Pub Date : 2025-02-07DOI: 10.1038/s42004-025-01432-2
{"title":"Women in chemistry: Q&A with Professor Aurora J. Cruz-Cabeza.","authors":"","doi":"10.1038/s42004-025-01432-2","DOIUrl":"10.1038/s42004-025-01432-2","url":null,"abstract":"","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"39"},"PeriodicalIF":5.9,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-06DOI: 10.1038/s42004-025-01415-3
Rebecca McGonigle, Jodie Glasgow, Catriona Houston, Iain Cameron, Christian Homann, Dominic J Black, Robert Pal, Lewis E MacKenzie
Autoclave reactors are widely used across chemical and biological sciences, including for the synthesis of upconversion nanoparticles (UCNPs) and other nanomaterials. Yet, the details of how autoclave reactors are used in such synthesis are rarely reported in the literature, leaving several key synthesis variables widely unreported and thereby hampering experimental reproducibility. In this perspective, we discuss the safety considerations of autoclave reactors and note that autoclaves should only be used if they are (a) purchased from reputable suppliers/manufacturers and (b) have been certified compliant with relevant safety standards. Ultimately, using unsuitable autoclave equipment can pose a severe physical hazard and may breach legal safety requirements. In addition, we highlight several parameters in autoclave synthesis that should be reported as standard to maximise the reproducibility of autoclave synthesis experiments across materials and chemistry research. We encourage users of autoclave synthesis vessels to: (1) adopt high-safety autoclaves and (2) report the many experimental variables involved to enhance experimental reproducibility.
{"title":"Autoclave reactor synthesis of upconversion nanoparticles, unreported variables, and safety considerations.","authors":"Rebecca McGonigle, Jodie Glasgow, Catriona Houston, Iain Cameron, Christian Homann, Dominic J Black, Robert Pal, Lewis E MacKenzie","doi":"10.1038/s42004-025-01415-3","DOIUrl":"10.1038/s42004-025-01415-3","url":null,"abstract":"<p><p>Autoclave reactors are widely used across chemical and biological sciences, including for the synthesis of upconversion nanoparticles (UCNPs) and other nanomaterials. Yet, the details of how autoclave reactors are used in such synthesis are rarely reported in the literature, leaving several key synthesis variables widely unreported and thereby hampering experimental reproducibility. In this perspective, we discuss the safety considerations of autoclave reactors and note that autoclaves should only be used if they are (a) purchased from reputable suppliers/manufacturers and (b) have been certified compliant with relevant safety standards. Ultimately, using unsuitable autoclave equipment can pose a severe physical hazard and may breach legal safety requirements. In addition, we highlight several parameters in autoclave synthesis that should be reported as standard to maximise the reproducibility of autoclave synthesis experiments across materials and chemistry research. We encourage users of autoclave synthesis vessels to: (1) adopt high-safety autoclaves and (2) report the many experimental variables involved to enhance experimental reproducibility.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"36"},"PeriodicalIF":5.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-06DOI: 10.1038/s42004-025-01419-z
{"title":"Women in chemistry: Q&A with Professor Susan Bourne.","authors":"","doi":"10.1038/s42004-025-01419-z","DOIUrl":"10.1038/s42004-025-01419-z","url":null,"abstract":"","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"35"},"PeriodicalIF":5.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-06DOI: 10.1038/s42004-024-01400-2
Viktoria Korn, Kristyna Pluhackova
Gasdermin D and gasdermin A3 belong to the same family of pore-forming proteins and executors of pyroptosis, a form of programmed cell death. To unveil the process of their pore formation, we examine the energy landscapes upon insertion of the gasdermin D and A3 monomers into a lipid bilayer by extensive atomistic molecular dynamics simulations. We reveal a lower free energy barrier of membrane insertion for gasdermin D than for gasdermin A3 and a preference of gasdermin D for the membrane-inserted and of gasdermin A3 for the membrane-adsorbed state, suggesting that gasdermin D first inserts and then oligomerizes while gasdermin A3 oligomerizes and then inserts. Gasdermin D stabilizes itself in the membrane by forming more salt bridges and pulling phosphatidylethanolamine lipids and more water into the membrane. Gasdermin-lipid interactions support the pore formation. Our findings suggest that both the gasdermin species and the lipid composition modulate gasdermin pore formation.
