首页 > 最新文献

Current drug delivery最新文献

英文 中文
Age-Related Macular Degeneration - Therapies and Their Delivery. 老年性黄斑变性--疗法及其实施。
IF 2.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230510100742
Chandrasekar Ponnusamy, Puratchikody Ayarivan, Preethi Selvamuthu, Subramanian Natesan

Age-related macular degeneration (ARMD) is a degenerative ocular disease that is the most important cause of irreversible vision loss in old-aged people in developed countries. Around fifty percent of vision impairments in developed countries are due to ARMD. It is a multifaceted disease that is associated with both genetic and environmental risk factors. The most important treatments option for ARMD includes laser photocoagulation, photodynamic therapy (PDT), Anti-VEGF Injections, and combination therapies. In this review, we also propose that topical ocular drug delivery with nanocarriers has more attention for the treatment of ARMD. The nanocarriers were specially designed for enhanced corneal residential time, prolonged drug release and action, and minimizing the frequency of administrations. Different types of nanocarriers were developed for the topical ocular delivery system, such as nanomicelles, nanoemulsions, nanosuspensions, liposomes, and polymeric nanoparticles. These topical ocular nanocarriers were administered topically, and they can fix the hydrophobic substances, increase solubility and improve the bioavailability of an administered drug. Hence the topical ocular delivery systems with nanocarriers provide a safe and effective therapeutic strategy and promising tool for the treatment of posterior segment ocular diseases ARMD.

老年黄斑变性(ARMD)是一种退行性眼病,是发达国家老年人视力不可逆转丧失的最主要原因。在发达国家,约 50% 的视力损伤是由 ARMD 引起的。这是一种与遗传和环境风险因素相关的多发性疾病。ARMD 最重要的治疗方法包括激光光凝、光动力疗法 (PDT)、抗血管内皮生长因子注射和综合疗法。在这篇综述中,我们还提出,使用纳米载体进行局部眼部给药治疗 ARMD 更受关注。纳米载体经过专门设计,可延长角膜停留时间,延长药物释放和作用时间,并最大限度地减少给药次数。为眼部局部给药系统开发了不同类型的纳米载体,如纳米细胞、纳米乳液、纳米悬浮液、脂质体和聚合物纳米颗粒。这些局部眼用纳米载体可局部给药,能固定疏水性物质,增加溶解度,提高给药的生物利用度。因此,纳米载体局部眼部给药系统为治疗后节眼病 ARMD 提供了一种安全有效的治疗策略和前景广阔的工具。
{"title":"Age-Related Macular Degeneration - Therapies and Their Delivery.","authors":"Chandrasekar Ponnusamy, Puratchikody Ayarivan, Preethi Selvamuthu, Subramanian Natesan","doi":"10.2174/1567201820666230510100742","DOIUrl":"10.2174/1567201820666230510100742","url":null,"abstract":"<p><p>Age-related macular degeneration (ARMD) is a degenerative ocular disease that is the most important cause of irreversible vision loss in old-aged people in developed countries. Around fifty percent of vision impairments in developed countries are due to ARMD. It is a multifaceted disease that is associated with both genetic and environmental risk factors. The most important treatments option for ARMD includes laser photocoagulation, photodynamic therapy (PDT), Anti-VEGF Injections, and combination therapies. In this review, we also propose that topical ocular drug delivery with nanocarriers has more attention for the treatment of ARMD. The nanocarriers were specially designed for enhanced corneal residential time, prolonged drug release and action, and minimizing the frequency of administrations. Different types of nanocarriers were developed for the topical ocular delivery system, such as nanomicelles, nanoemulsions, nanosuspensions, liposomes, and polymeric nanoparticles. These topical ocular nanocarriers were administered topically, and they can fix the hydrophobic substances, increase solubility and improve the bioavailability of an administered drug. Hence the topical ocular delivery systems with nanocarriers provide a safe and effective therapeutic strategy and promising tool for the treatment of posterior segment ocular diseases ARMD.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"683-696"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9498293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monoclonal Antibodies and Antibody-drug Conjugates as Emerging Therapeutics for Breast Cancer Treatment. 作为乳腺癌治疗新疗法的单克隆抗体和抗体药物共轭物。
IF 2.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230731094258
Swati Saini, Nisha Gulati, Rajendra Awasthi, Vimal Arora, Sachin Kumar Singh, Shobhit Kumar, Gaurav Gupta, Kamal Dua, Rakesh Pahwa, Harish Dureja

