首页 > 最新文献

Complex & Intelligent Systems最新文献

英文 中文
Toward safe and efficient shield tunneling: counterfactual reinforcement learning based multi-subsystem collaborative optimization 迈向安全高效的盾构隧道:基于反事实强化学习的多子系统协同优化
IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-27 DOI: 10.1007/s40747-025-02180-5
Jing Lu, Min Hu, WenBo Zhou
Shield tunneling must satisfy safety requirements while maintaining efficiency, but the dynamic interactions among subsystems and continuously evolving ground conditions make manual coordination unreliable. To address this challenge, this study proposes the Counterfactual Reinforcement Learning-Based Shield Multi-Subsystem Collaborative Optimization (CRL-SMSCO), a multi-agent reinforcement learning framework with a centralized critic and decentralized actors. CRL-SMSCO performs counterfactual credit assignment to quantify each subsystem’s marginal contribution to global tunneling outcomes and jointly optimizes subsystem parameters. Safety is enforced by a safety-oriented action masking unit that restricts the feasible action space in real time, together with a hierarchical reward that prioritizes safety over efficiency. These features enable CRL-SMSCO to achieve interpretable subsystem coordination and rigorous safety enforcement. In the Nanjing Metro case study, experiments show that CRL-SMSCO improves average training reward by 3.9% over multi-agent deep deterministic policy gradient (MADDPG) and by 3.5% over multi-agent proximal policy optimization (MAPPO), while also yielding lower variance and higher minimum rewards on the held-out test segment. In the engineering application, relative to experience-based manual operation under similar geology, CRL-SMSCO increases average tunneling speed by 13.2%, reduces equipment loads over 1.7%, and decreases ground deformation by 82%, with all indicators maintained within permissible limits. These results demonstrate that CRL-SMSCO provides significant practical value in shield tunneling, offering an effective framework for managing other safety-critical coupled systems.
盾构施工必须在保证效率的同时满足安全要求,但各子系统之间的动态相互作用和不断变化的地面条件使人工协调变得不可靠。为了应对这一挑战,本研究提出了基于反事实强化学习的盾多子系统协同优化(CRL-SMSCO),这是一个多智能体强化学习框架,具有集中的批评家和分散的参与者。CRL-SMSCO执行反事实信用分配,量化各子系统对全局隧道结果的边际贡献,并共同优化子系统参数。安全是通过一个面向安全的行动掩蔽单元来实现的,该单元实时限制可行的行动空间,同时还有一个优先考虑安全而不是效率的分层奖励。这些功能使CRL-SMSCO能够实现可解释的子系统协调和严格的安全执行。在南京地铁案例研究中,实验表明,CRL-SMSCO比多智能体深度确定性策略梯度(MADDPG)提高了3.9%,比多智能体近端策略优化(MAPPO)提高了3.5%,同时在测试段上产生了更低的方差和更高的最小奖励。在工程应用中,在类似地质条件下,与基于经验的人工操作相比,CRL-SMSCO平均掘进速度提高13.2%,设备载荷降低1.7%以上,地面变形降低82%,各项指标均保持在允许范围内。这些结果表明,CRL-SMSCO在盾构隧道中具有重要的实用价值,为管理其他安全关键耦合系统提供了有效的框架。
{"title":"Toward safe and efficient shield tunneling: counterfactual reinforcement learning based multi-subsystem collaborative optimization","authors":"Jing Lu, Min Hu, WenBo Zhou","doi":"10.1007/s40747-025-02180-5","DOIUrl":"https://doi.org/10.1007/s40747-025-02180-5","url":null,"abstract":"Shield tunneling must satisfy safety requirements while maintaining efficiency, but the dynamic interactions among subsystems and continuously evolving ground conditions make manual coordination unreliable. To address this challenge, this study proposes the Counterfactual Reinforcement Learning-Based Shield Multi-Subsystem Collaborative Optimization (CRL-SMSCO), a multi-agent reinforcement learning framework with a centralized critic and decentralized actors. CRL-SMSCO performs counterfactual credit assignment to quantify each subsystem’s marginal contribution to global tunneling outcomes and jointly optimizes subsystem parameters. Safety is enforced by a safety-oriented action masking unit that restricts the feasible action space in real time, together with a hierarchical reward that prioritizes safety over efficiency. These features enable CRL-SMSCO to achieve interpretable subsystem coordination and rigorous safety enforcement. In the Nanjing Metro case study, experiments show that CRL-SMSCO improves average training reward by 3.9% over multi-agent deep deterministic policy gradient (MADDPG) and by 3.5% over multi-agent proximal policy optimization (MAPPO), while also yielding lower variance and higher minimum rewards on the held-out test segment. In the engineering application, relative to experience-based manual operation under similar geology, CRL-SMSCO increases average tunneling speed by 13.2%, reduces equipment loads over 1.7%, and decreases ground deformation by 82%, with all indicators maintained within permissible limits. These results demonstrate that CRL-SMSCO provides significant practical value in shield tunneling, offering an effective framework for managing other safety-critical coupled systems.","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"1 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing image captioning with spatial relational attention and grid decoder 利用空间关系关注和网格解码器增强图像字幕
IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-27 DOI: 10.1007/s40747-025-02183-2
Xin Deng, Yihuan Zhu, Honghua Xu
{"title":"Enhancing image captioning with spatial relational attention and grid decoder","authors":"Xin Deng, Yihuan Zhu, Honghua Xu","doi":"10.1007/s40747-025-02183-2","DOIUrl":"https://doi.org/10.1007/s40747-025-02183-2","url":null,"abstract":"","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"13 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
STRNet: dual-branch synergistic network with interactive fusion for remote sensing semantic segmentation STRNet:用于遥感语义分割的交互式融合双分支协同网络
IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-27 DOI: 10.1007/s40747-025-02181-4
Minjun Zhai, Donghua Chen, Yibo Duan, Qihang Zhen, Jian Zheng, Minmin Pei, Xing Guo
{"title":"STRNet: dual-branch synergistic network with interactive fusion for remote sensing semantic segmentation","authors":"Minjun Zhai, Donghua Chen, Yibo Duan, Qihang Zhen, Jian Zheng, Minmin Pei, Xing Guo","doi":"10.1007/s40747-025-02181-4","DOIUrl":"https://doi.org/10.1007/s40747-025-02181-4","url":null,"abstract":"","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"22 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145610937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal knowledge graph completion based on time embedding and time-frequency decoder 基于时间嵌入和时频解码器的时间知识图补全
IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-25 DOI: 10.1007/s40747-025-02137-8
Siling Feng, Peng Xu, Qian Liu, Housheng Lu, Yujie Zheng, Bolin Chen, Mengxing Huang
{"title":"Temporal knowledge graph completion based on time embedding and time-frequency decoder","authors":"Siling Feng, Peng Xu, Qian Liu, Housheng Lu, Yujie Zheng, Bolin Chen, Mengxing Huang","doi":"10.1007/s40747-025-02137-8","DOIUrl":"https://doi.org/10.1007/s40747-025-02137-8","url":null,"abstract":"","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"45 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145593743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A knowledge tracing based intelligent framework for formative assessment of students skills 基于知识追踪的学生技能形成性评估智能框架
IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-25 DOI: 10.1007/s40747-025-02149-4
Akshat Khosla, Harpreet Singh, Ashutosh Aggarwal, Jatin Bedi
{"title":"A knowledge tracing based intelligent framework for formative assessment of students skills","authors":"Akshat Khosla, Harpreet Singh, Ashutosh Aggarwal, Jatin Bedi","doi":"10.1007/s40747-025-02149-4","DOIUrl":"https://doi.org/10.1007/s40747-025-02149-4","url":null,"abstract":"","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"90 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145593744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A memory constrained bayesian optimization via robust online memory estimation 基于鲁棒在线内存估计的内存约束贝叶斯优化
IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-25 DOI: 10.1007/s40747-025-02150-x
Befekadu Bekuretsion, Wolfgang Menzel, Solomon Teferra
Bayesian optimization (BO) is a memory-intensive algorithm that requires training and evaluating an expensive objective function. In contrast to previous works that use an offline memory estimation to make BO memory-efficient, we propose a robust and simple online memory estimation method that requires training a model only for the first two iterations of the first epoch. Our memory estimation method is then integrated with a simple, performance-based surrogate model of BO in a seamless (or in sync) mode that enforces memory efficiency even if it does not bypass a preset threshold. The online memory estimation method has been evaluated on two different