Hematologic malignancies, which arise from dysregulation of hematopoiesis, are a group of cancers originating in cells with diminished capacity to differentiate into mature progeny and accumulating immature cells in blood-forming tissues such as lymph nodes and bone marrow. Immune- targeted therapies, such as Immune Checkpoint Blockade (ICB), chimeric antigen receptor T (CAR-T) cell therapy, and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system, a precise, popular, and versatile genome engineering tool, have opened new avenues for the treatment of malignancies. Targeting immune checkpoints has revolutionized FDA approval in cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), PD-1 (programmed death-1), and PDL1. According to the ICB and CAR techniques, the production of efficient CAR-T cells depends on the successful genetic modification of T cells, making them less susceptible to immune escape and suppression by cancer cells, which results in reduced off-target toxicity. Therefore, CRISPR/Cas9 has revolutionized the immune checkpoint-based approach for CAR-T cell therapy of hematologic malignancy. Continued research and clinical trials will undoubtedly pave the way for further advances in this field, ultimately benefiting patients and improving outcomes.
{"title":"CRISPR/Cas9 Technology for Modifying Immune Checkpoint in CAR-T Cell Therapy for Hematopoietic Malignancies.","authors":"Forough Shams, Elham Sharif, Hajar Abbasi-Kenarsari, Nader Hashemi, Masoumeh Sadat Hosseini, Neda Heidari, Effat Noori, Ali Hossein Amini, Maryam Bazrgar, Maryam Rouhani, Yong Teng","doi":"10.2174/0115665232357078250331180413","DOIUrl":"https://doi.org/10.2174/0115665232357078250331180413","url":null,"abstract":"<p><p>Hematologic malignancies, which arise from dysregulation of hematopoiesis, are a group of cancers originating in cells with diminished capacity to differentiate into mature progeny and accumulating immature cells in blood-forming tissues such as lymph nodes and bone marrow. Immune- targeted therapies, such as Immune Checkpoint Blockade (ICB), chimeric antigen receptor T (CAR-T) cell therapy, and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system, a precise, popular, and versatile genome engineering tool, have opened new avenues for the treatment of malignancies. Targeting immune checkpoints has revolutionized FDA approval in cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), PD-1 (programmed death-1), and PDL1. According to the ICB and CAR techniques, the production of efficient CAR-T cells depends on the successful genetic modification of T cells, making them less susceptible to immune escape and suppression by cancer cells, which results in reduced off-target toxicity. Therefore, CRISPR/Cas9 has revolutionized the immune checkpoint-based approach for CAR-T cell therapy of hematologic malignancy. Continued research and clinical trials will undoubtedly pave the way for further advances in this field, ultimately benefiting patients and improving outcomes.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143970339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The cells have been given precise instructions proprio to the regulation of gene expression by the main genesis of Ryan-based gene therapy, which has revived cancer treatment and other disorders. The difficulty of delivering small interfering RNA (siRNA) and microRNA (miRNA) to a target cell is an enormous task and is often faced by researchers due to characteristic instabilities of these carriers and their poor uptake by the cell membrane. The new developments from nanocarrier technologies offer opportunities for better effectiveness of RNA therapy for its delivery and the effectiveness of the treatment regimen. The objective of this article is to provide an overview of the existing as well as the newest developments in nanocarrier technology, particularly as related to microRNA and small interfering RNA (siRNA) delivery. Their modes of operation and their uses in gene therapies are also examined as principles of their design. We focus on several nanocarrier technologies, which have shown proof of concept in multiple disciplines such as stability, controlled release profiles, and delivery. Lipid-based nanoparticles, polymeric systems, and hybrid nanocarriers are some of the platforms that fall under this category; however, this list is not exhaustive. We also study the idea that certain nanocarriers could have multiple functionalities, which would make it possible to improve cancer treatment by simultaneously carrying chemotherapy and genes. We aim to shed light on the future of RNA-based gene therapy by providing a thorough overview of recent research in the field. This will help us understand how novel nanocarrier technologies can tackle the delivery issues.
