Pub Date : 2025-01-01DOI: 10.2174/0115665232291300240509104344
Wei Jiang, Sheng Xu, Ping Li
Introduction: Tumor immunity has garnered increasing attention in cancer treatment and progression. However, there is still a challenge in understanding the mechanisms of specific molecules affecting the clinical prognosis and tumor microenvironment (TME).
Methods: Here, we applied the ESTIMATE algorithm to calculate the immune and stromal scores in 504 HNSC cases from TCGA. Patients were grouped according to the median value of the immune and stromal. Clinicopathological characteristics and differentially expressed genes (DEG) were analyzed. Subsequently, LASSO, COX regression, survival analysis, and clinicopathological characteristics were conducted. Subsequently, SLC2A3 was determined as a predictive factor that high expression of SLC2A3 at the mRNA and protein levels predicted a worse clinical prognosis. GSEA25099 was utilized for external validation of immune infiltration, while tissue PCR, IHC, and Western Blot were used to confirm the expression levels of SLC2A3.
Results: A series of immune-infiltration analyses showed that SLC2A3 expression was negatively correlated with CD8+ T cells, significantly affecting the survival prognosis of HNSC. In the GSEA analysis, the high expression of SLC2A3 was mainly enriched for immune-related biological processes. Meanwhile, high expression of SLC2A3 possessed higher TIDE scores and was also strongly positively correlated with a series of immune checkpoints affecting survival prognosis, thus causing greater susceptibility to immune escape.
Conclusion: Conclusively, SLC2A3 is a potential oncogene and factor of HNSC development, notably by an altered state of the immune microenvironment, immune-suppressive regulation, and immune escape.
{"title":"SLC2A3 is a Potential Factor for Head and Neck Squamous Cancer Development through Tumor Microenvironment Alteration.","authors":"Wei Jiang, Sheng Xu, Ping Li","doi":"10.2174/0115665232291300240509104344","DOIUrl":"10.2174/0115665232291300240509104344","url":null,"abstract":"<p><strong>Introduction: </strong>Tumor immunity has garnered increasing attention in cancer treatment and progression. However, there is still a challenge in understanding the mechanisms of specific molecules affecting the clinical prognosis and tumor microenvironment (TME).</p><p><strong>Methods: </strong>Here, we applied the ESTIMATE algorithm to calculate the immune and stromal scores in 504 HNSC cases from TCGA. Patients were grouped according to the median value of the immune and stromal. Clinicopathological characteristics and differentially expressed genes (DEG) were analyzed. Subsequently, LASSO, COX regression, survival analysis, and clinicopathological characteristics were conducted. Subsequently, SLC2A3 was determined as a predictive factor that high expression of SLC2A3 at the mRNA and protein levels predicted a worse clinical prognosis. GSEA25099 was utilized for external validation of immune infiltration, while tissue PCR, IHC, and Western Blot were used to confirm the expression levels of SLC2A3.</p><p><strong>Results: </strong>A series of immune-infiltration analyses showed that SLC2A3 expression was negatively correlated with CD8+ T cells, significantly affecting the survival prognosis of HNSC. In the GSEA analysis, the high expression of SLC2A3 was mainly enriched for immune-related biological processes. Meanwhile, high expression of SLC2A3 possessed higher TIDE scores and was also strongly positively correlated with a series of immune checkpoints affecting survival prognosis, thus causing greater susceptibility to immune escape.</p><p><strong>Conclusion: </strong>Conclusively, SLC2A3 is a potential oncogene and factor of HNSC development, notably by an altered state of the immune microenvironment, immune-suppressive regulation, and immune escape.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":"157-177"},"PeriodicalIF":3.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141080504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
"Huntington's disease" (HD) is an autosomal dominant hereditary neurodegenerative disease characterized by defects in efferent striatal neurons, cortical neurons, and the basal ganglia. The pathogenesis of HD is still unclear, and there is currently no curative therapy for this disorder. This review emphasizes the potential beneficial effects of various neurotrophic factors in HD. PubMed, Web of Science, Embase, and google scholar databases were used to search for all studies on the efficacy of neurotrophic factors in HD. Several gene therapy strategies have been employed to treat HD, including gene therapy with a variety of neuroprotective factors. Moreover, a wide variability of gene therapy approaches such as a neurotrophin, has shown promising results for both prevention and neuroprotection in HD, which may be due to their potential to prevent neuronal cell death or decrease neurodegeneration, thereby promoting the growth of innovative axons, dendrites, and synapses leading to improvement of HD. Neurotrophic factors may be suitable as neuroprotective therapy agents in HD. Therefore, substantial research on gene therapy should be conducted to provide better treatment options for HD in the future.
