Pub Date : 2025-01-03DOI: 10.1093/clinchem/hvae190
Dimitri J Maamari, Roukoz Abou-Karam, Akl C Fahed
Background: Polygenic risk scores (PRS) are measures of genetic susceptibility to human health traits. With the advent of large data repositories combining genetic data and phenotypic information, PRS are providing valuable insights into the genetic architecture of complex diseases and are transforming the landscape of precision medicine.
Content: PRS have emerged as tools with clinical utility in human disease. Herein, details on how to develop PRS are provided, followed by 5 areas in which they can be used to improve human health: (a) augmenting risk prediction, (b) refining diagnosis, (c) guiding treatment choices, (d) making clinical trials more efficient, and (e) improving public health. Finally, some of the ongoing challenges to the clinical implementation of PRS are noted.
Summary: PRS can offer valuable information for providers and patients, including identifying risk of disease earlier in life and before the onset of clinical risk factors, guiding treatment decisions, improving public health outcomes, and making clinical trials more efficient. The future of genomic-informed risk assessments of disease is through integrated risk models that combine genetic factors including PRS, monogenic, and somatic DNA information with nongenetic risk factors such as clinical risk estimators and multiomic data. However, adopting PRS in a clinical setting at scale faces some challenges, including cross-ancestry performance, standardization and calibration of risk models, downstream clinical decision-making from risk information, and seamless integration into existing health systems.
{"title":"Polygenic Risk Scores in Human Disease.","authors":"Dimitri J Maamari, Roukoz Abou-Karam, Akl C Fahed","doi":"10.1093/clinchem/hvae190","DOIUrl":"https://doi.org/10.1093/clinchem/hvae190","url":null,"abstract":"<p><strong>Background: </strong>Polygenic risk scores (PRS) are measures of genetic susceptibility to human health traits. With the advent of large data repositories combining genetic data and phenotypic information, PRS are providing valuable insights into the genetic architecture of complex diseases and are transforming the landscape of precision medicine.</p><p><strong>Content: </strong>PRS have emerged as tools with clinical utility in human disease. Herein, details on how to develop PRS are provided, followed by 5 areas in which they can be used to improve human health: (a) augmenting risk prediction, (b) refining diagnosis, (c) guiding treatment choices, (d) making clinical trials more efficient, and (e) improving public health. Finally, some of the ongoing challenges to the clinical implementation of PRS are noted.</p><p><strong>Summary: </strong>PRS can offer valuable information for providers and patients, including identifying risk of disease earlier in life and before the onset of clinical risk factors, guiding treatment decisions, improving public health outcomes, and making clinical trials more efficient. The future of genomic-informed risk assessments of disease is through integrated risk models that combine genetic factors including PRS, monogenic, and somatic DNA information with nongenetic risk factors such as clinical risk estimators and multiomic data. However, adopting PRS in a clinical setting at scale faces some challenges, including cross-ancestry performance, standardization and calibration of risk models, downstream clinical decision-making from risk information, and seamless integration into existing health systems.</p>","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"71 1","pages":"69-76"},"PeriodicalIF":7.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1093/clinchem/hvae085
Marcus J Miller
{"title":"Commentary on Diagnostic Odyssey in a Child with Red-Colored Urine and Proteinuria.","authors":"Marcus J Miller","doi":"10.1093/clinchem/hvae085","DOIUrl":"https://doi.org/10.1093/clinchem/hvae085","url":null,"abstract":"","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"71 1","pages":"34-35"},"PeriodicalIF":7.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1093/clinchem/hvae188
Matthew Hoi Kin Chau, Stephanie A Anderson, Rodger Song, Lance Cooper, Patricia A Ward, Bo Yuan, Chad Shaw, Paweł Stankiewicz, Sau Wai Cheung, Liesbeth Vossaert, Yue Wang, Nichole M Owen, Janice Smith, Carlos A Bacino, Katharina V Schulze, Weimin Bi
Background: Disease-causing copy-number variants (CNVs) often encompass contiguous genes and can be detected using chromosomal microarray analysis (CMA). Conversely, CNVs affecting single disease-causing genes have historically been challenging to detect due to their small sizes.