When breast cells divide and multiply out of control, it is called breast cancer. Symptoms include lump formation in the breast, a change in the texture or color of the breast, or a discharge from the nipple. Local or systemic therapy is frequently used to treat breast cancer. Surgical and radiation procedures limited to the affected area are examples of local management. There has been significant worldwide progress in the development of monoclonal antibodies (mAbs) since 1986, when the first therapeutic mAb, Orthoclone OKT3, became commercially available. mAbs can resist the expansion of cancer cells by inducing the destruction of cellular membranes, blocking immune system inhibitors, and preventing the formation of new blood vessels. mAbs can also target growth factor receptors. Understanding the molecular pathways involved in tumor growth and its microenvironment is crucial for developing effective targeted cancer therapeutics. Due to their unique properties, mAbs have a wide range of clinical applications. Antibody-drug conjugates (ADCs) are drugs that improve the therapeutic index by combining an antigen-specific antibody with a payload. This review focuses on the therapeutic applications, mechanistic insights, characteristics, safety aspects, and adverse events of mAbs like trastuzumab, bevacizumab, pertuzumab, ertumaxomab, and atezolizumab in breast cancer treatment. The creation of novel technologies utilizing modified antibodies, such as fragments, conjugates, and multi-specific antibodies, must be a central focus of future studies. This review will help scientists working on developing mAbs to treat cancers more effectively.

当乳腺细胞的分裂和繁殖失去控制时,就称为乳腺癌。症状包括乳房形成肿块、乳房质地或颜色发生变化或乳头有分泌物。治疗乳腺癌通常采用局部或全身疗法。局限于患处的手术和放射治疗就是局部治疗的例子。自 1986 年第一种治疗用 mAb--Orthoclone OKT3 投入市场以来,单克隆抗体(mAb)的开发在全球范围内取得了重大进展。mAb 可以通过破坏细胞膜、阻断免疫系统抑制剂和阻止新血管的形成来抑制癌细胞的扩张。了解肿瘤生长及其微环境的分子途径对于开发有效的癌症靶向疗法至关重要。由于其独特的性质,mAbs 具有广泛的临床应用。抗体药物共轭物(ADCs)是一种通过将抗原特异性抗体与有效载荷相结合来提高治疗指数的药物。本综述重点介绍曲妥珠单抗、贝伐珠单抗、培珠单抗、ertumaxomab 和 atezolizumab 等 mAbs 在乳腺癌治疗中的治疗应用、机理认识、特点、安全性和不良反应。利用改良抗体(如片段、共轭物和多特异性抗体)创造新技术必须成为未来研究的重点。这篇综述将对致力于开发更有效治疗癌症的 mAbs 的科学家有所帮助。
{"title":"Monoclonal Antibodies and Antibody-drug Conjugates as Emerging Therapeutics for Breast Cancer Treatment.","authors":"Swati Saini, Nisha Gulati, Rajendra Awasthi, Vimal Arora, Sachin Kumar Singh, Shobhit Kumar, Gaurav Gupta, Kamal Dua, Rakesh Pahwa, Harish Dureja","doi":"10.2174/1567201820666230731094258","DOIUrl":"10.2174/1567201820666230731094258","url":null,"abstract":"<p><p>When breast cells divide and multiply out of control, it is called breast cancer. Symptoms include lump formation in the breast, a change in the texture or color of the breast, or a discharge from the nipple. Local or systemic therapy is frequently used to treat breast cancer. Surgical and radiation procedures limited to the affected area are examples of local management. There has been significant worldwide progress in the development of monoclonal antibodies (mAbs) since 1986, when the first therapeutic mAb, Orthoclone OKT3, became commercially available. mAbs can resist the expansion of cancer cells by inducing the destruction of cellular membranes, blocking immune system inhibitors, and preventing the formation of new blood vessels. mAbs can also target growth factor receptors. Understanding the molecular pathways involved in tumor growth and its microenvironment is crucial for developing effective targeted cancer therapeutics. Due to their unique properties, mAbs have a wide range of clinical applications. Antibody-drug conjugates (ADCs) are drugs that improve the therapeutic index by combining an antigen-specific antibody with a payload. This review focuses on the therapeutic applications, mechanistic insights, characteristics, safety aspects, and adverse events of mAbs like trastuzumab, bevacizumab, pertuzumab, ertumaxomab, and atezolizumab in breast cancer treatment. The creation of novel technologies utilizing modified antibodies, such as fragments, conjugates, and multi-specific antibodies, must be a central focus of future studies. This review will help scientists working on developing mAbs to treat cancers more effectively.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"993-1009"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9898276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chitosan Oligosaccharide Modified Bovine Serum Albumin Nanoparticles for Improving Oral Bioavailability of Naringenin. 壳聚糖低聚糖修饰牛血清白蛋白纳米颗粒用于提高柚皮苷的口服生物利用度
IF 2.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230718143726
Ruiyue Fang, Yiqi Liao, Huishuang Qiu, Yuxin Liu, Shiyuan Lin, Hui Chen

