Pub Date : 2020-12-01Epub Date: 2020-11-04DOI: 10.1080/10409238.2020.1828258
Martin D Brand
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
{"title":"Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix.","authors":"Martin D Brand","doi":"10.1080/10409238.2020.1828258","DOIUrl":"https://doi.org/10.1080/10409238.2020.1828258","url":null,"abstract":"<p><p>Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"55 6","pages":"592-661"},"PeriodicalIF":6.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2020.1828258","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38566869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01Epub Date: 2020-10-15DOI: 10.1080/10409238.2020.1828257
Taylor M Nye, Nicolas L Fernandez, Lyle A Simmons
The presence of post-replicative DNA methylation is pervasive among both prokaryotic and eukaryotic organisms. In bacteria, the study of DNA methylation has largely been in the context of restriction-modification systems, where DNA methylation serves to safeguard the chromosome against restriction endonuclease cleavage intended for invading DNA. There has been a growing recognition that the methyltransferase component of restriction-modification systems can also regulate gene expression, with important contributions to virulence factor gene expression in bacterial pathogens. Outside of restriction-modification systems, DNA methylation from orphan methyltransferases, which lack cognate restriction endonucleases, has been shown to regulate important processes, including DNA replication, DNA mismatch repair, and the regulation of gene expression. The majority of research and review articles have been focused on DNA methylation in the context of Gram-negative bacteria, with emphasis toward Escherichia coli, Caulobacter crescentus, and related Proteobacteria. Here we summarize the epigenetic functions of DNA methylation outside of host defense in Gram-positive bacteria, with a focus on the regulatory effects of both phase variable methyltransferases and DNA methyltransferases from traditional restriction-modification systems.
{"title":"A positive perspective on DNA methylation: regulatory functions of DNA methylation outside of host defense in Gram-positive bacteria.","authors":"Taylor M Nye, Nicolas L Fernandez, Lyle A Simmons","doi":"10.1080/10409238.2020.1828257","DOIUrl":"https://doi.org/10.1080/10409238.2020.1828257","url":null,"abstract":"<p><p>The presence of post-replicative DNA methylation is pervasive among both prokaryotic and eukaryotic organisms. In bacteria, the study of DNA methylation has largely been in the context of restriction-modification systems, where DNA methylation serves to safeguard the chromosome against restriction endonuclease cleavage intended for invading DNA. There has been a growing recognition that the methyltransferase component of restriction-modification systems can also regulate gene expression, with important contributions to virulence factor gene expression in bacterial pathogens. Outside of restriction-modification systems, DNA methylation from orphan methyltransferases, which lack cognate restriction endonucleases, has been shown to regulate important processes, including DNA replication, DNA mismatch repair, and the regulation of gene expression. The majority of research and review articles have been focused on DNA methylation in the context of Gram-negative bacteria, with emphasis toward <i>Escherichia coli</i>, <i>Caulobacter crescentus</i>, and related Proteobacteria. Here we summarize the epigenetic functions of DNA methylation outside of host defense in Gram-positive bacteria, with a focus on the regulatory effects of both phase variable methyltransferases and DNA methyltransferases from traditional restriction-modification systems.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"55 6","pages":"576-591"},"PeriodicalIF":6.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2020.1828257","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38593524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01Epub Date: 2020-09-23DOI: 10.1080/10409238.2020.1818686
Daniel J Sanderson, Michael S Cohen
Poly-(ADP)-ribose polymerases (PARPs) are a family of 17 enzymes in humans that have diverse roles in cell physiology including DNA damage repair, transcription, innate immunity, and regulation of signaling pathways. The modular domain architecture of PARPs gives rise to this functional diversity. PARPs catalyze the transfer of ADP-ribose from nicotinamide adenine dinucleotide (NAD+) to targets-proteins and poly-nucleic acids. This enigmatic post-translational modification comes in two varieties: the transfer of a single unit of ADP-ribose, known as mono-ADP-ribosylation (MARylation) or the transfer of multiple units of ADP-ribose, known as poly-ADP-ribosylation (PARylation). Emerging data shows that PARPs are regulated at multiple levels to control when and where PARP-mediated M/PARylation occurs in cells. In this review, we will discuss the latest knowledge regarding the regulation of PARPs in cells: from transcription and protein stability to subcellular localization and modulation of catalytic activity.