Methods: A custom comprehensive CMA (Baylor College of Medicine - BCM v11.2) containing 400k probes and featuring exonic coverage for >4200 known or candidate disease-causing genes was utilized for the detection of CNVs at single-exon resolution. CMA results across a consecutive clinical cohort of more than 13 000 patients referred for genetic investigation at Baylor Genetics were examined. The genomic characteristics of CNVs impacting single protein-coding genes were investigated.
Results: Pathogenic or likely pathogenic (P/LP) CNVs (n = 190) affecting single protein-coding genes were detected in 188 patients, accounting for 9.9% (188/1894) of patients with P/LP CMA findings. The P/LP monogenic CNVs accounted for 9.2% (190/2058) of all P/LP nuclear CNVs detected by CMA. A total of 57.9% (110/190) of P/LP monogenic CNVs were smaller than 50 kb in size. Single exons were affected by 26.3% (50/190) of P/LP monogenic CNVs while 13.2% (25/190) affected 2 exons. CNVs were detected across 107 unique genes associated with predominantly autosomal dominant (AD) and X-linked (XL) conditions but also contributed to autosomal recessive (AR) conditions.
Conclusions: CMA with exon-targeted coverage of disease-associated genes facilitated the detection of small CNVs affecting single protein-coding genes, adding substantial clinical sensitivity to comprehensive CNV investigation. This approach resolved monogenic CNVs associated with autosomal and X-linked monogenic etiologies and yielded multiple significant findings. Monogenic CNVs represent an underrecognized subset of disease-causing alleles for Mendelian disorders.
背景:致病拷贝数变异(CNVs)通常包含连续基因,可以使用染色体微阵列分析(CMA)检测。相反,影响单个致病基因的CNVs由于体积小,历来难以检测。方法:使用定制的综合CMA (Baylor College of Medicine - BCM v11.2),包含400k个探针,具有bb104200个已知或候选致病基因的外显子覆盖率,用于单外显子分辨率检测CNVs。对在贝勒遗传学中心接受遗传调查的13000多名患者的连续临床队列的CMA结果进行了检查。研究了影响单蛋白编码基因的CNVs的基因组特征。结果:188例患者中检测到影响单个蛋白编码基因的致病性或可能致病性(P/LP) CNVs (n = 190),占P/LP CMA患者的9.9%(188/1894)。在CMA检测到的所有P/LP核CNVs中,P/LP单基因CNVs占9.2%(190/2058)。共有57.9%(110/190)的P/LP单基因CNVs的大小小于50 kb。P/LP单基因CNVs受单外显子影响的占26.3%(50/190),受2外显子影响的占13.2%(25/190)。在107个与常染色体显性显性(AD)和x连锁(XL)疾病相关的独特基因中检测到CNVs,但也与常染色体隐性(AR)疾病相关。结论:外显子靶向覆盖疾病相关基因的CMA有助于检测影响单个蛋白质编码基因的小CNV,为全面的CNV研究增加了实质性的临床敏感性。该方法解决了与常染色体和x连锁单基因病因相关的单基因CNVs,并产生了多个重要发现。单基因CNVs代表了孟德尔疾病致病等位基因的一个未被充分认识的子集。
{"title":"Detection of Clinically Relevant Monogenic Copy-Number Variants by a Comprehensive Genome-Wide Microarray with Exonic Coverage.","authors":"Matthew Hoi Kin Chau, Stephanie A Anderson, Rodger Song, Lance Cooper, Patricia A Ward, Bo Yuan, Chad Shaw, Paweł Stankiewicz, Sau Wai Cheung, Liesbeth Vossaert, Yue Wang, Nichole M Owen, Janice Smith, Carlos A Bacino, Katharina V Schulze, Weimin Bi","doi":"10.1093/clinchem/hvae188","DOIUrl":"https://doi.org/10.1093/clinchem/hvae188","url":null,"abstract":"<p><strong>Background: </strong>Disease-causing copy-number variants (CNVs) often encompass contiguous genes and can be detected using chromosomal microarray analysis (CMA). Conversely, CNVs affecting single disease-causing genes have historically been challenging to detect due to their small sizes.