datasets, showing that it is more accurate than the existing offline method ( <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$2.19times $$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>2.19</mml:mn> <mml:mo>×</mml:mo> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula> for MNIST and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$3.51times $$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>3.51</mml:mn> <mml:mo>×</mml:mo> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula> for CIFAR datasets). Furthermore, compared to a memory-unaware baseline, the enhanced BO has no loss of accuracy and is <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$11.31times $$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>11.31</mml:mn> <mml:mo>×</mml:mo> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula> memory-efficient for a simple CNN-based image classification, and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$5.03times $$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>5.03</mml:mn> <mml:mo>×</mml:mo> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula> memory efficient but <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$9.27times $$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>9.27</mml:mn> <mml:mo>×</mml:mo> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula> slower for a more complex LSTM-based text classification (useful for a resource-constrained environment where delay is tolerable but memory is scarce), while it is <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$2.6times $$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>2.6</mml:mn> <mml:mo>×</mml:mo> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula> memory efficient but <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$1.23times $$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>1.23</mml:mn> <mml:mo>×</mml:mo> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-fo
贝叶斯优化(BO)是一种内存密集型算法,需要训练和评估一个昂贵的目标函数。与之前使用离线内存估计来提高BO内存效率的工作相反,我们提出了一种鲁棒且简单的在线内存估计方法,该方法只需要为第一个epoch的前两次迭代训练模型。然后,我们的内存估计方法以无缝(或同步)模式与一个简单的、基于性能的BO代理模型集成在一起,即使它没有绕过预设的阈值,也可以提高内存效率。在两个不同的数据集上对在线内存估计方法进行了评估,结果表明该方法比现有的离线方法(MNIST为$$2.19times $$ 2.19 x, CIFAR为$$3.51times $$ 3.51 x)更准确。此外,与内存不感知基线相比,增强的BO没有准确性损失,对于简单的基于cnn的图像分类,其内存效率为$$11.31times $$ 11.31倍,对于更复杂的基于lstm的文本分类,其内存效率为$$5.03times $$ 5.03倍,但速度为$$9.27times $$ 9.27倍(对于资源受限的环境,延迟是可以容忍的,但内存稀缺)。虽然它的内存效率为$$2.6times $$ 2.6倍,但在预训练的ResNet50模型上速度慢$$1.23times $$ 1.23倍。
{"title":"A memory constrained bayesian optimization via robust online memory estimation","authors":"Befekadu Bekuretsion, Wolfgang Menzel, Solomon Teferra","doi":"10.1007/s40747-025-02150-x","DOIUrl":"https://doi.org/10.1007/s40747-025-02150-x","url":null,"abstract":"Bayesian optimization (BO) is a memory-intensive algorithm that requires training and evaluating an expensive objective function. In contrast to previous works that use an offline memory estimation to make BO memory-efficient, we propose a robust and simple online memory estimation method that requires training a model only for the first two iterations of the first epoch. Our memory estimation method is then integrated with a simple, performance-based surrogate model of BO in a seamless (or in sync) mode that enforces memory efficiency even if it does not bypass a preset threshold. The online memory estimation method has been evaluated on two different datasets, showing that it is more accurate than the existing offline method ( &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$$2.19times $$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;2.19&lt;/mml:mn&gt; &lt;mml:mo&gt;×&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; for MNIST and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$$3.51times $$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;3.51&lt;/mml:mn&gt; &lt;mml:mo&gt;×&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; for CIFAR datasets). Furthermore, compared to a memory-unaware baseline, the enhanced BO has no loss of accuracy and is &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$$11.31times $$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;11.31&lt;/mml:mn&gt; &lt;mml:mo&gt;×&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; memory-efficient