Introduction: With the rapid development of nanotechnology, the research and development of nano-drugs have become one of the development directions of drug innovation. The encapsulation of the nanoparticles can change the biological distribution of the drug in vivo and improve the bioavailability of the drug in vivo. Naringenin is poorly soluble in water and has a low bioavailability, thus limiting its clinical application. The main purpose of this study was to develop a nano-sized preparation that could improve the oral bioavailability of naringenin.

Methods: Chitosan oligosaccharide modified naringenin-loaded bovine serum albumin nanoparticles (BSA-COS@Nar NPs) were prepared by emulsification solvent evaporation and electrostatic interaction. The nanoparticles were characterized by HPLC, laser particle size analyzer, transmission electron microscope and X-ray diffraction analysis. The release in vitro was investigated, and the behavior of nanoparticles in rats was also studied. The caco-2 cell model was established in vitro to investigate the cytotoxicity and cellular uptake of nanoparticles.

Results: BSA-COS@Nar NPs were successfully prepared, and the first-order release model was confirmed in vitro release. In vivo pharmacokinetic results indicated that the area under the drug concentration- time curve (AUC) of BSA-COS@Nar NPs was 2.37 times more than free naringenin. Cytotoxicity and cellular uptake results showed that BSA-COS@Nar NPs had no significant cytotoxic effect on Caco- 2 cells and promoted cellular uptake of the drug.

Conclusion: BSA-COS@Nar NPs could improve the in vivo bioavailability of naringenin.