</p><p><strong>Methods: </strong>A custom comprehensive CMA (Baylor College of Medicine - BCM v11.2) containing 400k probes and featuring exonic coverage for >4200 known or candidate disease-causing genes was utilized for the detection of CNVs at single-exon resolution. CMA results across a consecutive clinical cohort of more than 13 000 patients referred for genetic investigation at Baylor Genetics were examined. The genomic characteristics of CNVs impacting single protein-coding genes were investigated.</p><p><strong>Results: </strong>Pathogenic or likely pathogenic (P/LP) CNVs (n = 190) affecting single protein-coding genes were detected in 188 patients, accounting for 9.9% (188/1894) of patients with P/LP CMA findings. The P/LP monogenic CNVs accounted for 9.2% (190/2058) of all P/LP nuclear CNVs detected by CMA. A total of 57.9% (110/190) of P/LP monogenic CNVs were smaller than 50 kb in size. Single exons were affected by 26.3% (50/190) of P/LP monogenic CNVs while 13.2% (25/190) affected 2 exons. CNVs were detected across 107 unique genes associated with predominantly autosomal dominant (AD) and X-linked (XL) conditions but also contributed to autosomal recessive (AR) conditions.</p><p><strong>Conclusions: </strong>CMA with exon-targeted coverage of disease-associated genes facilitated the detection of small CNVs affecting single protein-coding genes, adding substantial clinical sensitivity to comprehensive CNV investigation. This approach resolved monogenic CNVs associated with autosomal and X-linked monogenic etiologies and yielded multiple significant findings. Monogenic CNVs represent an underrecognized subset of disease-causing alleles for Mendelian disorders.</p>","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"71 1","pages":"141-154"},"PeriodicalIF":7.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1093/clinchem/hvae181
Li Gong, Clarissa J Klein, Kelly E Caudle, Ann M Moyer, Stuart A Scott, Michelle Whirl-Carrillo, Teri E Klein
Pharmacogenomics (PGx) is focused on the relationship between an individual's genetic makeup and their response to medications, with the overarching aim of guiding prescribing decisions to improve drug efficacy and reduce adverse events. The PGx and genomic medicine communities have worked independently for over 2 decades, developing separate standards and terminology, making implementation of PGx across all areas of genomic medicine difficult. To address this issue, the Clinical Genome Resource (ClinGen) Pharmacogenomics Working Group (PGxWG) was established by the National Institutes of Health (NIH)-funded ClinGen to initially create frameworks for evaluating gene-drug response clinical validity and actionability aligned with the ClinGen frameworks for evaluating monogenic gene-disease relationships, and a framework for classifying germline PGx variants similar to the American College of Medical Genetics (ACMG) and Association of Molecular Pathology (AMP) system for interpretation of disease-causing variants. These frameworks will leverage decades of work from well-established PGx resources facilitating buy-in among PGx stakeholders. In this report, we describe the background and major activities of the ClinGen PGxWG, and how this initiative will facilitate the critical inclusion of PGx into the larger context of genomic medicine.