{"title":"Mechanisms governing PARP expression, localization, and activity in cells.","authors":"Daniel J Sanderson, Michael S Cohen","doi":"10.1080/10409238.2020.1818686","DOIUrl":"https://doi.org/10.1080/10409238.2020.1818686","url":null,"abstract":"<p><p>Poly-(ADP)-ribose polymerases (PARPs) are a family of 17 enzymes in humans that have diverse roles in cell physiology including DNA damage repair, transcription, innate immunity, and regulation of signaling pathways. The modular domain architecture of PARPs gives rise to this functional diversity. PARPs catalyze the transfer of ADP-ribose from nicotinamide adenine dinucleotide (NAD<sup>+</sup>) to targets-proteins and poly-nucleic acids. This enigmatic post-translational modification comes in two varieties: the transfer of a single unit of ADP-ribose, known as mono-ADP-ribosylation (MARylation) or the transfer of multiple units of ADP-ribose, known as poly-ADP-ribosylation (PARylation). Emerging data shows that PARPs are regulated at multiple levels to control when and where PARP-mediated M/PARylation occurs in cells. In this review, we will discuss the latest knowledge regarding the regulation of PARPs in cells: from transcription and protein stability to subcellular localization and modulation of catalytic activity.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"55 6","pages":"541-554"},"PeriodicalIF":6.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2020.1818686","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38408419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01Epub Date: 2020-09-16DOI: 10.1080/10409238.2020.1819194
Nitish Jangde, Rashmi Ray, Vivek Rai
Receptor for advanced glycation end products (RAGE) is an immunoglobulin-like receptor present on cell surface. RAGE binds to an array of structurally diverse ligands, acts as a pattern recognition receptor (PRR) and is expressed on cells of different origin performing different functions. RAGE ligation leads to the initiation of a cascade of signaling events and is implicated in diseases, such as inflammation, cancer, diabetes, vascular dysfunctions, retinopathy, and neurodegenerative diseases. Because of the significant involvement of RAGE in the progression of numerous diseases, RAGE signaling has been targeted through use of inhibitors and anti-RAGE antibodies as a treatment strategy and therapy. Here in this review, we have summarized the physical and physiological aspects of RAGE biology in mammalian system and the importance of targeting this molecule in the treatment of various RAGE mediated pathologies. Highlights Receptor for advanced glycation end products (RAGE) is a member of immunoglobulin superfamily of receptors and involved in many pathophysiological conditions. RAGE ligation with its ligands leads to initiation of distinct signaling cascades and activation of numerous transcription factors. Targeting RAGE signaling through inhibitors and anti-RAGE antibodies can be promising treatment strategy.
{"title":"RAGE and its ligands: from pathogenesis to therapeutics.","authors":"Nitish Jangde, Rashmi Ray, Vivek Rai","doi":"10.1080/10409238.2020.1819194","DOIUrl":"https://doi.org/10.1080/10409238.2020.1819194","url":null,"abstract":"<p><p>Receptor for advanced glycation end products (RAGE) is an immunoglobulin-like receptor present on cell surface. RAGE binds to an array of structurally diverse ligands, acts as a pattern recognition receptor (PRR) and is expressed on cells of different origin performing different functions. RAGE ligation leads to the initiation of a cascade of signaling events and is implicated in diseases, such as inflammation, cancer, diabetes, vascular dysfunctions, retinopathy, and neurodegenerative diseases. Because of the significant involvement of RAGE in the progression of numerous diseases, RAGE signaling has been targeted through use of inhibitors and anti-RAGE antibodies as a treatment strategy and therapy. Here in this review, we have summarized the physical and physiological aspects of RAGE biology in mammalian system and the importance of targeting this molecule in the treatment of various RAGE mediated pathologies. Highlights Receptor for advanced glycation end products (RAGE) is a member of immunoglobulin superfamily of receptors and involved in many pathophysiological conditions. RAGE ligation with its ligands leads to initiation of distinct signaling cascades and activation of numerous transcription factors. Targeting RAGE signaling through inhibitors and anti-RAGE antibodies can be promising treatment strategy.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"55 6","pages":"555-575"},"PeriodicalIF":6.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2020.1819194","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38480453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01Epub Date: 2020-10-20DOI: 10.1080/10409238.2020.1828260
Charlotte de Ceuninck van Capelle, Maureen Spit, Peter Ten Dijke
Transforming growth factor β (TGF-β) family members play an extensive role in cellular communication that orchestrates both early development and adult tissue homeostasis. Aberrant TGF-β family signaling is associated with a pathological outcome in numerous diseases, and in-depth understanding of molecular and cellular processes could result in therapeutic benefit for patients. Canonical TGF-β signaling is mediated by receptor-regulated SMADs (R-SMADs), a single co-mediator SMAD (Co-SMAD), and inhibitory SMADs (I-SMADs). SMAD7, one of the I-SMADs, is an essential negative regulator of the pleiotropic TGF-β and bone morphogenetic protein (BMP) signaling pathways. In a negative feedback loop, SMAD7 inhibits TGF-β signaling by providing competition for TGF-β type-1 receptor (TβRI), blocking phosphorylation and activation of SMAD2. Moreover, SMAD7 recruits E3 ubiquitin SMURF ligases to the type I receptor to promote ubiquitin-mediated proteasomal degradation. In addition to its role in TGF-β and BMP signaling, SMAD7 is regulated by and implicated in a variety of other signaling pathways and functions as a mediator of crosstalk. This review is focused on SMAD7, its function in TGF-β and BMP signaling, and its role as a downstream integrator and crosstalk mediator. This crucial signaling molecule is tightly regulated by various mechanisms. We provide an overview of the ways by which SMAD7 is regulated, including noncoding RNAs (ncRNAs) and post-translational modifications (PTMs). Finally, we discuss its role in diseases, such as cancer, fibrosis, and inflammatory bowel disease (IBD).