导言:随着纳米技术的飞速发展,纳米药物的研究与开发已成为药物创新的发展方向之一。纳米颗粒的封装可以改变药物在体内的生物分布,提高药物在体内的生物利用度。柚皮苷难溶于水,生物利用度低,因此限制了其临床应用。本研究的主要目的是开发一种纳米级制剂,以提高柚皮苷的口服生物利用度:方法:通过乳化溶剂蒸发和静电作用制备了壳聚糖寡糖修饰的柚皮苷负载牛血清白蛋白纳米颗粒(BSA-COS@Nar NPs)。通过高效液相色谱、激光粒度分析仪、透射电子显微镜和 X 射线衍射分析对纳米颗粒进行了表征。研究了纳米颗粒在体外的释放情况,并对其在大鼠体内的行为进行了研究。在体外建立了 caco-2 细胞模型,以研究纳米颗粒的细胞毒性和细胞吸收:结果:成功制备了 BSA-COS@Nar NPs,体外释放证实了一阶释放模型。体内药代动力学结果表明,BSA-COS@Nar NPs的药物浓度-时间曲线下面积(AUC)是游离柚皮苷的2.37倍。细胞毒性和细胞吸收结果表明,BSA-COS@Nar NPs 对 Caco- 2 细胞无明显细胞毒性作用,并能促进细胞对药物的吸收:结论:BSA-COS@Nar NPs 可提高柚皮苷的体内生物利用度。
{"title":"Chitosan Oligosaccharide Modified Bovine Serum Albumin Nanoparticles for Improving Oral Bioavailability of Naringenin.","authors":"Ruiyue Fang, Yiqi Liao, Huishuang Qiu, Yuxin Liu, Shiyuan Lin, Hui Chen","doi":"10.2174/1567201820666230718143726","DOIUrl":"10.2174/1567201820666230718143726","url":null,"abstract":"<p><strong>Introduction: </strong>With the rapid development of nanotechnology, the research and development of nano-drugs have become one of the development directions of drug innovation. The encapsulation of the nanoparticles can change the biological distribution of the drug <i>in vivo</i> and improve the bioavailability of the drug <i> in vivo</i>. Naringenin is poorly soluble in water and has a low bioavailability, thus limiting its clinical application. The main purpose of this study was to develop a nano-sized preparation that could improve the oral bioavailability of naringenin.</p><p><strong>Methods: </strong>Chitosan oligosaccharide modified naringenin-loaded bovine serum albumin nanoparticles (BSA-COS@Nar NPs) were prepared by emulsification solvent evaporation and electrostatic interaction. The nanoparticles were characterized by HPLC, laser particle size analyzer, transmission electron microscope and X-ray diffraction analysis. The release <i>in vitro</i> was investigated, and the behavior of nanoparticles in rats was also studied. The caco-2 cell model was established <i>in vitro</i> to investigate the cytotoxicity and cellular uptake of nanoparticles.</p><p><strong>Results: </strong>BSA-COS@Nar NPs were successfully prepared, and the first-order release model was confirmed <i>in vitro</i> release. <i>In vivo</i> pharmacokinetic results indicated that the area under the drug concentration- time curve (AUC) of BSA-COS@Nar NPs was 2.37 times more than free naringenin. Cytotoxicity and cellular uptake results showed that BSA-COS@Nar NPs had no significant cytotoxic effect on Caco- 2 cells and promoted cellular uptake of the drug.</p><p><strong>Conclusion: </strong>BSA-COS@Nar NPs could improve the <i>in vivo</i> bioavailability of naringenin.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"1142-1150"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9886818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current Landscape of Therapeutics for the Management of Hypertension - A Review. 高血压治疗药物的现状 - 综述。
IF 2.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230623121433
Neda Fatima, Sumel Ashique, Aakash Upadhyay, Shubneesh Kumar, Himanshu Kumar, Nitish Kumar, Prashant Kumar

Hypertension is a critical health problem. It is also the primary reason for coronary heart disease, stroke, and renal vascular disease. The use of herbal drugs in the management of any disease is increasing. They are considered the best immune booster to fight against several types of diseases. To date, the demand for herbal drugs has been increasing because of their excellent properties. This review highlights antihypertensive drugs, polyphenols, and synbiotics for managing hypertension. Evidence is mounting in favour of more aggressive blood pressure control with reduced adverse effects, especially for specific patient populations. This review aimed to present contemporary viewpoints and novel treatment options, including cutting-edge technological applications and emerging interventional and pharmaceutical therapies, as well as key concerns arising from several years of research and epidemiological observations related to the management of hypertension.

高血压是一个严重的健康问题。它也是导致冠心病、中风和肾血管疾病的主要原因。在任何疾病的治疗中,草药的使用都在不断增加。它们被认为是抵抗多种疾病的最佳免疫增强剂。迄今为止,由于草药的优良特性,对草药的需求一直在增加。本综述重点介绍了用于治疗高血压的降压药、多酚类物质和益生元。越来越多的证据表明,更积极的血压控制可减少不良反应,尤其是对特定的患者群体。本综述旨在介绍当代观点和新的治疗方案,包括前沿技术应用和新兴的介入和药物疗法,以及多年来与高血压管理相关的研究和流行病学观察所产生的主要问题。
{"title":"Current Landscape of Therapeutics for the Management of Hypertension - A Review.","authors":"Neda Fatima, Sumel Ashique, Aakash Upadhyay, Shubneesh Kumar, Himanshu Kumar, Nitish Kumar, Prashant Kumar","doi":"10.2174/1567201820666230623121433","DOIUrl":"10.2174/1567201820666230623121433","url":null,"abstract":"<p><p>Hypertension is a critical health problem. It is also the primary reason for coronary heart disease, stroke, and renal vascular disease. The use of herbal drugs in the management of any disease is increasing. They are considered the best immune booster to fight against several types of diseases. To date, the demand for herbal drugs has been increasing because of their excellent properties. This review highlights antihypertensive drugs, polyphenols, and synbiotics for managing hypertension. Evidence is mounting in favour of more aggressive blood pressure control with reduced adverse effects, especially for specific patient populations. This review aimed to present contemporary viewpoints and novel treatment options, including cutting-edge technological applications and emerging interventional and pharmaceutical therapies, as well as key concerns arising from several years of research and epidemiological observations related to the management of hypertension.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"662-682"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10121748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of PEGylation on Drugs' Pharmacokinetic Parameters; from Absorption to Excretion. 聚乙二醇化对药物从吸收到排泄的药代动力学参数的影响。
IF 2.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230621124953
Ali Khajeei, Salar Masoomzadeh, Tooba Gholikhani, Yousef Javadzadeh