{"title":"Neurotrophins as Potential Gene Therapy Targets for Huntington's Disease.","authors":"Sagor Kumar Roy, Ashima Barman, Kumary Labone Sarkar, Seidu A Richard, Bijal Arvinkumar Lacmane","doi":"10.2174/0115665232348486241025084202","DOIUrl":"https://doi.org/10.2174/0115665232348486241025084202","url":null,"abstract":"<p><p>\"Huntington's disease\" (HD) is an autosomal dominant hereditary neurodegenerative disease characterized by defects in efferent striatal neurons, cortical neurons, and the basal ganglia. The pathogenesis of HD is still unclear, and there is currently no curative therapy for this disorder. This review emphasizes the potential beneficial effects of various neurotrophic factors in HD. PubMed, Web of Science, Embase, and google scholar databases were used to search for all studies on the efficacy of neurotrophic factors in HD. Several gene therapy strategies have been employed to treat HD, including gene therapy with a variety of neuroprotective factors. Moreover, a wide variability of gene therapy approaches such as a neurotrophin, has shown promising results for both prevention and neuroprotection in HD, which may be due to their potential to prevent neuronal cell death or decrease neurodegeneration, thereby promoting the growth of innovative axons, dendrites, and synapses leading to improvement of HD. Neurotrophic factors may be suitable as neuroprotective therapy agents in HD. Therefore, substantial research on gene therapy should be conducted to provide better treatment options for HD in the future.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.2174/0115665232347515241128111207
Dinesh Kumar, Debayan Sil, Komal, Balak Das Kurmi, Manish Kumar
{"title":"From DNA Editing to RNA Regulation: The Breakthroughs of CRISPR and Mega-CRISPR.","authors":"Dinesh Kumar, Debayan Sil, Komal, Balak Das Kurmi, Manish Kumar","doi":"10.2174/0115665232347515241128111207","DOIUrl":"https://doi.org/10.2174/0115665232347515241128111207","url":null,"abstract":"","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142779615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.2174/0115665232351747241113050243
Rohith Raali, Suresh P K
Glioblastoma is a malignant manifestation of a solid brain tumour with a very dismal prognosis due to an overall median survival of 14 months. The currently administered Standard treatment plan, the STUPP regimen, is not very effective in tackling this neoplasia. A major concern that affects the development of new drug formulations, specifically for Glioma, is the inherent sub-clonal heterogeneity, which includes the dynamic and intricate nature of the Tumour Microenvironment (TME). Targeting the cellular niche using personalized medication for glioma specifically gene therapy, seems to be promising, with most studies in preclinical models yielding optimistic results. This paper analyses the great headways made in glioma gene therapy in the last 10 years while looking into different therapeutic strategies. That said, certain challenges do plague the clinical use of gene therapy which have been highlighted in the hopes that future researchers will address these concerns and further propel gene therapy in its journey from the Lab to the bedside.