{"title":"Integrating Pharmacogenomics into the Broader Construct of Genomic Medicine: Efforts by the ClinGen Pharmacogenomics Working Group (PGxWG).","authors":"Li Gong, Clarissa J Klein, Kelly E Caudle, Ann M Moyer, Stuart A Scott, Michelle Whirl-Carrillo, Teri E Klein","doi":"10.1093/clinchem/hvae181","DOIUrl":"10.1093/clinchem/hvae181","url":null,"abstract":"<p><p>Pharmacogenomics (PGx) is focused on the relationship between an individual's genetic makeup and their response to medications, with the overarching aim of guiding prescribing decisions to improve drug efficacy and reduce adverse events. The PGx and genomic medicine communities have worked independently for over 2 decades, developing separate standards and terminology, making implementation of PGx across all areas of genomic medicine difficult. To address this issue, the Clinical Genome Resource (ClinGen) Pharmacogenomics Working Group (PGxWG) was established by the National Institutes of Health (NIH)-funded ClinGen to initially create frameworks for evaluating gene-drug response clinical validity and actionability aligned with the ClinGen frameworks for evaluating monogenic gene-disease relationships, and a framework for classifying germline PGx variants similar to the American College of Medical Genetics (ACMG) and Association of Molecular Pathology (AMP) system for interpretation of disease-causing variants. These frameworks will leverage decades of work from well-established PGx resources facilitating buy-in among PGx stakeholders. In this report, we describe the background and major activities of the ClinGen PGxWG, and how this initiative will facilitate the critical inclusion of PGx into the larger context of genomic medicine.</p>","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"71 1","pages":"36-44"},"PeriodicalIF":7.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1093/clinchem/hvae140
Katrina O'Halloran, Eirini Christodoulou, Vera A Paulson, Bonnie L Cole, Ashley S Margol, Jaclyn A Biegel, Sarah E S Leary, Christina M Lockwood, Erin E Crotty
Background: Cell-free DNA (cfDNA) technology has allowed for cerebrospinal fluid (CSF), a previously underutilized biofluid, to be analyzed in new ways. The interrogation of CSF-derived cfDNA is giving rise to novel molecular insights, particularly in pediatric central nervous system (CNS) tumors, where invasive tumor tissue acquisition may be challenging. Contemporary disease monitoring is currently restricted to radiographic surveillance by magnetic resonance imaging and CSF cytology to directly detect abnormal cells and cell clusters. Alternatively, cfDNA is often present in the CSF from pediatric patients with both malignant and nonmalignant CNS tumors and can be accessed by minimally invasive lumbar puncture and other CSF-liberating procedures, offering a promising alternative for longitudinal molecular disease analysis and surveillance.
Content: This review explores the use of low-pass whole genome sequencing (LP-WGS) to analyze cfDNA from the CSF of pediatric patients with CNS tumors. This platform is uniquely poised for the detection of tumors harboring copy number variants, which are prevalent in this population. The utility and sensitivity of LP-WGS as a clinical tool is explored and discussed in the context of alternative CSF liquid biopsy interrogation modalities, including nanopore sequencing and methylation array.
Summary: Analysis of CSF-derived cfDNA by LP-WGS has broad diagnostic, prognostic, and clinical implications for pediatric patients with CNS tumors. Careful interpretation of LP-WGS results may aid in therapeutic targeting of pediatric CNS tumors and may provide insight into tumor heterogeneity and evolution over time, without the need for invasive and potentially risky tissue sampling.