Until the drugs enter humans life, they may face problems in transportation, drug delivery, and metabolism. These problems can cause reducing drug's therapeutic effect and even increase its side effects. Together, these cases can reduce the patient's compliance with the treatment and complicate the treatment process. Much work has been done to solve or at least reduce these problems. For example, using different forms of a single drug molecule (like Citalopram and Escitalopram); slight changes in the drug's molecule like Meperidine and α-Prodine, and using carriers (like Tigerase®). PEGylation is a recently presented method that can use for many targets. Poly Ethylene Glycol or PEG is a polymer that can attach to drugs by using different methods and resulting sustained release, controlled metabolism, targeted delivery, and other cases. Although they will not necessarily lead to an increase in the effect of the drug, they will lead to the improvement of the treatment process in certain ways. In this article, the team of authors has tried to collect and carefully review the best cases based on the PEGylation of drugs that can help the readers of this article.

药物进入人体后,可能会面临运输、给药和代谢等问题。这些问题会降低药物的治疗效果,甚至增加副作用。这些问题加在一起,会降低病人对治疗的依从性,使治疗过程复杂化。为了解决或至少减少这些问题,人们已经做了很多工作。例如,使用单一药物分子的不同形式(如西酞普兰和艾司西酞普兰);药物分子的细微变化(如美培林和α-普罗定);以及使用载体(如 Tigerase®)。聚乙二醇化是最近提出的一种方法,可用于许多靶点。聚乙二醇或 PEG 是一种聚合物,可以通过不同的方法附着在药物上,从而实现缓释、控制代谢、靶向给药等效果。虽然它们不一定会增加药物的效果,但会在某些方面改善治疗过程。在本文中,作者团队试图收集并仔细评述基于药物 PEG 化的最佳案例,希望能对本文读者有所帮助。
{"title":"The Effect of PEGylation on Drugs' Pharmacokinetic Parameters; from Absorption to Excretion.","authors":"Ali Khajeei, Salar Masoomzadeh, Tooba Gholikhani, Yousef Javadzadeh","doi":"10.2174/1567201820666230621124953","DOIUrl":"10.2174/1567201820666230621124953","url":null,"abstract":"<p><p>Until the drugs enter humans life, they may face problems in transportation, drug delivery, and metabolism. These problems can cause reducing drug's therapeutic effect and even increase its side effects. Together, these cases can reduce the patient's compliance with the treatment and complicate the treatment process. Much work has been done to solve or at least reduce these problems. For example, using different forms of a single drug molecule (like Citalopram and Escitalopram); slight changes in the drug's molecule like Meperidine and α-Prodine, and using carriers (like Tigerase®). PEGylation is a recently presented method that can use for many targets. Poly Ethylene Glycol or PEG is a polymer that can attach to drugs by using different methods and resulting sustained release, controlled metabolism, targeted delivery, and other cases. Although they will not necessarily lead to an increase in the effect of the drug, they will lead to the improvement of the treatment process in certain ways. In this article, the team of authors has tried to collect and carefully review the best cases based on the PEGylation of drugs that can help the readers of this article.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"978-992"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10029814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Multiple-site Injections of a Plasmid Encoding Human MnSOD Mitigate Radiation-induced Skin Injury by Inhibiting Ferroptosis. 局部多部位注射编码人类 MnSOD 的质粒可通过抑制铁凋亡减轻辐射诱发的皮肤损伤
IF 2.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230508120720
Xiaoying Wang, Yuxin Lu, Xiaochen Cheng, Xuefeng Zhu, Dujuan Li, Haiying Duan, Shenhui Hu, Fengjun Xiao, Li Du, Qinglin Zhang

Background: Most patients who undergo radiotherapy develop radiation skin injury, for which effective treatment is urgently needed. MnSOD defends against reactive oxygen species (ROS) damage and may be valuable for treating radiation-induced injury. Here, we (i) investigated the therapeutic and preventive effects of local multiple-site injections of a plasmid, encoding human MnSOD, on radiation-induced skin injury in rats and (ii) explored the mechanism underlying the protective effects of pMnSOD.