{"title":"Vastly different energy landscapes of the membrane insertions of monomeric gasdermin D and A3.","authors":"Viktoria Korn, Kristyna Pluhackova","doi":"10.1038/s42004-024-01400-2","DOIUrl":"10.1038/s42004-024-01400-2","url":null,"abstract":"<p><p>Gasdermin D and gasdermin A3 belong to the same family of pore-forming proteins and executors of pyroptosis, a form of programmed cell death. To unveil the process of their pore formation, we examine the energy landscapes upon insertion of the gasdermin D and A3 monomers into a lipid bilayer by extensive atomistic molecular dynamics simulations. We reveal a lower free energy barrier of membrane insertion for gasdermin D than for gasdermin A3 and a preference of gasdermin D for the membrane-inserted and of gasdermin A3 for the membrane-adsorbed state, suggesting that gasdermin D first inserts and then oligomerizes while gasdermin A3 oligomerizes and then inserts. Gasdermin D stabilizes itself in the membrane by forming more salt bridges and pulling phosphatidylethanolamine lipids and more water into the membrane. Gasdermin-lipid interactions support the pore formation. Our findings suggest that both the gasdermin species and the lipid composition modulate gasdermin pore formation.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"38"},"PeriodicalIF":5.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802827/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-06DOI: 10.1038/s42004-025-01436-y
Dimitris Korovesis, Christel Mérillat, Rita Derua, Steven H L Verhelst
Kinases are attractive drug targets, but the design of highly selective kinase inhibitors remains challenging. Selectivity may be evaluated against a panel of kinases, or - preferred - in a complex proteome. Probes that allow photoaffinity-labeling of their targets can facilitate this process. Here, we report photoaffinity probes based on the imidazopyrazine scaffold, which is found in several kinase inhibitors and drugs or drug candidates. By chemical proteomics experiments, we find a range of off-targets, which vary between the different probes. In silico analysis suggests that differences between probes may be related to the size, spatial arrangement and rigidity of the imidazopyrazine and its substituent at the 1-position.
{"title":"Proteome selectivity profiling of photoaffinity probes derived from imidazopyrazine-kinase inhibitors.","authors":"Dimitris Korovesis, Christel Mérillat, Rita Derua, Steven H L Verhelst","doi":"10.1038/s42004-025-01436-y","DOIUrl":"10.1038/s42004-025-01436-y","url":null,"abstract":"<p><p>Kinases are attractive drug targets, but the design of highly selective kinase inhibitors remains challenging. Selectivity may be evaluated against a panel of kinases, or - preferred - in a complex proteome. Probes that allow photoaffinity-labeling of their targets can facilitate this process. Here, we report photoaffinity probes based on the imidazopyrazine scaffold, which is found in several kinase inhibitors and drugs or drug candidates. By chemical proteomics experiments, we find a range of off-targets, which vary between the different probes. In silico analysis suggests that differences between probes may be related to the size, spatial arrangement and rigidity of the imidazopyrazine and its substituent at the 1-position.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"34"},"PeriodicalIF":5.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-06DOI: 10.1038/s42004-025-01418-0
{"title":"Women in chemistry: Q&A with Dr Milana Thomas.","authors":"","doi":"10.1038/s42004-025-01418-0","DOIUrl":"10.1038/s42004-025-01418-0","url":null,"abstract":"","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"37"},"PeriodicalIF":5.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802854/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multi-resonance (MR) materials hold an intriguing feature of narrow emission spectra and have attracted considerable attention in the manufacture of high-definition organic light-emitting diodes (OLEDs). However, the majority of MR materials are composed by a boron-nitrogen skeleton, which is unfavorable for expanding the scope of luminescent materials with narrow emission spectra to meet various application demands. In this work, we wish to report a new carbonyl-nitrogen (C = O/N) skeleton of 5,12-dihydroquinolino[2,3-b]acridine-7,14-dione (QA), and three tailored C = O/N MR molecules are synthesized and fully characterized by crystallography, thermal measurement, cyclic voltammetry, steady-state and transient spectroscopy and theoretical calculation. They show efficient green emissions with narrow full width at half maximum (FWHM) of about 27 nm and high photoluminescence quantum yields of up to 93% in doped films. Efficient hyperfluorescence OLEDs are fabricated using these materials as emitters, providing pure green lights with electroluminescence peaks at 526‒538 nm, narrow FWHMs of 29‒33 nm, excellent external quantum efficiencies of up to 29.48% and small efficiency roll-offs. These results reveal that QA could be a potential skeleton for exploring efficient C = O/N MR molecules.