{"title":"Unraveling Glioblastoma: TME Implication and Gene Therapy Advances.","authors":"Rohith Raali, Suresh P K","doi":"10.2174/0115665232351747241113050243","DOIUrl":"10.2174/0115665232351747241113050243","url":null,"abstract":"<p><p>Glioblastoma is a malignant manifestation of a solid brain tumour with a very dismal prognosis due to an overall median survival of 14 months. The currently administered Standard treatment plan, the STUPP regimen, is not very effective in tackling this neoplasia. A major concern that affects the development of new drug formulations, specifically for Glioma, is the inherent sub-clonal heterogeneity, which includes the dynamic and intricate nature of the Tumour Microenvironment (TME). Targeting the cellular niche using personalized medication for glioma specifically gene therapy, seems to be promising, with most studies in preclinical models yielding optimistic results. This paper analyses the great headways made in glioma gene therapy in the last 10 years while looking into different therapeutic strategies. That said, certain challenges do plague the clinical use of gene therapy which have been highlighted in the hopes that future researchers will address these concerns and further propel gene therapy in its journey from the Lab to the bedside.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The role of HEPACAM family member 2 (HEPACAM2) is unclear in colorectal cancer (CRC).
Objective: The objective of this study was to perform an extensive examination of HEPACAM2 and validate it experimentally in CRC.
Methods: This study investigated the significance of HEPACAM2 in CRC and its potential diagnostic utility utilizing data from the Cancer Genome Atlas (TCGA) database. Additionally, the study examined potential regulatory networks involving HEPACAM2, including its associations with immune infiltration, immune checkpoint genes, tumor mutational burden (TMB), microsatellite instability (MSI), mRNA expression-based stemness index (mRNAsi), and drug sensitivity in CRC. The expression of HEPACAM2 was further validated using the GSE89076 dataset, and quantitative reverse transcription PCR (qRT-PCR) was employed to confirm HEPACAM2 expression levels in six pairs of CRC tissue samples.
Results: HEPACAM2 exhibited abnormal expression patterns in various types of cancer, including CRC. A decrease in HEPACAM2 expression levels in CRC was found to be significantly correlated with the T stage (p < 0.001). Reduced HEPACAM2 expression in CRC patients was also linked to poorer overall survival (OS) (p = 0.007). The expression levels of HEPACAM2 in CRC patients were identified as an independent prognostic factor (p = 0.016). Furthermore, HEPACAM2 was associated with TCF-dependent signaling in response to WNT, G2/M checkpoints, and other pathways. The expression of HEPACAM2 in CRC was found to be associated with immune infiltration, immune checkpoint genes, TMB / MSI, and mRNAsi. Additionally, the expression of HEPACAM2 in CRC was significantly and inversely correlated with the drug sensitivities to gw772405x and 6-phenyl-6h-indeno[1,2-c]isoquinoline-5,11-dione. qRT-PCR confirmed that the expression level of HEPACAM2 was found to be lowly expressed in CRC tissues.
Conclusion: These findings suggest that HEPACAM2 may serve as a potential prognostic biomarker and immunotherapeutic target for CRC patients.
{"title":"Comprehensive Analysis and Experimental Validation of HEPACAM2 as a Potential Prognosis Biomarker and Immunotherapy Target in Colorectal Cancer.","authors":"Shouguang Wang, Lijuan Zhang, Dongbing Li, Miaomiao Gou","doi":"10.2174/0115665232325395241018103006","DOIUrl":"https://doi.org/10.2174/0115665232325395241018103006","url":null,"abstract":"<p><strong>Background: </strong>The role of HEPACAM family member 2 (HEPACAM2) is unclear in colorectal cancer (CRC).</p><p><strong>Objective: </strong>The objective of this study was to perform an extensive examination of HEPACAM2 and validate it experimentally in CRC.