{"title":"Transforming RNA-Based Gene Therapy with Innovative Nanocarriers for siRNA and miRNA Delivery.","authors":"Jitendra Singh Chaudhary, Dilip Kumar Chanchal, Kuldeep Singh, Jeetendra Kumar Gupta, Divya Jain, Anubhav Dubey, Mahima Pandey, Shahbaz Khan","doi":"10.2174/0115665232355294250330002630","DOIUrl":"https://doi.org/10.2174/0115665232355294250330002630","url":null,"abstract":"<p><p>The cells have been given precise instructions proprio to the regulation of gene expression by the main genesis of Ryan-based gene therapy, which has revived cancer treatment and other disorders. The difficulty of delivering small interfering RNA (siRNA) and microRNA (miRNA) to a target cell is an enormous task and is often faced by researchers due to characteristic instabilities of these carriers and their poor uptake by the cell membrane. The new developments from nanocarrier technologies offer opportunities for better effectiveness of RNA therapy for its delivery and the effectiveness of the treatment regimen. The objective of this article is to provide an overview of the existing as well as the newest developments in nanocarrier technology, particularly as related to microRNA and small interfering RNA (siRNA) delivery. Their modes of operation and their uses in gene therapies are also examined as principles of their design. We focus on several nanocarrier technologies, which have shown proof of concept in multiple disciplines such as stability, controlled release profiles, and delivery. Lipid-based nanoparticles, polymeric systems, and hybrid nanocarriers are some of the platforms that fall under this category; however, this list is not exhaustive. We also study the idea that certain nanocarriers could have multiple functionalities, which would make it possible to improve cancer treatment by simultaneously carrying chemotherapy and genes. We aim to shed light on the future of RNA-based gene therapy by providing a thorough overview of recent research in the field. This will help us understand how novel nanocarrier technologies can tackle the delivery issues.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143968682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-11DOI: 10.2174/0115665232356703250325075309
Ozal Beylerli, Ilgiz Gareev, Elmar Musaev, Tatiana Ilyasova, Sergey Roumiantsev, Vladimir Chekhonin
The relentless pursuit of understanding and combating glioblastoma (GBM), one of the most formidable foes in the realm of cancer, requires a deeper exploration of its intricate dynamics. Gliomas, particularly GBM, are known for their lethal nature, and a significant aspect of their pathogenesis lies in their ability to manipulate the blood vessels that sustain them. This complex relationship is governed by a multitude of molecular mechanisms involving a diverse array of cell types within the tumor microenvironment. Central to this intricate web of regulation are non-coding RNAs (ncRNAs), enigmatic molecules that have recently emerged as key players in cancer biology. These ncRNAs wield a remarkable influence on gene expression, often via epigenetic modifications and intricate control over angiogenesis-related molecules. Their role in GBM angiogenesis adds another layer of complexity to our understanding of this disease. In the realm of cancer therapeutics, targeting angiogenesis has become a prominent strategy. However, the efficacy of current antiangiogenic treatments against GBM is often transient, as these tumors can rapidly develop resistance, becoming even more aggressive. GBM employs a diverse set of strategies to foster its abnormal vasculature, which, in turn, holds the key to understanding why anti-angiogenic therapies often fall short of expectations. This review aims to shed light on potential strategies and novel perspectives to overcome GBM 's resistance to anti-angiogenic therapy. By exploring innovative approaches, including those centered on ncRNAs, we strive to chart a course toward more effective treatments. This journey into the depths of GBM 's complexities offers not only hope but also a blueprint for future research and therapeutic development. As we uncover the intricate mechanisms at play, we inch closer to the day when GBM is no longer an insurmountable adversary in the fight against cancer.