{"title":"Low-Pass Whole Genome Sequencing of Cell-Free DNA from Cerebrospinal Fluid: A Focus on Pediatric Central Nervous System Tumors.","authors":"Katrina O'Halloran, Eirini Christodoulou, Vera A Paulson, Bonnie L Cole, Ashley S Margol, Jaclyn A Biegel, Sarah E S Leary, Christina M Lockwood, Erin E Crotty","doi":"10.1093/clinchem/hvae140","DOIUrl":"https://doi.org/10.1093/clinchem/hvae140","url":null,"abstract":"<p><strong>Background: </strong>Cell-free DNA (cfDNA) technology has allowed for cerebrospinal fluid (CSF), a previously underutilized biofluid, to be analyzed in new ways. The interrogation of CSF-derived cfDNA is giving rise to novel molecular insights, particularly in pediatric central nervous system (CNS) tumors, where invasive tumor tissue acquisition may be challenging. Contemporary disease monitoring is currently restricted to radiographic surveillance by magnetic resonance imaging and CSF cytology to directly detect abnormal cells and cell clusters. Alternatively, cfDNA is often present in the CSF from pediatric patients with both malignant and nonmalignant CNS tumors and can be accessed by minimally invasive lumbar puncture and other CSF-liberating procedures, offering a promising alternative for longitudinal molecular disease analysis and surveillance.</p><p><strong>Content: </strong>This review explores the use of low-pass whole genome sequencing (LP-WGS) to analyze cfDNA from the CSF of pediatric patients with CNS tumors. This platform is uniquely poised for the detection of tumors harboring copy number variants, which are prevalent in this population. The utility and sensitivity of LP-WGS as a clinical tool is explored and discussed in the context of alternative CSF liquid biopsy interrogation modalities, including nanopore sequencing and methylation array.</p><p><strong>Summary: </strong>Analysis of CSF-derived cfDNA by LP-WGS has broad diagnostic, prognostic, and clinical implications for pediatric patients with CNS tumors. Careful interpretation of LP-WGS results may aid in therapeutic targeting of pediatric CNS tumors and may provide insight into tumor heterogeneity and evolution over time, without the need for invasive and potentially risky tissue sampling.</p>","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"71 1","pages":"87-96"},"PeriodicalIF":7.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1093/clinchem/hvae146
Jicheng Qian, Huilin Wang, Hailei Liang, Yuting Zheng, Mingyang Yu, Wing Ting Tse, Angel Hoi Wan Kwan, Lo Wong, Natalie Kwun Long Wong, Isabella Yi Man Wah, So Ling Lau, Shuk Yi Annie Hui, Matthew Hoi Kin Chau, Xiaoyan Chen, Rui Zhang, Liona C Poon, Tak Yeung Leung, Pengfei Liu, Kwong Wai Choy, Zirui Dong
Background: Mate-pair sequencing detects both balanced and unbalanced structural variants (SVs) and simultaneously informs in relation to both genomic location and orientation of SVs for enhanced variant classification and clinical interpretation, while chromosomal microarray analysis (CMA) only reports deletion/duplication. Herein, we evaluated its diagnostic utility in a prospective back-to-back prenatal comparative study with CMA.
Methods: From October 2021 to September 2023, 426 fetuses with ultrasound anomalies were prospectively recruited for mate-pair sequencing and CMA in parallel for prenatal genetic diagnosis. Balanced/unbalanced SVs and regions with absence of heterozygosity (AOH) were detected and classified independently, and comparisons were made between mate-pair sequencing and CMA to assess concordance. In addition, novel SVs were investigated for potential RNA perturbations using cultured cells, whenever available.
Results: Mate-pair sequencing and CMA successfully yielded results for all 426 fetuses without the need for cell culturing. In addition, mate-pair sequencing identified 19 cases with aneuploidies, 16 cases with pathogenic simple deletions/duplications, and 5 cases with pathogenic translocations/insertions, providing a 25% incremental diagnostic yield compared to CMA (9.4%, 40/426 vs 7.6%, 32/426). Furthermore, by identifying the location and orientation of SVs, mate-pair sequencing improved the variant interpretation and/or follow-up approach for 40.0% (12) of the 30 cases with likely clinically significant deletions/duplications reported by CMA. Lastly, both platforms reported 3 cases (3/426) with multiple regions of AOH likely attributable to parental consanguinity.
Conclusions: Mate-pair sequencing detects additional balanced/unbalanced SVs and improves variant interpretation in comparison to CMA, indicating its potential to serve as a comprehensive prenatal cytogenomic diagnostic method.
背景:配对测序检测平衡和不平衡结构变异(SVs),同时告知SVs的基因组位置和方向,以增强变异分类和临床解释,而染色体微阵列分析(CMA)仅报告缺失/重复。在此,我们评估其诊断效用在前瞻性背靠背产前比较研究与CMA。方法:从2021年10月至2023年9月,前瞻性招募426例超声异常胎儿进行配对测序和CMA并行产前遗传诊断。独立检测平衡/不平衡SVs和缺乏杂合性(AOH)区域,并将配对测序与CMA进行比较以评估一致性。此外,在可用的情况下,利用培养细胞研究了新型sv的潜在RNA扰动。结果:配偶对测序和CMA在不需要细胞培养的情况下成功地获得了所有426个胎儿的结果。此外,配对测序鉴定出19例非整倍体,16例致病性简单缺失/重复,5例致病性易位/插入,与CMA相比,诊断率增加了25% (9.4%,40/426 vs 7.6%, 32/426)。此外,通过确定sv的位置和取向,配对测序改善了CMA报告的30例可能存在临床显著缺失/重复的病例中40.0%(12例)的变异解释和/或随访方法。最后,两个平台都报告了3例(3/426)可能归因于父母血缘关系的AOH的多个区域。结论:与CMA相比,配偶对测序检测到额外的平衡/不平衡sv,并改善了变异解释,表明其有潜力作为全面的产前细胞基因组诊断方法。