</p><p><strong>Methods: </strong>This study investigated the significance of HEPACAM2 in CRC and its potential diagnostic utility utilizing data from the Cancer Genome Atlas (TCGA) database. Additionally, the study examined potential regulatory networks involving HEPACAM2, including its associations with immune infiltration, immune checkpoint genes, tumor mutational burden (TMB), microsatellite instability (MSI), mRNA expression-based stemness index (mRNAsi), and drug sensitivity in CRC. The expression of HEPACAM2 was further validated using the GSE89076 dataset, and quantitative reverse transcription PCR (qRT-PCR) was employed to confirm HEPACAM2 expression levels in six pairs of CRC tissue samples.</p><p><strong>Results: </strong>HEPACAM2 exhibited abnormal expression patterns in various types of cancer, including CRC. A decrease in HEPACAM2 expression levels in CRC was found to be significantly correlated with the T stage (p < 0.001). Reduced HEPACAM2 expression in CRC patients was also linked to poorer overall survival (OS) (p = 0.007). The expression levels of HEPACAM2 in CRC patients were identified as an independent prognostic factor (p = 0.016). Furthermore, HEPACAM2 was associated with TCF-dependent signaling in response to WNT, G2/M checkpoints, and other pathways. The expression of HEPACAM2 in CRC was found to be associated with immune infiltration, immune checkpoint genes, TMB / MSI, and mRNAsi. Additionally, the expression of HEPACAM2 in CRC was significantly and inversely correlated with the drug sensitivities to gw772405x and 6-phenyl-6h-indeno[1,2-c]isoquinoline-5,11-dione. qRT-PCR confirmed that the expression level of HEPACAM2 was found to be lowly expressed in CRC tissues.</p><p><strong>Conclusion: </strong>These findings suggest that HEPACAM2 may serve as a potential prognostic biomarker and immunotherapeutic target for CRC patients.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.2174/0115665232336447241010094744
Muhammad Suleman, Safir Ullah Khan, Shahid Ali, Abdullah Alghamdi, Mohammed Alissa, Rayan Y Mushtaq, Sergio Crovella
Colorectal cancer (CRC) has become a significant threat in recent decades, and its incidence is predicted to continue rising. Despite notable advancements in therapeutic strategies, managing CRC poses complex challenges, primarily due to the lack of clinically feasible therapeutic targets. Among the myriad molecules implicated in CRC, the signal transducer and activator of transcription 3 (STAT3) stands out as a promising target tightly regulated by various genes. This intracellular transcription factor, spanning 750-795 amino acids and weighing approximately 92 kDa, is crucial in key cellular activities such as growth, migration, invasion, inflammation, and angiogenesis. Aberrant activation of STAT3 signaling has been linked to various cancers, including CRC. Therefore, targeting this signaling pathway holds significance for potential CRC treatment strategies.STAT3, as a central intracellular transcription factor, is implicated in colorectal cancer development by activating aberrant signaling pathways. Numerous studies have demonstrated that the abnormal hyperactivation of STAT3 in CRC tissues enhances cell proliferation, suppresses apoptosis, promotes angiogenesis, and facilitates tumor invasion and metastasis. As a focal point in colorectal cancer research, STAT3 emerges as a promising candidate for detecting and treating CRC. This review aims to present recent data on STAT3, emphasizing the activation and functions of STAT3 inhibitors in CRC. Indeed, STAT3 inhibitors have been identified to have therapeutic potential in CRC, especially inhibitors targeting the DNA-binding domain (DBD). Indeed, STAT3 inhibitors have been identified to have a therapeutic potential in CRC, especially the inhibitors targeting the DNA binding domain (DBD). For example, imatinib acts by targeting cell surface receptors, and these inhibitors have shown potential for the control and treatment of tumor growth, angiogenesis, and metastasis. Imatinib, for example acts by targeting cell surface receptors, and these inhibitors have shown the future direction toward the control and treatment of tumor growth, angiogenesis, and metastasis.