Methods: The recombinant plasmid (pMnSOD) was constructed with human cytomegalovirus (CMV) promoter and pUC-ori. The protective effects of pMnSOD against 20-Gy X-ray irradiation were evaluated in human keratinocytes (HaCaT cells) by determining cell viability, ROS levels, and ferroptosisrelated gene expression. In therapeutic treatment, rats received local multiple-site injections of pMnSOD on days 12, 19, and 21 after 40-Gy γ-ray irradiation. In preventive treatment, rats received pMnSOD injections on day -3 pre-irradiation and on day 4 post-irradiation. The skin injuries were evaluated based on the injury score and pathological examination, and ferroptosis-related gene expression was determined.

Results: In irradiated HaCaT cells, pMnSOD transfection resulted in an increased SOD2 expression, reduced intracellular ROS levels, and increased cell viability. Moreover, GPX4 and SLC7A11 expression was significantly upregulated, and erastin-induced ferroptosis was inhibited in HaCaT cells. In the therapeutic and prevention treatment experiments, pMnSOD administration produced local SOD protein expression and evidently promoted the healing of radiation-induced skin injury. In the therapeutic treatment experiments, the injury score in the high-dose pMnSOD group was significantly lower than in the PBS group on day 33 post-irradiation (1.50 vs. 2.80, P < 0.05). In the prevention treatment experiments, the skin injury scores were much lower in the pMnSOD administration groups than in the PBS group from day 21 to day 34. GPX4, SLC7A11, and Bcl-2 were upregulated in irradiated skin tissues after pMnSOD treatment, while ACSL4 was downregulated.

Conclusion: The present study provides evidence that the protective effects of MnSOD in irradiated HaCaT cells may be related to the inhibition of ferroptosis. The multi-site injections of pMnSOD had clear therapeutic and preventive effects on radiation-induced skin injury in rats. pMnSOD may have therapeutic value for the treatment of radiation-induced skin injury.