{"title":"Current perspectives on inhibitory SMAD7 in health and disease.","authors":"Charlotte de Ceuninck van Capelle, Maureen Spit, Peter Ten Dijke","doi":"10.1080/10409238.2020.1828260","DOIUrl":"https://doi.org/10.1080/10409238.2020.1828260","url":null,"abstract":"<p><p>Transforming growth factor β (TGF-β) family members play an extensive role in cellular communication that orchestrates both early development and adult tissue homeostasis. Aberrant TGF-β family signaling is associated with a pathological outcome in numerous diseases, and in-depth understanding of molecular and cellular processes could result in therapeutic benefit for patients. Canonical TGF-β signaling is mediated by receptor-regulated SMADs (R-SMADs), a single co-mediator SMAD (Co-SMAD), and inhibitory SMADs (I-SMADs). SMAD7, one of the I-SMADs, is an essential negative regulator of the pleiotropic TGF-β and bone morphogenetic protein (BMP) signaling pathways. In a negative feedback loop, SMAD7 inhibits TGF-β signaling by providing competition for TGF-β type-1 receptor (TβRI), blocking phosphorylation and activation of SMAD2. Moreover, SMAD7 recruits E3 ubiquitin SMURF ligases to the type I receptor to promote ubiquitin-mediated proteasomal degradation. In addition to its role in TGF-β and BMP signaling, SMAD7 is regulated by and implicated in a variety of other signaling pathways and functions as a mediator of crosstalk. This review is focused on SMAD7, its function in TGF-β and BMP signaling, and its role as a downstream integrator and crosstalk mediator. This crucial signaling molecule is tightly regulated by various mechanisms. We provide an overview of the ways by which SMAD7 is regulated, including noncoding RNAs (ncRNAs) and post-translational modifications (PTMs). Finally, we discuss its role in diseases, such as cancer, fibrosis, and inflammatory bowel disease (IBD).</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"55 6","pages":"691-715"},"PeriodicalIF":6.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2020.1828260","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38515378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01Epub Date: 2020-09-24DOI: 10.1080/10409238.2020.1818684
Maria Falkenberg, Claes M Gustafsson
Mammalian mitochondria contain multiple copies of a circular, double-stranded DNA genome (mtDNA) that codes for subunits of the oxidative phosphorylation machinery. Mutations in mtDNA cause a number of rare, human disorders and are also associated with more common conditions, such as neurodegeneration and biological aging. In this review, we discuss our current understanding of mtDNA replication in mammalian cells and how this process is regulated. We also discuss how deletions can be formed during mtDNA replication.