{"title":"Probing the Depths of Molecular Complexity: STAT3 as a Key Architect in Colorectal Cancer Pathogenesis.","authors":"Muhammad Suleman, Safir Ullah Khan, Shahid Ali, Abdullah Alghamdi, Mohammed Alissa, Rayan Y Mushtaq, Sergio Crovella","doi":"10.2174/0115665232336447241010094744","DOIUrl":"https://doi.org/10.2174/0115665232336447241010094744","url":null,"abstract":"<p><p>Colorectal cancer (CRC) has become a significant threat in recent decades, and its incidence is predicted to continue rising. Despite notable advancements in therapeutic strategies, managing CRC poses complex challenges, primarily due to the lack of clinically feasible therapeutic targets. Among the myriad molecules implicated in CRC, the signal transducer and activator of transcription 3 (STAT3) stands out as a promising target tightly regulated by various genes. This intracellular transcription factor, spanning 750-795 amino acids and weighing approximately 92 kDa, is crucial in key cellular activities such as growth, migration, invasion, inflammation, and angiogenesis. Aberrant activation of STAT3 signaling has been linked to various cancers, including CRC. Therefore, targeting this signaling pathway holds significance for potential CRC treatment strategies.STAT3, as a central intracellular transcription factor, is implicated in colorectal cancer development by activating aberrant signaling pathways. Numerous studies have demonstrated that the abnormal hyperactivation of STAT3 in CRC tissues enhances cell proliferation, suppresses apoptosis, promotes angiogenesis, and facilitates tumor invasion and metastasis. As a focal point in colorectal cancer research, STAT3 emerges as a promising candidate for detecting and treating CRC. This review aims to present recent data on STAT3, emphasizing the activation and functions of STAT3 inhibitors in CRC. Indeed, STAT3 inhibitors have been identified to have therapeutic potential in CRC, especially inhibitors targeting the DNA-binding domain (DBD). Indeed, STAT3 inhibitors have been identified to have a therapeutic potential in CRC, especially the inhibitors targeting the DNA binding domain (DBD). For example, imatinib acts by targeting cell surface receptors, and these inhibitors have shown potential for the control and treatment of tumor growth, angiogenesis, and metastasis. Imatinib, for example acts by targeting cell surface receptors, and these inhibitors have shown the future direction toward the control and treatment of tumor growth, angiogenesis, and metastasis.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.2174/0115665232316799241008073042
Jyotsana Dwivedi, Shubhi Kaushal, D Jeslin, L Karpagavalli, Rajesh Kumar, Dhruv Dev, Pranay Wal
Gene therapy has traditionally been used to treat individuals with late-stage cancers or congenital abnormalities. Numerous prospects for therapeutic genetic modifications have emerged with the discovery that gene therapy applications are far more extensive, particularly in skin and exterior wounds. Cutaneous wound healing is a complex, multistep process involving multiple steps and mediators that operate in a network of activation and inhibition processes. This setting presents a unique obstacle for gene delivery. Many gene delivery strategies have been developed, including liposomal administration, high-pressure injection, viral transfection, and the application of bare DNA. Among several gene transfer techniques, categorical polymers, nanoparticles, and liposomalbased constructs show great promise for non-viral gene transfer in wounds. Clinical experiments have shown that efficient transportation of certain polypeptides to the intended wound location is a crucial factor in wound healing. Genetically engineered cells can be used to produce and control the delivery of specific growth factors, thereby addressing the drawbacks of mechanically administered recombinant growth factors. We have discussed how repair mechanisms are based on molecules and cells, as well as their breakdown, and provided an overview of the methods and research conducted on gene transmission in tissue regeneration.
基因疗法传统上用于治疗晚期癌症患者或先天性畸形患者。随着人们发现基因治疗的应用范围更为广泛,尤其是在皮肤和外部伤口方面,治疗性基因修饰的前景更加广阔。皮肤伤口愈合是一个复杂的多步骤过程,涉及多个步骤和介质,这些步骤和介质在激活和抑制过程的网络中运作。这种情况给基因递送带来了独特的障碍。目前已开发出许多基因传递策略,包括脂质体给药、高压注射、病毒转染和裸 DNA 应用。在几种基因转移技术中,分类聚合物、纳米颗粒和脂质体构建物在伤口非病毒基因转移方面前景广阔。临床实验表明,将某些多肽有效运送到伤口的预定位置是伤口愈合的关键因素。基因工程细胞可用于生产和控制特定生长因子的输送,从而解决机械给药重组生长因子的缺点。我们讨论了修复机制如何以分子和细胞为基础,以及它们的分解,并概述了在组织再生中进行基因传输的方法和研究。