背景:大多数接受放疗的患者都会出现放射性皮肤损伤,急需有效的治疗方法。MnSOD 能抵御活性氧(ROS)损伤,可能对治疗辐射引起的损伤有价值。在此,我们(i)研究了局部多部位注射编码人MnSOD的质粒对辐射诱导的大鼠皮肤损伤的治疗和预防作用,(ii)探索了pMnSOD保护作用的机制:方法:用人巨细胞病毒(CMV)启动子和 pUC-ori 构建重组质粒(pMnSOD)。通过测定细胞活力、ROS 水平和铁变态反应相关基因的表达,评估了 pMnSOD 在人类角朊细胞(HaCaT 细胞)中对 20-Gy X 射线辐照的保护作用。在治疗过程中,大鼠在接受 40Gy γ 射线照射后的第 12、19 和 21 天接受局部多部位注射 pMnSOD。在预防性治疗中,大鼠在辐照前第 3 天和辐照后第 4 天接受 pMnSOD 注射。根据损伤评分和病理检查对皮肤损伤进行评估,并测定铁变态反应相关基因的表达:结果:在辐照过的 HaCaT 细胞中,pMnSOD 转染导致 SOD2 表达增加,细胞内 ROS 水平降低,细胞存活率提高。此外,HaCaT 细胞中 GPX4 和 SLC7A11 的表达明显上调,厄拉斯特诱导的铁蛋白沉着受到抑制。在治疗和预防治疗实验中,服用 pMnSOD 能促进局部 SOD 蛋白的表达,并明显促进辐射引起的皮肤损伤的愈合。在治疗实验中,高剂量 pMnSOD 组的损伤评分在辐射后第 33 天显著低于 PBS 组(1.50 对 2.80,P<0.05)。在预防治疗实验中,从第 21 天到第 34 天,pMnSOD 给药组的皮肤损伤评分远远低于 PBS 组。pMnSOD 处理后,辐照皮肤组织中 GPX4、SLC7A11 和 Bcl-2 上调,而 ACSL4 下调:本研究提供的证据表明,MnSOD 对辐照 HaCaT 细胞的保护作用可能与抑制铁变态反应有关。多部位注射 pMnSOD 对辐射诱导的大鼠皮肤损伤有明显的治疗和预防作用。
{"title":"Local Multiple-site Injections of a Plasmid Encoding Human <i>MnSOD</i> Mitigate Radiation-induced Skin Injury by Inhibiting Ferroptosis.","authors":"Xiaoying Wang, Yuxin Lu, Xiaochen Cheng, Xuefeng Zhu, Dujuan Li, Haiying Duan, Shenhui Hu, Fengjun Xiao, Li Du, Qinglin Zhang","doi":"10.2174/1567201820666230508120720","DOIUrl":"10.2174/1567201820666230508120720","url":null,"abstract":"<p><strong>Background: </strong>Most patients who undergo radiotherapy develop radiation skin injury, for which effective treatment is urgently needed. MnSOD defends against reactive oxygen species (ROS) damage and may be valuable for treating radiation-induced injury. Here, we (i) investigated the therapeutic and preventive effects of local multiple-site injections of a plasmid, encoding human MnSOD, on radiation-induced skin injury in rats and (ii) explored the mechanism underlying the protective effects of pMnSOD.</p><p><strong>Methods: </strong>The recombinant plasmid (pMnSOD) was constructed with human cytomegalovirus (CMV) promoter and pUC-ori. The protective effects of pMnSOD against 20-Gy X-ray irradiation were evaluated in human keratinocytes (HaCaT cells) by determining cell viability, ROS levels, and ferroptosisrelated gene expression. In therapeutic treatment, rats received local multiple-site injections of pMnSOD on days 12, 19, and 21 after 40-Gy γ-ray irradiation. In preventive treatment, rats received pMnSOD injections on day -3 pre-irradiation and on day 4 post-irradiation. The skin injuries were evaluated based on the injury score and pathological examination, and ferroptosis-related gene expression was determined.</p><p><strong>Results: </strong>In irradiated HaCaT cells, pMnSOD transfection resulted in an increased SOD2 expression, reduced intracellular ROS levels, and increased cell viability. Moreover, <i>GPX4</i> and <i>SLC7A11</i> expression was significantly upregulated, and erastin-induced ferroptosis was inhibited in HaCaT cells. In the therapeutic and prevention treatment experiments, pMnSOD administration produced local SOD protein expression and evidently promoted the healing of radiation-induced skin injury. In the therapeutic treatment experiments, the injury score in the high-dose pMnSOD group was significantly lower than in the PBS group on day 33 post-irradiation (1.50<i> vs</i>. 2.80, <i>P</i> < 0.05). In the prevention treatment experiments, the skin injury scores were much lower in the pMnSOD administration groups than in the PBS group from day 21 to day 34. <i>GPX4, SLC7A11</i>, and <i>Bcl-2</i> were upregulated in irradiated skin tissues after pMnSOD treatment, while <i>ACSL4</i> was downregulated.</p><p><strong>Conclusion: </strong>The present study provides evidence that the protective effects of MnSOD in irradiated HaCaT cells may be related to the inhibition of ferroptosis. The multi-site injections of pMnSOD had clear therapeutic and preventive effects on radiation-induced skin injury in rats. pMnSOD may have therapeutic value for the treatment of radiation-induced skin injury.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"763-774"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9425128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered Clay-Polymer Composite for Biomedical Drug Delivery and Future Challenges: A Survey. 用于生物医学给药的工程粘土-聚合物复合材料及未来挑战:调查。
IF 2.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230410110206
Rakesh Swain, Souvik Nandi, Sujata Mohapatra, Subrata Mallick