{"title":"Mate-Pair Sequencing Enables Identification and Delineation of Balanced and Unbalanced Structural Variants in Prenatal Cytogenomic Diagnostics.","authors":"Jicheng Qian, Huilin Wang, Hailei Liang, Yuting Zheng, Mingyang Yu, Wing Ting Tse, Angel Hoi Wan Kwan, Lo Wong, Natalie Kwun Long Wong, Isabella Yi Man Wah, So Ling Lau, Shuk Yi Annie Hui, Matthew Hoi Kin Chau, Xiaoyan Chen, Rui Zhang, Liona C Poon, Tak Yeung Leung, Pengfei Liu, Kwong Wai Choy, Zirui Dong","doi":"10.1093/clinchem/hvae146","DOIUrl":"https://doi.org/10.1093/clinchem/hvae146","url":null,"abstract":"<p><strong>Background: </strong>Mate-pair sequencing detects both balanced and unbalanced structural variants (SVs) and simultaneously informs in relation to both genomic location and orientation of SVs for enhanced variant classification and clinical interpretation, while chromosomal microarray analysis (CMA) only reports deletion/duplication. Herein, we evaluated its diagnostic utility in a prospective back-to-back prenatal comparative study with CMA.</p><p><strong>Methods: </strong>From October 2021 to September 2023, 426 fetuses with ultrasound anomalies were prospectively recruited for mate-pair sequencing and CMA in parallel for prenatal genetic diagnosis. Balanced/unbalanced SVs and regions with absence of heterozygosity (AOH) were detected and classified independently, and comparisons were made between mate-pair sequencing and CMA to assess concordance. In addition, novel SVs were investigated for potential RNA perturbations using cultured cells, whenever available.</p><p><strong>Results: </strong>Mate-pair sequencing and CMA successfully yielded results for all 426 fetuses without the need for cell culturing. In addition, mate-pair sequencing identified 19 cases with aneuploidies, 16 cases with pathogenic simple deletions/duplications, and 5 cases with pathogenic translocations/insertions, providing a 25% incremental diagnostic yield compared to CMA (9.4%, 40/426 vs 7.6%, 32/426). Furthermore, by identifying the location and orientation of SVs, mate-pair sequencing improved the variant interpretation and/or follow-up approach for 40.0% (12) of the 30 cases with likely clinically significant deletions/duplications reported by CMA. Lastly, both platforms reported 3 cases (3/426) with multiple regions of AOH likely attributable to parental consanguinity.</p><p><strong>Conclusions: </strong>Mate-pair sequencing detects additional balanced/unbalanced SVs and improves variant interpretation in comparison to CMA, indicating its potential to serve as a comprehensive prenatal cytogenomic diagnostic method.</p>","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"71 1","pages":"155-168"},"PeriodicalIF":7.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1093/clinchem/hvae194
Amanda M Casto, Miguel I Paredes, Julia C Bennett, Kyle G Luiten, Peter D Han, Luis S Gamboa, Evan McDermot, Geoffrey S Gottlieb, Zachary Acker, Natalie K Lo, Devon McDonald, Kathryn M McCaffrey, Marlin D Figgins, Christina M Lockwood, Jay Shendure, Timothy M Uyeki, Lea M Starita, Trevor Bedford, Helen Y Chu, Ana A Weil
Background: Institutions of higher education (IHE) have been a focus of SARS-CoV-2 transmission studies but there is limited information on how viral diversity and transmission at IHE changed as the pandemic progressed.
Methods: Here we analyze 3606 viral genomes from unique COVID-19 episodes collected at a public university in Seattle, Washington from September 2020 to September 2022.
Results: Across the study period, we found evidence of frequent viral transmission among university affiliates with 60% (n = 2153) of viral genomes from campus specimens genetically identical to at least one other campus specimen. Moreover, viruses from students were observed in transmission clusters at a higher frequency than in the overall dataset while viruses from symptomatic infections were observed in transmission clusters at a lower frequency. Although only a small percentage of community viruses were identified as possible descendants of viruses isolated in university study specimens, phylodynamic modeling suggested a high rate of transmission events from campus into the local community, particularly during the 2021-2022 academic year.