for a simple CNN-based image classification, and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$$5.03times $$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;5.03&lt;/mml:mn&gt; &lt;mml:mo&gt;×&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; memory efficient but &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$$9.27times $$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;9.27&lt;/mml:mn&gt; &lt;mml:mo&gt;×&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; slower for a more complex LSTM-based text classification (useful for a resource-constrained environment where delay is tolerable but memory is scarce), while it is &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$$2.6times $$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;2.6&lt;/mml:mn&gt; &lt;mml:mo&gt;×&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; memory efficient but &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$$1.23times $$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;1.23&lt;/mml:mn&gt; &lt;mml:mo&gt;×&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-fo","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"189 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145593746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DSG-FSOD: a few-shot object detection method based on deformable convolutions and attention integration DSG-FSOD:一种基于可变形卷积和注意积分的小镜头目标检测方法
IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-25 DOI: 10.1007/s40747-025-02131-0
Xuanhong Wang, Xian Wang, Jiazhen Li, Mingchen Wang, Hongyu Guo, Yijun Zhang
{"title":"DSG-FSOD: a few-shot object detection method based on deformable convolutions and attention integration","authors":"Xuanhong Wang, Xian Wang, Jiazhen Li, Mingchen Wang, Hongyu Guo, Yijun Zhang","doi":"10.1007/s40747-025-02131-0","DOIUrl":"https://doi.org/10.1007/s40747-025-02131-0","url":null,"abstract":"","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"615 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145593749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient method for the support vector machine with minimax concave penalty in high dimensions 高维最大最小凹惩罚支持向量机的一种有效方法
IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-25 DOI: 10.1007/s40747-025-02132-z
Jin Yang, Ning Zhang, Yi Zhang
{"title":"An efficient method for the support vector machine with minimax concave penalty in high dimensions","authors":"Jin Yang, Ning Zhang, Yi Zhang","doi":"10.1007/s40747-025-02132-z","DOIUrl":"https://doi.org/10.1007/s40747-025-02132-z","url":null,"abstract":"","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"107 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145593748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DA-RTDETR: domain-adaptive RT-DETR with feature fusion and category-level constraints DA-RTDETR:基于特征融合和类别级约束的领域自适应RT-DETR
IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-25 DOI: 10.1007/s40747-025-02134-x
Huantong Geng, Yingrui Wang, Zhenyu Liu, Long Fang, Zichen Fan
{"title":"DA-RTDETR: domain-adaptive RT-DETR with feature fusion and category-level constraints","authors":"Huantong Geng, Yingrui Wang, Zhenyu Liu, Long Fang, Zichen Fan","doi":"10.1007/s40747-025-02134-x","DOIUrl":"https://doi.org/10.1007/s40747-025-02134-x","url":null,"abstract":"","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"191 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145593741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical reinforcement learning with opponent modeling for command and control system 基于对手建模的指挥控制系统层次强化学习
IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-25 DOI: 10.1007/s40747-025-02128-9
Tengda Li, Gang Wang, Qiang Fu, Minrui Zhao, Xiangyu Liu
{"title":"Hierarchical reinforcement learning with opponent modeling for command and control system","authors":"Tengda Li, Gang Wang, Qiang Fu, Minrui Zhao, Xiangyu Liu","doi":"10.1007/s40747-025-02128-9","DOIUrl":"https://doi.org/10.1007/s40747-025-02128-9","url":null,"abstract":"","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"1 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145593747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Complex & Intelligent Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1