars chemically absorb the noble metal cations with the addition of a solution of a noble metal salt in the absence of light to form in situ noble metal-ion modified catalysts. TiO<sub>2</sub> nanobars with 1 wt% Pt<sup>2+</sup> and Pd<sup>2+</sup> exhibited excellent performance in photocatalytic H<sub>2</sub> generation from water and low temperature CO oxidation. Moreover, the samples modified with low noble metal ions (0.1 wt%) also show effective activity in H<sub>2</sub> generation.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"58 ","pages":"Article 100761"},"PeriodicalIF":4.5,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038223000687/pdfft?md5=3f562e60fada4b77e2d0ebf908c108d9&pid=1-s2.0-S2215038223000687-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138570721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-05DOI: 10.1016/j.colcom.2023.100759
Cui Jing , Wang Yifan , Wang Chengxuan , Yang Guangfeng
Superhydrophobic surfaces have received much attention from academia and industry for their promising applications, which can significantly expand the comprehensive performance of composite materials. Thus, this paper demonstrated a low-cost and simple method to fabricate arrays of micro−/nano-structure surfaces similar to rice leaves through laser micro texturing, modified with polydimethylsiloxane (PDMS) to produce physicochemically coupling texture hydrophobic surfaces, and then investigate the surface's resistance to ice and weathering under environmental damage. After tens of circulating for coagulation and thawing frost and shocking of water, the surface can remain hydrophobic, while the hydrophobic groups and structures on the surface can remain hydrophobic under hundreds of times of stripping and friction, which shows good weather ability. In summary, a practical reference for titanium metal matrix composite surfaces is provided, realizing superhydrophobicity and ice suppression functions and expanding its scenario applications.
{"title":"Anti-icing and weatherability study of superhydrophobic titanium metal matrix composites surface","authors":"Cui Jing , Wang Yifan , Wang Chengxuan , Yang Guangfeng","doi":"10.1016/j.colcom.2023.100759","DOIUrl":"https://doi.org/10.1016/j.colcom.2023.100759","url":null,"abstract":"<div><p>Superhydrophobic surfaces have received much attention from academia and industry for their promising applications, which can significantly expand the comprehensive performance of composite materials. Thus, this paper demonstrated a low-cost and simple method to fabricate arrays of micro−/nano-structure surfaces similar to rice leaves through laser micro texturing, modified with polydimethylsiloxane (PDMS) to produce physicochemically coupling texture hydrophobic surfaces, and then investigate the surface's resistance to ice and weathering under environmental damage. After tens of circulating for coagulation and thawing frost and shocking of water, the surface can remain hydrophobic, while the hydrophobic groups and structures on the surface can remain hydrophobic under hundreds of times of stripping and friction, which shows good weather ability. In summary, a practical reference for titanium metal matrix composite surfaces is provided, realizing superhydrophobicity and ice suppression functions and expanding its scenario applications.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"58 ","pages":"Article 100759"},"PeriodicalIF":4.5,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038223000663/pdfft?md5=463372bbf4600402f7822435afdf87f0&pid=1-s2.0-S2215038223000663-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138483929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1016/j.colcom.2023.100746
Hui Xue , Zhibing Tang , Ping Li , Lin Zhao , Guangxin Duan , Ling Wen
Graphene-based materials show potential applications in dentistry due to their outstanding physicochemical properties. However, the use of graphene and its derivatives increases their exposure risk to periodontal cells. This study aimed to evaluate the cytotoxicity caused by graphene in periodontal cells and clarify the potential molecular mechanism. Through a series of experiments, we isolated human periodontal ligament cells (hPDLCs) and subsequently investigated the cytotoxic behaviors and related signaling pathway through which graphene oxide (GO) nanohseets injured hPDLCs. Our findings illustrated that the cytotoxicity of GO against hPDLCs was derived from the covering of GO nanosheets on the membrane surface, which blocked the phosphorylation of epidermal growth factor receptor on the membrane. It further inhibited the activation of the serine/threonine kinase signaling pathway that promoted the proliferation and cycle progression of cells. This study revealed the toxic behavior of GO nanosheets to oral cells and elucidated the potential molecular mechanism, thereby providing theoretical guidance for the safe application of graphene-based materials in dentistry.