Conclusions: We conclude that viral transmission was common within the university population throughout the study period but that not all university affiliates were equally likely to be involved. In addition, the transmission rate from campus into the surrounding community may have increased during the second year of the study, possibly due to return to in-person instruction.
{"title":"SARS-CoV-2 Diversity and Transmission on a University Campus across Two Academic Years during the Pandemic.","authors":"Amanda M Casto, Miguel I Paredes, Julia C Bennett, Kyle G Luiten, Peter D Han, Luis S Gamboa, Evan McDermot, Geoffrey S Gottlieb, Zachary Acker, Natalie K Lo, Devon McDonald, Kathryn M McCaffrey, Marlin D Figgins, Christina M Lockwood, Jay Shendure, Timothy M Uyeki, Lea M Starita, Trevor Bedford, Helen Y Chu, Ana A Weil","doi":"10.1093/clinchem/hvae194","DOIUrl":"https://doi.org/10.1093/clinchem/hvae194","url":null,"abstract":"<p><strong>Background: </strong>Institutions of higher education (IHE) have been a focus of SARS-CoV-2 transmission studies but there is limited information on how viral diversity and transmission at IHE changed as the pandemic progressed.</p><p><strong>Methods: </strong>Here we analyze 3606 viral genomes from unique COVID-19 episodes collected at a public university in Seattle, Washington from September 2020 to September 2022.</p><p><strong>Results: </strong>Across the study period, we found evidence of frequent viral transmission among university affiliates with 60% (n = 2153) of viral genomes from campus specimens genetically identical to at least one other campus specimen. Moreover, viruses from students were observed in transmission clusters at a higher frequency than in the overall dataset while viruses from symptomatic infections were observed in transmission clusters at a lower frequency. Although only a small percentage of community viruses were identified as possible descendants of viruses isolated in university study specimens, phylodynamic modeling suggested a high rate of transmission events from campus into the local community, particularly during the 2021-2022 academic year.</p><p><strong>Conclusions: </strong>We conclude that viral transmission was common within the university population throughout the study period but that not all university affiliates were equally likely to be involved. In addition, the transmission rate from campus into the surrounding community may have increased during the second year of the study, possibly due to return to in-person instruction.</p>","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"71 1","pages":"192-202"},"PeriodicalIF":7.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1093/clinchem/hvae084
James H Nurse
{"title":"Commentary on Diagnostic Odyssey in a Child with Red-Colored Urine and Proteinuria.","authors":"James H Nurse","doi":"10.1093/clinchem/hvae084","DOIUrl":"https://doi.org/10.1093/clinchem/hvae084","url":null,"abstract":"","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"71 1","pages":"35"},"PeriodicalIF":7.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1093/clinchem/hvae132
Sasha Witts, Nicholas J Clemons, David S Liu
{"title":"Commentary on Liquid Biopsy Detection of a TP53 Variant in a \"Disease-Free\" Pediatric Patient with a History of TP53-mutant Adrenocortical Carcinoma.","authors":"Sasha Witts, Nicholas J Clemons, David S Liu","doi":"10.1093/clinchem/hvae132","DOIUrl":"https://doi.org/10.1093/clinchem/hvae132","url":null,"abstract":"","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"71 1","pages":"30"},"PeriodicalIF":7.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1093/clinchem/hvae189
Sophie Adams, Olivia Maher Trocki, Christina Miller, Courtney Studwell, Meghan Bombalicki, Lori Dobson, Sofia Horan, Jordan Sargent, Michael Duyzend, Kathryn J Gray, Stephanie Guseh, Louise Wilkins-Haug
Background: Genetic screening has advanced from prenatal cell-free DNA (cfDNA) screening for aneuploidies (cfDNA-ANP) to single-gene disorders (cfDNA-SGD). Clinical validation studies have been promising in pregnancies with anomalies but are limited in the general population.