{"title":"Gene Augmentation Techniques to Stimulate Wound Healing Process: Progress and Prospects.","authors":"Jyotsana Dwivedi, Shubhi Kaushal, D Jeslin, L Karpagavalli, Rajesh Kumar, Dhruv Dev, Pranay Wal","doi":"10.2174/0115665232316799241008073042","DOIUrl":"https://doi.org/10.2174/0115665232316799241008073042","url":null,"abstract":"<p><p>Gene therapy has traditionally been used to treat individuals with late-stage cancers or congenital abnormalities. Numerous prospects for therapeutic genetic modifications have emerged with the discovery that gene therapy applications are far more extensive, particularly in skin and exterior wounds. Cutaneous wound healing is a complex, multistep process involving multiple steps and mediators that operate in a network of activation and inhibition processes. This setting presents a unique obstacle for gene delivery. Many gene delivery strategies have been developed, including liposomal administration, high-pressure injection, viral transfection, and the application of bare DNA. Among several gene transfer techniques, categorical polymers, nanoparticles, and liposomalbased constructs show great promise for non-viral gene transfer in wounds. Clinical experiments have shown that efficient transportation of certain polypeptides to the intended wound location is a crucial factor in wound healing. Genetically engineered cells can be used to produce and control the delivery of specific growth factors, thereby addressing the drawbacks of mechanically administered recombinant growth factors. We have discussed how repair mechanisms are based on molecules and cells, as well as their breakdown, and provided an overview of the methods and research conducted on gene transmission in tissue regeneration.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.2174/0115665232305409240918040639
Sivaprakasam S Amsaveni, Radha Mahendran, Vidhya C S, Dilip Kumar Chanchal, Sojomon Mathew, Mukesh Chandra Sharma, Jailani S, Syed Salman Ali
The immune system presents significant obstacles to gene therapy, which has limited its use in treating many illnesses. New approaches are needed to overcome these problems and improve the effectiveness of gene therapy. This study explores several techniques to immune regulation within gene therapy, a cutting-edge discipline that aims to optimise results by fine-tuning the immune response. We cover new ways to control the immune system and deliver therapeutic genes just where they are needed, including influencing immunological checkpoints, causing immunotolerance, and making smart use of immunomodulatory drugs. In addition, the study provides insight into new developments in the design of less immunogenic gene delivery vectors, which allow for the extension of transgene expression with minimal adverse immune reactions. In order to maximise the efficacy of gene-based therapies, this review analyses these novel approaches and gives a thorough overview of the present state of the art by addressing obstacles and pointing the way toward future developments in immune regulation. Not only does their integration provide new opportunities for the creation of safer and more effective gene treatments, but it also contains the key to overcome current obstacles.
{"title":"Immune Modulation Strategies in Gene Therapy: Overcoming Immune Barriers and Enhancing Efficacy.","authors":"Sivaprakasam S Amsaveni, Radha Mahendran, Vidhya C S, Dilip Kumar Chanchal, Sojomon Mathew, Mukesh Chandra Sharma, Jailani S, Syed Salman Ali","doi":"10.2174/0115665232305409240918040639","DOIUrl":"https://doi.org/10.2174/0115665232305409240918040639","url":null,"abstract":"<p><p>The immune system presents significant obstacles to gene therapy, which has limited its use in treating many illnesses. New approaches are needed to overcome these problems and improve the effectiveness of gene therapy. This study explores several techniques to immune regulation within gene therapy, a cutting-edge discipline that aims to optimise results by fine-tuning the immune response. We cover new ways to control the immune system and deliver therapeutic genes just where they are needed, including influencing immunological checkpoints, causing immunotolerance, and making smart use of immunomodulatory drugs. In addition, the study provides insight into new developments in the design of less immunogenic gene delivery vectors, which allow for the extension of transgene expression with minimal adverse immune reactions. In order to maximise the efficacy of gene-based therapies, this review analyses these novel approaches and gives a thorough overview of the present state of the art by addressing obstacles and pointing the way toward future developments in immune regulation. Not only does their integration provide new opportunities for the creation of safer and more effective gene treatments, but it also contains the key to overcome current obstacles.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.2174/0115665232316769240912061652
YuSheng Bao, JingXin Ren, Lei Chen, Wei Guo, KaiYan Feng, Tao Huang, Yu-Dong Cai
Background: Significant variations in immune profiles across different age groups manifest distinct clinical symptoms and prognoses in Coronavirus Disease 2019 (COVID-19) patients. Predominantly, severe COVID-19 cases that require hospitalization occur in the elderly, with the risk of severe illness escalating with age among young adults, children, and adolescents.