{"title":"Carbonyl-nitrogen multi-resonance emitters for efficient OLEDs with high color purity.","authors":"Zhiwei Wu, Peng Zou, Jingwen Xu, Xiaobin Dong, Ben Zhong Tang, Zujin Zhao","doi":"10.1038/s42004-025-01435-z","DOIUrl":"10.1038/s42004-025-01435-z","url":null,"abstract":"<p><p>Multi-resonance (MR) materials hold an intriguing feature of narrow emission spectra and have attracted considerable attention in the manufacture of high-definition organic light-emitting diodes (OLEDs). However, the majority of MR materials are composed by a boron-nitrogen skeleton, which is unfavorable for expanding the scope of luminescent materials with narrow emission spectra to meet various application demands. In this work, we wish to report a new carbonyl-nitrogen (C = O/N) skeleton of 5,12-dihydroquinolino[2,3-b]acridine-7,14-dione (QA), and three tailored C = O/N MR molecules are synthesized and fully characterized by crystallography, thermal measurement, cyclic voltammetry, steady-state and transient spectroscopy and theoretical calculation. They show efficient green emissions with narrow full width at half maximum (FWHM) of about 27 nm and high photoluminescence quantum yields of up to 93% in doped films. Efficient hyperfluorescence OLEDs are fabricated using these materials as emitters, providing pure green lights with electroluminescence peaks at 526‒538 nm, narrow FWHMs of 29‒33 nm, excellent external quantum efficiencies of up to 29.48% and small efficiency roll-offs. These results reveal that QA could be a potential skeleton for exploring efficient C = O/N MR molecules.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"33"},"PeriodicalIF":5.9,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790955/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143122157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-03DOI: 10.1038/s42004-025-01439-9
Zarina Nidoieva, Mark O Sabin, Tristan Dewald, Annabelle C Weldert, Sabrina N Hoba, Mark Helm, Fabian Barthels
RNA methyltransferases (MTases) have recently become increasingly important in drug discovery. Yet, most frequently utilized RNA MTase assays are limited in their throughput and hamper this rapidly evolving field of medicinal chemistry. This study developed a microscale thermophoresis (MST)-based split aptamer assay for enzymatic MTase investigations, improving current methodologies by offering a non-proprietary, cost-effective, and highly sensitive approach. Our findings demonstrate the assay's effectiveness across different RNA MTases, including inhibitor characterization of METTL3/14, DNMT2, NSUN2, and S. aureus TrmD, enabling future drug discovery efforts. Using this concept, a pilot screening on the cancer drug target DNMT2 discovered several hit compounds with micromolar potency.
{"title":"A microscale thermophoresis-based enzymatic RNA methyltransferase assay enables the discovery of DNMT2 inhibitors.","authors":"Zarina Nidoieva, Mark O Sabin, Tristan Dewald, Annabelle C Weldert, Sabrina N Hoba, Mark Helm, Fabian Barthels","doi":"10.1038/s42004-025-01439-9","DOIUrl":"10.1038/s42004-025-01439-9","url":null,"abstract":"<p><p>RNA methyltransferases (MTases) have recently become increasingly important in drug discovery. Yet, most frequently utilized RNA MTase assays are limited in their throughput and hamper this rapidly evolving field of medicinal chemistry. This study developed a microscale thermophoresis (MST)-based split aptamer assay for enzymatic MTase investigations, improving current methodologies by offering a non-proprietary, cost-effective, and highly sensitive approach. Our findings demonstrate the assay's effectiveness across different RNA MTases, including inhibitor characterization of METTL3/14, DNMT2, NSUN2, and S. aureus TrmD, enabling future drug discovery efforts. Using this concept, a pilot screening on the cancer drug target DNMT2 discovered several hit compounds with micromolar potency.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"32"},"PeriodicalIF":5.9,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143122245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-03DOI: 10.1038/s42004-025-01427-z
Espen Schallmayer, Laura Isigkeit, Lewis Elson, Susanne Müller, Stefan Knapp, Julian A Marschner, Daniel Merk
The nine human NR3 nuclear receptors translate steroid hormone signals in transcriptomic responses and operate multiple highly important processes ranging from development over reproductive tissue function to inflammatory and metabolic homeostasis. Although several NR3 ligands such as glucocorticoids are invaluable drugs, this family is only partially explored, for example, in autoimmune diseases and neurodegeneration, but may hold therapeutic potential in new areas. Here we report a chemogenomics (CG) library to reveal elusive effects of NR3 receptor modulation in phenotypic settings. 34 highly annotated and chemically diverse ligands covering all NR3 receptors were selected considering complementary modes of action and activity, selectivity and lack of toxicity. Endoplasmic reticulum stress resolving effects of N3 CG subsets in proof-of-concept application validate suitability of the set to connect phenotypic outcomes with targets and to explore NR3 receptors from a translational perspective.