Methods: Chart review and laboratory data identified pregnancies with cfDNA-SGD screening for 25 autosomal dominant conditions at our academic center. Screening was identified as routine by International Classification of Diseases (ICD) 10 codes and chart review. Ultrasound anomalies or known family history of a condition on the panel were excluded. Retrospective chart review investigated test concordance, outcomes, and phenotypes.
Results: cfDNA-SGD was completed for 3480/37 050 (9.4%) pregnancies, of which 2745 (78.9%) were for routine screening. Fourteen (0.51%, 14/2745) had high-risk results defined as pathogenic/likely pathogenic (P/LP) variants: 6 (0.22%) likely fetal variants, and 8 (0.29%) maternal variants with 50% risk for fetal inheritance. Diagnostic testing detected 6/6 fetal and 6/8 maternal cfDNA-SGD variants (2/8 pregnant individuals declined testing but had clinical features on physical exam). Variants were detected in 11/14 pregnancies/newborns and in 9/14 (64.3%) parents/gamete donors. There were no false positives identified by cfDNA-SGD; however, 2 variants were discrepantly classified between the cfDNA-SGD and diagnostic testing laboratories. All pregnancies had normal imaging and 9 had mild postnatal phenotypes. Three terminated pregnancy following diagnostic testing.
Conclusions: Our study demonstrated that 0.51% of routine cfDNA-SGD was high risk, prompting comprehensive evaluation for pregnancies and parents. Routine cfDNA-SGD allowed for early identification and intervention, but raises counseling challenges due to variable expressivity, limited genotype-phenotype correlations, and discrepant variant classification.
{"title":"Routine Prenatal cfDNA Screening for Autosomal Dominant Single-Gene Conditions.","authors":"Sophie Adams, Olivia Maher Trocki, Christina Miller, Courtney Studwell, Meghan Bombalicki, Lori Dobson, Sofia Horan, Jordan Sargent, Michael Duyzend, Kathryn J Gray, Stephanie Guseh, Louise Wilkins-Haug","doi":"10.1093/clinchem/hvae189","DOIUrl":"https://doi.org/10.1093/clinchem/hvae189","url":null,"abstract":"<p><strong>Background: </strong>Genetic screening has advanced from prenatal cell-free DNA (cfDNA) screening for aneuploidies (cfDNA-ANP) to single-gene disorders (cfDNA-SGD). Clinical validation studies have been promising in pregnancies with anomalies but are limited in the general population.</p><p><strong>Methods: </strong>Chart review and laboratory data identified pregnancies with cfDNA-SGD screening for 25 autosomal dominant conditions at our academic center. Screening was identified as routine by International Classification of Diseases (ICD) 10 codes and chart review. Ultrasound anomalies or known family history of a condition on the panel were excluded. Retrospective chart review investigated test concordance, outcomes, and phenotypes.</p><p><strong>Results: </strong>cfDNA-SGD was completed for 3480/37 050 (9.4%) pregnancies, of which 2745 (78.9%) were for routine screening. Fourteen (0.51%, 14/2745) had high-risk results defined as pathogenic/likely pathogenic (P/LP) variants: 6 (0.22%) likely fetal variants, and 8 (0.29%) maternal variants with 50% risk for fetal inheritance. Diagnostic testing detected 6/6 fetal and 6/8 maternal cfDNA-SGD variants (2/8 pregnant individuals declined testing but had clinical features on physical exam). Variants were detected in 11/14 pregnancies/newborns and in 9/14 (64.3%) parents/gamete donors. There were no false positives identified by cfDNA-SGD; however, 2 variants were discrepantly classified between the cfDNA-SGD and diagnostic testing laboratories. All pregnancies had normal imaging and 9 had mild postnatal phenotypes. Three terminated pregnancy following diagnostic testing.</p><p><strong>Conclusions: </strong>Our study demonstrated that 0.51% of routine cfDNA-SGD was high risk, prompting comprehensive evaluation for pregnancies and parents. Routine cfDNA-SGD allowed for early identification and intervention, but raises counseling challenges due to variable expressivity, limited genotype-phenotype correlations, and discrepant variant classification.</p>","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"71 1","pages":"129-140"},"PeriodicalIF":7.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}