Objective: This study aimed to delineate the unique immune characteristics of COVID-19 across various age groups and evaluate the feasibility of detecting COVID-19-induced immune alterations through peripheral blood analysis.
Methods: By employing a machine learning approach, we analyzed gene expression data from nasopharyngeal and peripheral blood samples of COVID-19 patients across different age brackets. Nasopharyngeal data reflected the immune response to COVID-19 in the upper respiratory tract, while peripheral blood samples provided insights into the overall immune system status. Both datasets encompassed COVID-19 patients and healthy controls, with patients divided into children, adolescents, and adult age groups. The analysis included the expression levels of 62,703 genes per patient. Then, 9 feature-sequencing methods (least absolute shrinkage and selection operator, light gradient boosting machine, Monte Carlo feature selection, random forest, ridge regression, adaptive boosting, categorical boosting, extremely randomized trees, and extreme gradient boosting) were employed to evaluate the association of the genes with COVID-19. Key genes were then utilized to develop efficient classification models.
Results: The findings identified specific markers: insulin-like growth factor binding protein 3 (downregulated in the peripheral blood of COVID-19 patients), interferon alpha-inducible protein 27 (upregulated), and SERPING1 (upregulated in nasopharyngeal tissues). In addition, fibulin-2 was downregulated in adolescent patients, but upregulated in the other groups, while epoxide hydrolase 3 was upregulated in healthy controls, but downregulated in children and adolescents.
Conclusion: This study offers valuable insights into the local and systemic immune responses of COVID-19 patients across age groups, aiding in identifying potential therapeutic targets and formulating personalized treatment strategies.
{"title":"Identification of Gene Signatures Associated with COVID-19 across Children, Adolescents, and Adults in the Nasopharynx and Peripheral Blood by Using a Machine Learning Approach.","authors":"YuSheng Bao, JingXin Ren, Lei Chen, Wei Guo, KaiYan Feng, Tao Huang, Yu-Dong Cai","doi":"10.2174/0115665232316769240912061652","DOIUrl":"https://doi.org/10.2174/0115665232316769240912061652","url":null,"abstract":"<p><strong>Background: </strong>Significant variations in immune profiles across different age groups manifest distinct clinical symptoms and prognoses in Coronavirus Disease 2019 (COVID-19) patients. Predominantly, severe COVID-19 cases that require hospitalization occur in the elderly, with the risk of severe illness escalating with age among young adults, children, and adolescents.</p><p><strong>Objective: </strong>This study aimed to delineate the unique immune characteristics of COVID-19 across various age groups and evaluate the feasibility of detecting COVID-19-induced immune alterations through peripheral blood analysis.</p><p><strong>Methods: </strong>By employing a machine learning approach, we analyzed gene expression data from nasopharyngeal and peripheral blood samples of COVID-19 patients across different age brackets. Nasopharyngeal data reflected the immune response to COVID-19 in the upper respiratory tract, while peripheral blood samples provided insights into the overall immune system status. Both datasets encompassed COVID-19 patients and healthy controls, with patients divided into children, adolescents, and adult age groups. The analysis included the expression levels of 62,703 genes per patient. Then, 9 feature-sequencing methods (least absolute shrinkage and selection operator, light gradient boosting machine, Monte Carlo feature selection, random forest, ridge regression, adaptive boosting, categorical boosting, extremely randomized trees, and extreme gradient boosting) were employed to evaluate the association of the genes with COVID-19. Key genes were then utilized to develop efficient classification models.</p><p><strong>Results: </strong>The findings identified specific markers: insulin-like growth factor binding protein 3 (downregulated in the peripheral blood of COVID-19 patients), interferon alpha-inducible protein 27 (upregulated), and SERPING1 (upregulated in nasopharyngeal tissues). In addition, fibulin-2 was downregulated in adolescent patients, but upregulated in the other groups, while epoxide hydrolase 3 was upregulated in healthy controls, but downregulated in children and adolescents.</p><p><strong>Conclusion: </strong>This study offers valuable insights into the local and systemic immune responses of COVID-19 patients across age groups, aiding in identifying potential therapeutic targets and formulating personalized treatment strategies.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.2174/0115665232331353240911080642
Yichi Zhang, Zhijie Zhao, Wenyi Huang, Byeong Seop Kim, Li Lin, Xin Li, Mengyuan Hou, Li Li, Yan Zhang, Wenjing Xi, Gang Chai
Background: Cancer-Associated Fibroblasts (CAFs) constitute a heterogeneous group of cells critical for the remodeling of the tumor microenvironment (TME). Given their significant impact on tumor progression, particularly in skin cancers, a deeper understanding of their characteristics and functions is essential.