{"title":"Chemogenomics for steroid hormone receptors (NR3).","authors":"Espen Schallmayer, Laura Isigkeit, Lewis Elson, Susanne Müller, Stefan Knapp, Julian A Marschner, Daniel Merk","doi":"10.1038/s42004-025-01427-z","DOIUrl":"10.1038/s42004-025-01427-z","url":null,"abstract":"<p><p>The nine human NR3 nuclear receptors translate steroid hormone signals in transcriptomic responses and operate multiple highly important processes ranging from development over reproductive tissue function to inflammatory and metabolic homeostasis. Although several NR3 ligands such as glucocorticoids are invaluable drugs, this family is only partially explored, for example, in autoimmune diseases and neurodegeneration, but may hold therapeutic potential in new areas. Here we report a chemogenomics (CG) library to reveal elusive effects of NR3 receptor modulation in phenotypic settings. 34 highly annotated and chemically diverse ligands covering all NR3 receptors were selected considering complementary modes of action and activity, selectivity and lack of toxicity. Endoplasmic reticulum stress resolving effects of N3 CG subsets in proof-of-concept application validate suitability of the set to connect phenotypic outcomes with targets and to explore NR3 receptors from a translational perspective.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"29"},"PeriodicalIF":5.9,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143122164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-03DOI: 10.1038/s42004-025-01424-2
Amy Wuttke, Alexander Bagger
Electrochemical synthesis routes powered by renewable electricity can provide sustainable chemical commodities by replacing conventional fossil-based processes. Increasing research focuses on value-added chemicals like the indispensable fertilizer urea, which also constitutes a study case for electrochemical CN-coupling. To guide the identification of highly selective catalysts, we aim to provide new insight by analysing existing experimental data on the selectivity of transition metal catalysts towards electrochemically synthesized urea. Firstly, we project high dimensional experimental data using principal component analysis (PCA) to lower dimensions, and thereby confirm that urea selectivity is correlated with the selectivity towards CO and NH3. Furthermore, we identified the most suitable two-dimensional descriptors for selectivity prediction out of various adsorption energies calculated using density functional theory (DFT). We suggest that the adsorption energies of *H and *O on transition metal slabs predict the selectivity towards urea in the co-reduction of CO2 and nitrite ( ).
{"title":"Predicting electrocatalytic urea synthesis using a two-dimensional descriptor.","authors":"Amy Wuttke, Alexander Bagger","doi":"10.1038/s42004-025-01424-2","DOIUrl":"10.1038/s42004-025-01424-2","url":null,"abstract":"<p><p>Electrochemical synthesis routes powered by renewable electricity can provide sustainable chemical commodities by replacing conventional fossil-based processes. Increasing research focuses on value-added chemicals like the indispensable fertilizer urea, which also constitutes a study case for electrochemical CN-coupling. To guide the identification of highly selective catalysts, we aim to provide new insight by analysing existing experimental data on the selectivity of transition metal catalysts towards electrochemically synthesized urea. Firstly, we project high dimensional experimental data using principal component analysis (PCA) to lower dimensions, and thereby confirm that urea selectivity is correlated with the selectivity towards CO and NH<sub>3</sub>. Furthermore, we identified the most suitable two-dimensional descriptors for selectivity prediction out of various adsorption energies calculated using density functional theory (DFT). We suggest that the adsorption energies of *H and *O on transition metal slabs predict the selectivity towards urea in the co-reduction of CO<sub>2</sub> and nitrite ( <math> <msubsup><mrow><mi>NO</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>-</mo></mrow> </msubsup> </math> ).</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"30"},"PeriodicalIF":5.9,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143122341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}