Explainable artificial intelligence (XAI) aims to offer machine learning (ML) methods that enable people to comprehend, properly trust, and create more explainable models. In medical imaging, XAI has been adopted to interpret deep learning black box models to demonstrate the trustworthiness of machine decisions and predictions. In this work, we proposed a deep learning and explainable AI-based framework for segmenting and classifying brain tumors. The proposed framework consists of two parts. The first part, encoder-decoder-based DeepLabv3+ architecture, is implemented with Bayesian Optimization (BO) based hyperparameter initialization. The different scales are performed, and features are extracted through the Atrous Spatial Pyramid Pooling (ASPP) technique. The extracted features are passed to the output layer for tumor segmentation. In the second part of the proposed framework, two customized models have been proposed named Inverted Residual Bottleneck 96 layers (IRB-96) and Inverted Residual Bottleneck Self-Attention (IRB-Self). Both models are trained on the selected brain tumor datasets and extracted features from the global average pooling and self-attention layers. Features are fused using a serial approach, and classification is performed. The BO-based hyperparameters optimization of the neural network classifiers is performed and the classification results have been optimized. An XAI method named LIME is implemented to check the interpretability of the proposed models. The experimental process of the proposed framework was performed on the Figshare dataset, and an average segmentation accuracy of 92.68 % and classification accuracy of 95.42 % were obtained, respectively. Compared with state-of-the-art techniques, the proposed framework shows improved accuracy.
Accurate assessment of burn severity is crucial for the management of burn injuries. Currently, clinicians mainly rely on visual inspection to assess burns, characterized by notable inter-observer discrepancies. In this study, we introduce an innovative analysis platform using color burn wound images for automatic burn severity assessment. To do this, we propose a novel joint-task deep learning model, which is capable of simultaneously segmenting both burn regions and body parts, the two crucial components in calculating the percentage of total body surface area (%TBSA). Asymmetric attention mechanism is introduced, allowing attention guidance from the body part segmentation task to the burn region segmentation task. A user-friendly mobile application is developed to facilitate a fast assessment of burn severity at clinical settings. The proposed framework was evaluated on a dataset comprising 1340 color burn wound images captured on-site at clinical settings. The average Dice coefficients for burn depth segmentation and body part segmentation are 85.12 % and 85.36 %, respectively. The R2 for %TBSA assessment is 0.9136. The source codes for the joint-task framework and the application are released on Github (https://github.com/xjtu-mia/BurnAnalysis). The proposed platform holds the potential to be widely used at clinical settings to facilitate a fast and precise burn assessment.