Methods: This study employed a single-cell transcriptomic analysis to explore the diversity of CAFs within three major types of skin cancer: basal cell carcinoma, melanoma, and head and neck squamous cell carcinoma. We applied analytical techniques, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), pseudotime tracking, metabolic profiling, and stemness assessment to delineate and define the functional attributes of identified CAF subgroups.
Results: Our analysis successfully delineated nine distinct CAF subgroups across the studied tumor types. Of particular interest, we identified a novel CAF subtype, designated as C0, exclusive to basal cell carcinoma. This subtype exhibits phenotypic traits associated with invasive and destructive capabilities, significantly correlating with the progression of basal cell carcinoma. The identification of this subgroup provides new insights into the role of CAFs in cancer biology and opens avenues for targeted therapeutic strategies.
Conclusion: A pan-cancer analysis was performed on three cancers, BCC, MA, and HNSCC, focusing on tumor fibroblasts in TME. Unsupervised clustering categorized CAF into nine subpopulations, among which the C0 subpopulation had a strong correspondence with BCC-CAF and an invasive- destructive-related phenotype.
{"title":"Pan-Cancer Single-Cell Analysis Revealing the Heterogeneity of Cancer-Associated Fibroblasts in Skin Tumors.","authors":"Yichi Zhang, Zhijie Zhao, Wenyi Huang, Byeong Seop Kim, Li Lin, Xin Li, Mengyuan Hou, Li Li, Yan Zhang, Wenjing Xi, Gang Chai","doi":"10.2174/0115665232331353240911080642","DOIUrl":"https://doi.org/10.2174/0115665232331353240911080642","url":null,"abstract":"<p><strong>Background: </strong>Cancer-Associated Fibroblasts (CAFs) constitute a heterogeneous group of cells critical for the remodeling of the tumor microenvironment (TME). Given their significant impact on tumor progression, particularly in skin cancers, a deeper understanding of their characteristics and functions is essential.</p><p><strong>Methods: </strong>This study employed a single-cell transcriptomic analysis to explore the diversity of CAFs within three major types of skin cancer: basal cell carcinoma, melanoma, and head and neck squamous cell carcinoma. We applied analytical techniques, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), pseudotime tracking, metabolic profiling, and stemness assessment to delineate and define the functional attributes of identified CAF subgroups.</p><p><strong>Results: </strong>Our analysis successfully delineated nine distinct CAF subgroups across the studied tumor types. Of particular interest, we identified a novel CAF subtype, designated as C0, exclusive to basal cell carcinoma. This subtype exhibits phenotypic traits associated with invasive and destructive capabilities, significantly correlating with the progression of basal cell carcinoma. The identification of this subgroup provides new insights into the role of CAFs in cancer biology and opens avenues for targeted therapeutic strategies.</p><p><strong>Conclusion: </strong>A pan-cancer analysis was performed on three cancers, BCC, MA, and HNSCC, focusing on tumor fibroblasts in TME. Unsupervised clustering categorized CAF into nine subpopulations, among which the C0 subpopulation had a strong correspondence with BCC-CAF and an invasive- destructive-related phenotype.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}