{"title":"Non-coding RNAs-based Therapy and Angiogenesis: A New Era for the Management of Gliomas.","authors":"Ozal Beylerli, Ilgiz Gareev, Elmar Musaev, Tatiana Ilyasova, Sergey Roumiantsev, Vladimir Chekhonin","doi":"10.2174/0115665232356703250325075309","DOIUrl":"https://doi.org/10.2174/0115665232356703250325075309","url":null,"abstract":"<p><p>The relentless pursuit of understanding and combating glioblastoma (GBM), one of the most formidable foes in the realm of cancer, requires a deeper exploration of its intricate dynamics. Gliomas, particularly GBM, are known for their lethal nature, and a significant aspect of their pathogenesis lies in their ability to manipulate the blood vessels that sustain them. This complex relationship is governed by a multitude of molecular mechanisms involving a diverse array of cell types within the tumor microenvironment. Central to this intricate web of regulation are non-coding RNAs (ncRNAs), enigmatic molecules that have recently emerged as key players in cancer biology. These ncRNAs wield a remarkable influence on gene expression, often via epigenetic modifications and intricate control over angiogenesis-related molecules. Their role in GBM angiogenesis adds another layer of complexity to our understanding of this disease. In the realm of cancer therapeutics, targeting angiogenesis has become a prominent strategy. However, the efficacy of current antiangiogenic treatments against GBM is often transient, as these tumors can rapidly develop resistance, becoming even more aggressive. GBM employs a diverse set of strategies to foster its abnormal vasculature, which, in turn, holds the key to understanding why anti-angiogenic therapies often fall short of expectations. This review aims to shed light on potential strategies and novel perspectives to overcome GBM 's resistance to anti-angiogenic therapy. By exploring innovative approaches, including those centered on ncRNAs, we strive to chart a course toward more effective treatments. This journey into the depths of GBM 's complexities offers not only hope but also a blueprint for future research and therapeutic development. As we uncover the intricate mechanisms at play, we inch closer to the day when GBM is no longer an insurmountable adversary in the fight against cancer.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143979117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-24DOI: 10.2174/0115665232353538250318075057
Saleem Ahmad, Hanif Khan, Njoka Irene Muthoni, Mohammed Alissa, Awaji Y Safhi, Fahad Y Sabei, Osama Abdulaziz, Khadijah Hassan Khan, Essam H Ibrahim, Safir Ullah Khan
MicroRNAs, commonly referred to as miRNAs, exert a significant impact on cellular processes by coordinating post-transcriptional gene regulation. These non-coding RNAs, which are only 22 nucleotides long, form a part of the RNA-induced silencing complex (RISC) and play a crucial role in regulating gene expression. Their complex participation in cell proliferation, differentiation, and death highlights their crucial role in maintaining cellular balance. MicroRNAs have become significant contributors in the complex field of cancer biology, operating beyond the usual tasks of cells. Their dysregulation is closely intertwined with cancer initiation and development. miRNAs act as cellular regulators and regulate complex processes of gene expression. Disruption of this regulation can result in tumor development. This review article explores the intricate process of miRNA biosynthesis and its mechanisms, providing insights into its complex interactions with cancer. It also discusses the exciting field of miRNA-based cancer treatment. Exploring the therapeutic possibilities of these small RNA molecules presents opportunities for precision medicine, introducing a new age where miRNAs can be utilized to create targeted therapeutic interventions that mainly address the abnormal genetic characteristics that cause tumor formation. miRNAs provide a harmonious balance between understanding their biology and utilizing their therapeutic potential in cancer treatment. However, they also serve as conductors and possible therapeutic instruments in the symphony of molecular biology for gene therapy.