{"title":"Mammalian mitochondrial DNA replication and mechanisms of deletion formation.","authors":"Maria Falkenberg, Claes M Gustafsson","doi":"10.1080/10409238.2020.1818684","DOIUrl":"https://doi.org/10.1080/10409238.2020.1818684","url":null,"abstract":"<p><p>Mammalian mitochondria contain multiple copies of a circular, double-stranded DNA genome (mtDNA) that codes for subunits of the oxidative phosphorylation machinery. Mutations in mtDNA cause a number of rare, human disorders and are also associated with more common conditions, such as neurodegeneration and biological aging. In this review, we discuss our current understanding of mtDNA replication in mammalian cells and how this process is regulated. We also discuss how deletions can be formed during mtDNA replication.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"55 6","pages":"509-524"},"PeriodicalIF":6.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2020.1818684","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38415355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01Epub Date: 2020-10-02DOI: 10.1080/10409238.2020.1828261
Alexander V Yakhnin, Mikhail Kashlev, Paul Babitzke
Although transcription by RNA polymerase (RNAP) is highly processive, elongation can be transiently halted by RNAP pausing. Pausing provides time for diverse regulatory events to occur such as RNA folding and regulatory factor binding. The transcription elongation factors NusA and NusG dramatically affect the frequency and duration of RNAP pausing, and hence regulation of transcription. NusG is the only transcription factor conserved in all three domains of life; its homolog in archaea and eukaryotes is Spt5. This review focuses on NusG-dependent pausing, which is a common occurrence in Bacillus subtilis. B. NusG induces pausing about once per 3 kb at a consensus TTNTTT motif in the non-template DNA strand within the paused transcription bubble. A conserved region of NusG contacts the TTNTTT motif to stabilize the paused transcription elongation complex (TEC) in multiple catalytically inactive RNAP conformations. The density of NusG-dependent pause sites is 3-fold higher in untranslated regions, suggesting that pausing could regulate the expression of hundreds of genes in B. subtilis. We describe how pausing in 5' leader regions contributes to regulating the expression of B. subtilis genes by transcription attenuation and translation control mechanisms. As opposed to the broadly accepted view that NusG is an anti-pausing factor, phylogenetic analyses suggest that NusG-dependent pausing is a widespread mechanism in bacteria. This function of NusG is consistent with the well-established role of its eukaryotic homolog Spt5 in promoter-proximal pausing. Since NusG is present in all domains of life, NusG-dependent pausing could be a conserved mechanism in all organisms.
{"title":"NusG-dependent RNA polymerase pausing is a frequent function of this universally conserved transcription elongation factor.","authors":"Alexander V Yakhnin, Mikhail Kashlev, Paul Babitzke","doi":"10.1080/10409238.2020.1828261","DOIUrl":"https://doi.org/10.1080/10409238.2020.1828261","url":null,"abstract":"<p><p>Although transcription by RNA polymerase (RNAP) is highly processive, elongation can be transiently halted by RNAP pausing. Pausing provides time for diverse regulatory events to occur such as RNA folding and regulatory factor binding. The transcription elongation factors NusA and NusG dramatically affect the frequency and duration of RNAP pausing, and hence regulation of transcription. NusG is the only transcription factor conserved in all three domains of life; its homolog in archaea and eukaryotes is Spt5. This review focuses on NusG-dependent pausing, which is a common occurrence in <i>Bacillus subtilis</i>. <i>B.</i> NusG induces pausing about once per 3 kb at a consensus TTNTTT motif in the non-template DNA strand within the paused transcription bubble. A conserved region of NusG contacts the TTNTTT motif to stabilize the paused transcription elongation complex (TEC) in multiple catalytically inactive RNAP conformations. The density of NusG-dependent pause sites is 3-fold higher in untranslated regions, suggesting that pausing could regulate the expression of hundreds of genes in <i>B. subtilis</i>. We describe how pausing in 5' leader regions contributes to regulating the expression of <i>B. subtilis</i> genes by transcription attenuation and translation control mechanisms. As opposed to the broadly accepted view that NusG is an anti-pausing factor, phylogenetic analyses suggest that NusG-dependent pausing is a widespread mechanism in bacteria. This function of NusG is consistent with the well-established role of its eukaryotic homolog Spt5 in promoter-proximal pausing. Since NusG is present in all domains of life, NusG-dependent pausing could be a conserved mechanism in all organisms.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"55 6","pages":"716-728"},"PeriodicalIF":6.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2020.1828261","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38544445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01Epub Date: 2020-10-12DOI: 10.1080/10409238.2020.1828259
Isabel Chillón, Marco Marcia
Long non-coding RNAs (lncRNAs) are recently-discovered transcripts that regulate vital cellular processes and are crucially connected to diseases. Despite their unprecedented molecular complexity, it is emerging that lncRNAs possess distinct structural motifs. Remarkably, the 3D shape and topology of full-length, native lncRNAs have been visualized for the first time in the last year. These studies reveal that lncRNA structures dictate lncRNA functions. Here, we review experimentally determined lncRNA structures and emphasize that lncRNA structural characterization requires synergistic integration of computational, biochemical and biophysical approaches. Based on these emerging paradigms, we discuss how to overcome the challenges posed by the complex molecular architecture of lncRNAs, with the goal of obtaining a detailed understanding of lncRNA functions and molecular mechanisms in the future.