{"title":"GO nanosheets inhibit the proliferation of hPDLCs by covering the membrane to block the EGFR-AKT signaling pathway","authors":"Hui Xue , Zhibing Tang , Ping Li , Lin Zhao , Guangxin Duan , Ling Wen","doi":"10.1016/j.colcom.2023.100746","DOIUrl":"https://doi.org/10.1016/j.colcom.2023.100746","url":null,"abstract":"<div><p>Graphene-based materials show potential applications in dentistry due to their outstanding physicochemical properties. However, the use of graphene and its derivatives increases their exposure risk to periodontal cells. This study aimed to evaluate the cytotoxicity caused by graphene in periodontal cells and clarify the potential molecular mechanism. Through a series of experiments, we isolated human periodontal ligament cells (hPDLCs) and subsequently investigated the cytotoxic behaviors and related signaling pathway through which graphene oxide (GO) nanohseets injured hPDLCs. Our findings illustrated that the cytotoxicity of GO against hPDLCs was derived from the covering of GO nanosheets on the membrane surface, which blocked the phosphorylation of epidermal growth factor receptor on the membrane. It further inhibited the activation of the serine/threonine kinase signaling pathway that promoted the proliferation and cycle progression of cells. This study revealed the toxic behavior of GO nanosheets to oral cells and elucidated the potential molecular mechanism, thereby providing theoretical guidance for the safe application of graphene-based materials in dentistry.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"57 ","pages":"Article 100746"},"PeriodicalIF":4.5,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038223000535/pdfft?md5=8c5c9b00abddec70e4904d34e1fc49cd&pid=1-s2.0-S2215038223000535-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91986475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antibiotics delivery using dressings is an effective manner to treat chronic infected wounds, but it still faces the challenge of uncontrolled drug release. To address this issue, we developed pH-responsive electrospun nanofibers for controlled release of poorly water-soluble antibiotics. Specifically, the drug-loaded electrospun nanofibers were fabricated via coaxial electrospinning technique, with polycaprolactone (PCL) and drug acting as the core and pH-responsive acrylic copolymer Eudragit L100–55 serving as the sheath layer. Under alkaline conditions, all drugs release rapidly due to the dissolution of Eudragit L100–55, and first-order model well fits the release behavior. In contrast, the sheath layer swells under acidic conditions, causing poorly water-soluble drugs to be firmly trapped. Moreover, the drug-loaded nanofibers display completely different antibacterial activities due to distinct drug release behaviors under alkaline or acidic conditions. The current pH-responsive nanofibers shows superior controllability of poorly water-soluble drug release, revealing great prospects for treating chronic infected wounds.
{"title":"pH-responsive nanofiber membranes for superior controlled release of poorly water-soluble drug and its release mechanism study","authors":"Changmi Wu, Haotian Ren, Yanan Zhang, Danfeng Jian, Yujie Gao, Jindan Wu","doi":"10.1016/j.colcom.2023.100750","DOIUrl":"https://doi.org/10.1016/j.colcom.2023.100750","url":null,"abstract":"<div><p>Antibiotics delivery using dressings is an effective manner to treat chronic infected wounds, but it still faces the challenge of uncontrolled drug release. To address this issue, we developed pH-responsive electrospun nanofibers for controlled release of poorly water-soluble antibiotics. Specifically, the drug-loaded electrospun nanofibers were fabricated via coaxial electrospinning technique, with polycaprolactone (PCL) and drug acting as the core and pH-responsive acrylic copolymer Eudragit L100–55 serving as the sheath layer. Under alkaline conditions, all drugs release rapidly due to the dissolution of Eudragit L100–55, and first-order model well fits the release behavior. In contrast, the sheath layer swells under acidic conditions, causing poorly water-soluble drugs to be firmly trapped. Moreover, the drug-loaded nanofibers display completely different antibacterial activities due to distinct drug release behaviors under alkaline or acidic conditions. The current pH-responsive nanofibers shows superior controllability of poorly water-soluble drug release, revealing great prospects for treating chronic infected wounds.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"57 ","pages":"Article 100750"},"PeriodicalIF":4.5,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038223000572/pdfft?md5=fe87c257368eb0bc9e0b1560a530f828&pid=1-s2.0-S2215038223000572-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92136012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}