{"title":"Riding the Wave of Progress: Examining the Current Landscape and Future Potential of MicroRNAs in Cancer Gene Therapy.","authors":"Saleem Ahmad, Hanif Khan, Njoka Irene Muthoni, Mohammed Alissa, Awaji Y Safhi, Fahad Y Sabei, Osama Abdulaziz, Khadijah Hassan Khan, Essam H Ibrahim, Safir Ullah Khan","doi":"10.2174/0115665232353538250318075057","DOIUrl":"10.2174/0115665232353538250318075057","url":null,"abstract":"<p><p>MicroRNAs, commonly referred to as miRNAs, exert a significant impact on cellular processes by coordinating post-transcriptional gene regulation. These non-coding RNAs, which are only 22 nucleotides long, form a part of the RNA-induced silencing complex (RISC) and play a crucial role in regulating gene expression. Their complex participation in cell proliferation, differentiation, and death highlights their crucial role in maintaining cellular balance. MicroRNAs have become significant contributors in the complex field of cancer biology, operating beyond the usual tasks of cells. Their dysregulation is closely intertwined with cancer initiation and development. miRNAs act as cellular regulators and regulate complex processes of gene expression. Disruption of this regulation can result in tumor development. This review article explores the intricate process of miRNA biosynthesis and its mechanisms, providing insights into its complex interactions with cancer. It also discusses the exciting field of miRNA-based cancer treatment. Exploring the therapeutic possibilities of these small RNA molecules presents opportunities for precision medicine, introducing a new age where miRNAs can be utilized to create targeted therapeutic interventions that mainly address the abnormal genetic characteristics that cause tumor formation. miRNAs provide a harmonious balance between understanding their biology and utilizing their therapeutic potential in cancer treatment. However, they also serve as conductors and possible therapeutic instruments in the symphony of molecular biology for gene therapy.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-21DOI: 10.2174/0115665232376648250312050239
Zuber Khan, Mumtaz, Sumedha Gupta, Sidharth Mehan, Tarun Sharma, Manjeet Kumar, Pankaj Kumar Maurya, Arun Kumar Sharma, Ghanshyam Das Gupta, Acharan S Narula
CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) is a groundbreaking gene-editing technology that enables scientists to make precise changes to the DNA of living organisms. It was first discovered in Escherichia coli and emerged as a breakthrough tool in molecular biology. This technique is essential because of its adaptability, affordability, and ease of use. It uses the adaptive immune response of bacteria and archaea to repel viral invasions. It significantly influences drug discovery, functional genomics, disease models, and pharmaceutical research. CRISPR-Cas9 is a better and more accurate way to change genes than other methods, such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). This technology promotes the generation of double-strand breaks in DNA, allowing for precise genetic alterations required for therapeutic target identification and confirmation. Functional genomics enables high-throughput screening (HTS) to identify gene functions, disease causes, and therapeutic targets. CRISPR-Cas9 increases drug development by enabling Cas9 to create novel antimicrobial drugs and cancer therapies. It has also helped to generate disease models, advance our understanding of neurodegenerative and other diseases, test a variety of chemicals, and facilitate precise genetic changes. Despite its promise, ethical considerations and the possibility of off-target effects require careful evaluation to ensure its safe and effective clinical application. This study investigates the current and future possibilities of CRISPR-Cas9 in drug development, focusing on its transformational influence and addressing the challenges and limitations of its therapeutic application.
CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats)是一项突破性的基因编辑技术,使科学家能够对生物体的DNA进行精确的改变。它最初是在大肠杆菌中发现的,并成为分子生物学的突破性工具。这种技术非常重要,因为它具有适应性、可负担性和易用性。它利用细菌和古细菌的适应性免疫反应来击退病毒的入侵。它显著影响药物发现、功能基因组学、疾病模型和药物研究。与锌指核酸酶(ZFNs)和转录激活物样效应核酸酶(TALENs)等其他方法相比,CRISPR-Cas9是一种更好、更准确的改变基因的方法。这项技术促进了DNA双链断裂的产生,允许治疗靶点识别和确认所需的精确遗传改变。功能基因组学使高通量筛选(HTS)能够识别基因功能、疾病原因和治疗靶点。CRISPR-Cas9通过使Cas9能够创造新的抗菌药物和癌症疗法来促进药物开发。它还有助于生成疾病模型,促进我们对神经退行性疾病和其他疾病的理解,测试各种化学物质,并促进精确的遗传变化。尽管前景光明,但伦理考虑和脱靶效应的可能性需要仔细评估,以确保其安全有效的临床应用。本研究探讨了CRISPR-Cas9在药物开发中的当前和未来可能性,重点关注其变革性影响,并解决其治疗应用的挑战和局限性。
{"title":"CRISPR-Cas9: Transforming Functional Genomics, Precision Medicine, and Drug Development - Opportunities, Challenges, and Future Directions.","authors":"Zuber Khan, Mumtaz, Sumedha Gupta, Sidharth Mehan, Tarun Sharma, Manjeet Kumar, Pankaj Kumar Maurya, Arun Kumar Sharma, Ghanshyam Das Gupta, Acharan S Narula","doi":"10.2174/0115665232376648250312050239","DOIUrl":"https://doi.org/10.2174/0115665232376648250312050239","url":null,"abstract":"<p><p>CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) is a groundbreaking gene-editing technology that enables scientists to make precise changes to the DNA of living organisms. It was first discovered in Escherichia coli and emerged as a breakthrough tool in molecular biology. This technique is essential because of its adaptability, affordability, and ease of use. It uses the adaptive immune response of bacteria and archaea to repel viral invasions. It significantly influences drug discovery, functional genomics, disease models, and pharmaceutical research. CRISPR-Cas9 is a better and more accurate way to change genes than other methods, such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). This technology promotes the generation of double-strand breaks in DNA, allowing for precise genetic alterations required for therapeutic target identification and confirmation. Functional genomics enables high-throughput screening (HTS) to identify gene functions, disease causes, and therapeutic targets. CRISPR-Cas9 increases drug development by enabling Cas9 to create novel antimicrobial drugs and cancer therapies. It has also helped to generate disease models, advance our understanding of neurodegenerative and other diseases, test a variety of chemicals, and facilitate precise genetic changes. Despite its promise, ethical considerations and the possibility of off-target effects require careful evaluation to ensure its safe and effective clinical application. This study investigates the current and future possibilities of CRISPR-Cas9 in drug development, focusing on its transformational influence and addressing the challenges and limitations of its therapeutic application.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-10DOI: 10.2174/0115665232369121250307075817
Deeksha Manchanda, Sunil Kumar, Manish Makhija
The advent of CRISPR/Cas gene-editing technology has revolutionized molecular biology, offering unprecedented precision and potential in treating genetic disorders, cancers, and other complex diseases. However, for CRISPR/Cas to be truly effective in clinical settings, one of the most significant challenges lies in the delivery of the CRISPR components, including guide RNA (gRNA) and Cas protein, into specific cells or tissues. Safe, targeted, and efficient delivery remains a critical bottleneck. Viral vectors, lipid nanoparticles, and synthetic polymers have been explored, but they come with limitations, such as immunogenicity, toxicity, and limited delivery capacity. Polysaccharide-based delivery systems, with their natural origin, biocompatibility, and versatile chemical properties, offer a promising alternative that could address these delivery challenges while advancing the pharmaceutical applications of CRISPR/Cas gene therapy.
{"title":"Polysaccharide-Based Delivery Systems for CRISPR/Cas Gene Therapy: Overcoming Challenges and Advancing Pharmaceutical Solutions.","authors":"Deeksha Manchanda, Sunil Kumar, Manish Makhija","doi":"10.2174/0115665232369121250307075817","DOIUrl":"https://doi.org/10.2174/0115665232369121250307075817","url":null,"abstract":"<p><p>The advent of CRISPR/Cas gene-editing technology has revolutionized molecular biology, offering unprecedented precision and potential in treating genetic disorders, cancers, and other complex diseases. However, for CRISPR/Cas to be truly effective in clinical settings, one of the most significant challenges lies in the delivery of the CRISPR components, including guide RNA (gRNA) and Cas protein, into specific cells or tissues. Safe, targeted, and efficient delivery remains a critical bottleneck. Viral vectors, lipid nanoparticles, and synthetic polymers have been explored, but they come with limitations, such as immunogenicity, toxicity, and limited delivery capacity. Polysaccharide-based delivery systems, with their natural origin, biocompatibility, and versatile chemical properties, offer a promising alternative that could address these delivery challenges while advancing the pharmaceutical applications of CRISPR/Cas gene therapy.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143604026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-19DOI: 10.2174/0115665232332419250213081510
Hebatallah Ahmed Mohamed Moustafa, Ahmed Umer Sohaib, Iqra Saleem, Asmat Ullah
Background: Individualization of the therapeutic plan for cancer patients is the essence of modern clinical practice. Standard cancer diagnostic and prognostic factors are invasive, and their value for the stratification of cancer patients with a higher risk of local or distant recurrence is limited. YKL-40 is a protumor glycoprotein linked to the immunosuppressive tumor in a microenvironment and an important biomarker of cell activation, proliferation, and migration.