{"title":"The molecular structure of long non-coding RNAs: emerging patterns and functional implications.","authors":"Isabel Chillón, Marco Marcia","doi":"10.1080/10409238.2020.1828259","DOIUrl":"https://doi.org/10.1080/10409238.2020.1828259","url":null,"abstract":"<p><p>Long non-coding RNAs (lncRNAs) are recently-discovered transcripts that regulate vital cellular processes and are crucially connected to diseases. Despite their unprecedented molecular complexity, it is emerging that lncRNAs possess distinct structural motifs. Remarkably, the 3D shape and topology of full-length, native lncRNAs have been visualized for the first time in the last year. These studies reveal that lncRNA structures dictate lncRNA functions. Here, we review experimentally determined lncRNA structures and emphasize that lncRNA structural characterization requires synergistic integration of computational, biochemical and biophysical approaches. Based on these emerging paradigms, we discuss how to overcome the challenges posed by the complex molecular architecture of lncRNAs, with the goal of obtaining a detailed understanding of lncRNA functions and molecular mechanisms in the future.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"55 6","pages":"662-690"},"PeriodicalIF":6.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2020.1828259","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38574197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01Epub Date: 2020-09-16DOI: 10.1080/10409238.2020.1818685
Federica Accornero, Robert L Ross, Juan D Alfonzo
Abstract Every type of nucleic acid in cells may undergo some kind of post-replicative or post-transcriptional chemical modification. Recent evidence has highlighted their importance in biology and their chemical complexity. In the following pages, we will describe new discoveries of modifications, with a focus on tRNA and mRNA. We will highlight current challenges and advances in modification detection and we will discuss how changes in nucleotide post-transcriptional modifications may affect cell homeostasis leading to malfunction. Although, RNA modifications prevail in all forms of life, the present review will focus on eukaryotic systems, where the great degree of intracellular compartmentalization provides barriers and filters for the level at which a given RNA is modified and will of course affect its fate and function. Additionally, although we will mention rRNA modification and modifications of the mRNA 5’-CAP structure, this will only be discussed in passing, as many substantive reviews have been written on these subjects. Here we will not spend much time describing all the possible modifications that have been observed; truly a daunting task. For reference, Bujnicki and coworkers have created MODOMICS, a useful repository for all types of modifications and their associated enzymes. Instead we will discuss a few examples, which illustrate our arguments on the connection of modifications, metabolism and ultimately translation. The fact remains, a full understanding of the long reach of nucleic acid modifications in cells requires both a global and targeted study of unprecedented scale, which at the moment may well be limited only by technology.
{"title":"From canonical to modified nucleotides: balancing translation and metabolism.","authors":"Federica Accornero, Robert L Ross, Juan D Alfonzo","doi":"10.1080/10409238.2020.1818685","DOIUrl":"https://doi.org/10.1080/10409238.2020.1818685","url":null,"abstract":"Abstract Every type of nucleic acid in cells may undergo some kind of post-replicative or post-transcriptional chemical modification. Recent evidence has highlighted their importance in biology and their chemical complexity. In the following pages, we will describe new discoveries of modifications, with a focus on tRNA and mRNA. We will highlight current challenges and advances in modification detection and we will discuss how changes in nucleotide post-transcriptional modifications may affect cell homeostasis leading to malfunction. Although, RNA modifications prevail in all forms of life, the present review will focus on eukaryotic systems, where the great degree of intracellular compartmentalization provides barriers and filters for the level at which a given RNA is modified and will of course affect its fate and function. Additionally, although we will mention rRNA modification and modifications of the mRNA 5’-CAP structure, this will only be discussed in passing, as many substantive reviews have been written on these subjects. Here we will not spend much time describing all the possible modifications that have been observed; truly a daunting task. For reference, Bujnicki and coworkers have created MODOMICS, a useful repository for all types of modifications and their associated enzymes. Instead we will discuss a few examples, which illustrate our arguments on the connection of modifications, metabolism and ultimately translation. The fact remains, a full understanding of the long reach of nucleic acid modifications in cells requires both a global and targeted study of unprecedented scale, which at the moment may well be limited only by technology.","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"55 6","pages":"525-540"},"PeriodicalIF":6.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2020.1818685","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38383196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}