Objective: The objective is to update the review, and molecular and clinical research should investigate novel modalities of targeting this glycoprotein for cancer treatment.
Methodology: Relevant studies published in the English language were identified by searching PubMed, Google Scholar, and MEDLINE from January 2000 to December 2023. Published studies that specifically elicited the role of YKL-40 as a biomarker in different types of tumors were included.
Results: YKL-40 cancer prognostic effect was reported in various cancer types.
Conclusion: Since antibodies against YKL-40 can inhibit tumor angiogenesis and cancer progression, it can be suggested as an attractive candidate for chemical cancer therapy and immunomodulation.
{"title":"Targeting of Ykl-40 as a Protumor in Personalized Medicine: A New Dimension in Disease Understanding.","authors":"Hebatallah Ahmed Mohamed Moustafa, Ahmed Umer Sohaib, Iqra Saleem, Asmat Ullah","doi":"10.2174/0115665232332419250213081510","DOIUrl":"https://doi.org/10.2174/0115665232332419250213081510","url":null,"abstract":"<p><strong>Background: </strong>Individualization of the therapeutic plan for cancer patients is the essence of modern clinical practice. Standard cancer diagnostic and prognostic factors are invasive, and their value for the stratification of cancer patients with a higher risk of local or distant recurrence is limited. YKL-40 is a protumor glycoprotein linked to the immunosuppressive tumor in a microenvironment and an important biomarker of cell activation, proliferation, and migration.</p><p><strong>Objective: </strong>The objective is to update the review, and molecular and clinical research should investigate novel modalities of targeting this glycoprotein for cancer treatment.</p><p><strong>Methodology: </strong>Relevant studies published in the English language were identified by searching PubMed, Google Scholar, and MEDLINE from January 2000 to December 2023. Published studies that specifically elicited the role of YKL-40 as a biomarker in different types of tumors were included.</p><p><strong>Results: </strong>YKL-40 cancer prognostic effect was reported in various cancer types.</p><p><strong>Conclusion: </strong>Since antibodies against YKL-40 can inhibit tumor angiogenesis and cancer progression, it can be suggested as an attractive candidate for chemical cancer therapy and immunomodulation.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gene therapy and genome editing have emerged as transformative approaches in the management of a diverse range of genetic and acquired diseases. This evaluation offers a thorough examination of the present state and prospects of these innovative technologies. Gene therapy is a prospective approach to the treatment and prevention of a variety of conditions, including complex cancers and inherited genetic disorders, which entail the introduction, removal, or modification of genetic material within a patient's cells. Genome editing, particularly through techniques such as CRISPR-Cas9, enables targeted corrections of genetic defects and opens new possibilities for personalized medicine by allowing for precise modifications at the DNA level. The review addresses the ethical implications, clinical applications, and significant advancements of these technologies. This article endeavors to underscore the substantial influence of gene therapy and genome editing on contemporary medicine by assessing the most recent research and clinical trials, thereby emphasizing their potential to revolutionize disease treatment and management.
{"title":"Gene Therapy and Gene Editing: Current Trends and Future Prospects of Molecular Medicine.","authors":"Aniruddha Sen, Vijay Singh, Shailendra Dwivedi, Ruchika Agrawal, Akash Bansal, Shashank Shekhar, Sudhir Shyam Kushwaha","doi":"10.2174/0115665232347734250211074241","DOIUrl":"https://doi.org/10.2174/0115665232347734250211074241","url":null,"abstract":"<p><p>Gene therapy and genome editing have emerged as transformative approaches in the management of a diverse range of genetic and acquired diseases. This evaluation offers a thorough examination of the present state and prospects of these innovative technologies. Gene therapy is a prospective approach to the treatment and prevention of a variety of conditions, including complex cancers and inherited genetic disorders, which entail the introduction, removal, or modification of genetic material within a patient's cells. Genome editing, particularly through techniques such as CRISPR-Cas9, enables targeted corrections of genetic defects and opens new possibilities for personalized medicine by allowing for precise modifications at the DNA level. The review addresses the ethical implications, clinical applications, and significant advancements of these technologies. This article endeavors to underscore the substantial influence of gene therapy and genome editing on contemporary medicine by assessing the most recent research and clinical trials, thereby emphasizing their potential to revolutionize disease treatment and management.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-12DOI: 10.2174/0115665232342211250207064205
Suhas M, Sunil Kumar Kadiri
This article provides a detailed look at Parkinson's disease (PD), a neurodegenerative ailment mostly known for movement difficulties such tremor, stiffness, and bradykinesia, which affects approximately 1% of persons over the age of 60. Although the precise cause of PD is still unknown, various factors such as pesticide exposure, genetics, and lifestyle choices like smoking and caffeine consumption are thought to play a role in its development. The presence of Lewy bodies characterizes the disease, the aggregation of alpha-synuclein, the loss of dopaminergic neurons in the substantia nigra, and disruptions in basal ganglia circuitry, resulting in both motor and nonmotor symptoms. This review is structured into several key sections, beginning with an exploration of the pathophysiological mechanisms behind PD, including how genetic mutations can lead to deficits in the Ubiquitin Proteasome System and mitochondrial function, which are linked to familial cases of the disease. Following this, the article explores diagnostic methods, such as the UK Brain Bank Criteria, advanced imaging techniques, olfactory testing, and innovative technologies like machine learning, all of which support early detection and accurate diagnosis of PD. Treatment strategies are also comprehensively reviewed, focusing on traditional pharmacological options like levodopa and dopamine agonists, as well as surgical interventions such as deep brain stimulation. Additionally, the review discusses promising new therapies, including immunotherapy aimed at neuroinflammation and gene therapy for disease modification. The impact of lifestyle changes such as exercise and diet on reducing PD risk and enhancing symptom management are also considered. In conclusion, this review highlights the complex nature of Parkinson's disease and underscores the need for a holistic approach that combines pharmacotherapy, advanced treatments, and lifestyle adjustments. By addressing both symptom management and disease modification, these strategies provide hope for improving quality of life.
{"title":"Parkinson's Disease: From Bench to Bedside-Advancements in Diagnosis and Therapeutics using Pharmacogenomic Approach.","authors":"Suhas M, Sunil Kumar Kadiri","doi":"10.2174/0115665232342211250207064205","DOIUrl":"https://doi.org/10.2174/0115665232342211250207064205","url":null,"abstract":"<p><p>This article provides a detailed look at Parkinson's disease (PD), a neurodegenerative ailment mostly known for movement difficulties such tremor, stiffness, and bradykinesia, which affects approximately 1% of persons over the age of 60. Although the precise cause of PD is still unknown, various factors such as pesticide exposure, genetics, and lifestyle choices like smoking and caffeine consumption are thought to play a role in its development. The presence of Lewy bodies characterizes the disease, the aggregation of alpha-synuclein, the loss of dopaminergic neurons in the substantia nigra, and disruptions in basal ganglia circuitry, resulting in both motor and nonmotor symptoms. This review is structured into several key sections, beginning with an exploration of the pathophysiological mechanisms behind PD, including how genetic mutations can lead to deficits in the Ubiquitin Proteasome System and mitochondrial function, which are linked to familial cases of the disease. Following this, the article explores diagnostic methods, such as the UK Brain Bank Criteria, advanced imaging techniques, olfactory testing, and innovative technologies like machine learning, all of which support early detection and accurate diagnosis of PD. Treatment strategies are also comprehensively reviewed, focusing on traditional pharmacological options like levodopa and dopamine agonists, as well as surgical interventions such as deep brain stimulation. Additionally, the review discusses promising new therapies, including immunotherapy aimed at neuroinflammation and gene therapy for disease modification. The impact of lifestyle changes such as exercise and diet on reducing PD risk and enhancing symptom management are also considered. In conclusion, this review highlights the complex nature of Parkinson's disease and underscores the need for a holistic approach that combines pharmacotherapy, advanced treatments, and lifestyle adjustments. By addressing both symptom management and disease modification, these strategies provide hope for improving quality of life.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: The absence of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) is a hallmark of triple-negative breast cancer (TNBC), which results in fewer treatment options and inferior clinical outcomes. The major histocompatibility complex family includes CD1B. By exposing T cells to lipid antigens, it alters immunological responses. Although the function of CD1B has been investigated in a number of malignancies, its relevance in TNBC has not been fully investigated.
Method: In this study, immunohistochemistry (IHC) analysis of tissue samples and public databases was carried out to examine the expression of CD1B and its implications for prognosis in TNBC.
Result: Compared to normal tissues, TNBC tissues demonstrated significantly higher levels of CD1B expression. Better overall survival, including survival without distant metastases and survival without recurrence, was found to be associated with higher levels. Additionally, more immune cells, primarily memory B cells and regulatory T cells, entering the TNBC region were found to be associated with greater levels of CD1B. It was found that the immunological microenvironment of TNBC was significantly affected by CD1B. The association between CD1B and immune-related pathways was also identified by examining functional enrichment. Drug sensitivity can be used to identify potential CD1B-targeting therapies. According to these results, CD1B might be a useful prognostic indicator and a possible target for treatment in TNBC.
Conclusion: Nevertheless, additional experimental verification is required to verify the clinical significance of CD1B.
{"title":"CD1B Expression in Triple-Negative Breast Cancer: Its Implications for Prognosis and Immunotherapy Outcomes.","authors":"Hongwei Jin, Mengting Wan, Shuaikang Pan, Ziqi Wang, Wei Wang, Jinguo Zhang, Xinghua Han","doi":"10.2174/0115665232364481250131071311","DOIUrl":"https://doi.org/10.2174/0115665232364481250131071311","url":null,"abstract":"<p><strong>Introduction: </strong>The absence of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) is a hallmark of triple-negative breast cancer (TNBC), which results in fewer treatment options and inferior clinical outcomes. The major histocompatibility complex family includes CD1B. By exposing T cells to lipid antigens, it alters immunological responses. Although the function of CD1B has been investigated in a number of malignancies, its relevance in TNBC has not been fully investigated.</p><p><strong>Method: </strong>In this study, immunohistochemistry (IHC) analysis of tissue samples and public databases was carried out to examine the expression of CD1B and its implications for prognosis in TNBC.</p><p><strong>Result: </strong>Compared to normal tissues, TNBC tissues demonstrated significantly higher levels of CD1B expression. Better overall survival, including survival without distant metastases and survival without recurrence, was found to be associated with higher levels. Additionally, more immune cells, primarily memory B cells and regulatory T cells, entering the TNBC region were found to be associated with greater levels of CD1B. It was found that the immunological microenvironment of TNBC was significantly affected by CD1B. The association between CD1B and immune-related pathways was also identified by examining functional enrichment. Drug sensitivity can be used to identify potential CD1B-targeting therapies. According to these results, CD1B might be a useful prognostic indicator and a possible target for treatment in TNBC.</p><p><strong>Conclusion: </strong>Nevertheless, additional experimental verification is required to verify the clinical significance of CD1B.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}