Clay materials are widely used in drug delivery systems due to their unique characteristics. Montmorillonite is a major component of bentonite and it has a large surface area, better swelling capacity, and high adsorption capacity. The modification of natural bentonite could improve its sorption ability for new emerging applications. Recent advancements in the polymer-silicate composite have novel biomedical applications in drug delivery, tissue regeneration, wound healing, cancer therapy, enzyme immobilization, diagnostic and therapeutic devices, etc. Perspective view of the montmorillonite- polymer composite as a pharmaceutical carrier in drug delivery systems has been discussed in this review. Different types of modification of montmorillonite for the development of pharmaceutical formulations have also been documented. Many challenges in clay nanocomposite systems of polymer of natural/synthetic origin are yet to be explored in improving antimicrobial properties, mechanical strength, stimuli responsiveness, resistance to hydrolysis, etc. Drug interaction and binding capability, swelling of clay may be carried out for finding possible applications in monitoring delivery systems. Pharmaceutical properties of active drugs in the formulation could also be improved along with dissolution rate, solubility, and adsorption. The clay-incorporated polymeric drug delivery systems may be examined for a possible increase in swelling capacity and residence time after mucosal administration.

粘土材料因其独特的特性被广泛应用于给药系统。蒙脱石是膨润土的主要成分,它具有较大的表面积、较好的溶胀能力和较高的吸附能力。对天然膨润土进行改性可以提高其吸附能力,从而实现新的新兴应用。聚合物-硅酸盐复合材料在药物输送、组织再生、伤口愈合、癌症治疗、酶固定化、诊断和治疗设备等方面具有新颖的生物医学应用。本综述探讨了蒙脱石-聚合物复合材料作为药物载体在给药系统中的应用前景。此外,还介绍了为开发药物制剂而对蒙脱石进行的不同类型的改性。天然/合成来源的聚合物粘土纳米复合材料系统在提高抗菌性能、机械强度、刺激响应性、抗水解性等方面还有许多挑战有待探索。还可进行药物相互作用和结合能力、粘土溶胀等方面的研究,以寻找在监测给药系统中的可能应用。制剂中活性药物的药理特性也可随着溶解速率、溶解度和吸附性的提高而得到改善。还可以研究粘土掺入聚合物的给药系统在粘膜给药后可能增加的膨胀能力和停留时间。
{"title":"Engineered Clay-Polymer Composite for Biomedical Drug Delivery and Future Challenges: A Survey.","authors":"Rakesh Swain, Souvik Nandi, Sujata Mohapatra, Subrata Mallick","doi":"10.2174/1567201820666230410110206","DOIUrl":"10.2174/1567201820666230410110206","url":null,"abstract":"<p><p>Clay materials are widely used in drug delivery systems due to their unique characteristics. Montmorillonite is a major component of bentonite and it has a large surface area, better swelling capacity, and high adsorption capacity. The modification of natural bentonite could improve its sorption ability for new emerging applications. Recent advancements in the polymer-silicate composite have novel biomedical applications in drug delivery, tissue regeneration, wound healing, cancer therapy, enzyme immobilization, diagnostic and therapeutic devices, etc. Perspective view of the montmorillonite- polymer composite as a pharmaceutical carrier in drug delivery systems has been discussed in this review. Different types of modification of montmorillonite for the development of pharmaceutical formulations have also been documented. Many challenges in clay nanocomposite systems of polymer of natural/synthetic origin are yet to be explored in improving antimicrobial properties, mechanical strength, stimuli responsiveness, resistance to hydrolysis, etc. Drug interaction and binding capability, swelling of clay may be carried out for finding possible applications in monitoring delivery systems. Pharmaceutical properties of active drugs in the formulation could also be improved along with dissolution rate, solubility, and adsorption. The clay-incorporated polymeric drug delivery systems may be examined for a possible increase in swelling capacity and residence time after mucosal administration.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"645-661"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9642674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation, Characterization and Drug Delivery Research of γ-Polyglutamic Acid Nanoparticles: A Review. γ-聚谷氨酸纳米颗粒的制备、表征和给药研究:综述
IF 3 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230102140450
Zhihan Liu, Yan He, Xia Ma

γ-Polyglutamic acid is a kind of biomaterial and environmentally friendly polymer material with the characteristics of water solubility and good biocompatibility. It has a wide range of applications in medicine, food, cosmetics and other fields. This article reviews the preparation, characterization and medical applications of γ-polyglutamic acid nanoparticles. Nanoparticles prepared by using γ- polyglutamic acid not only had the traditional advantages of enhancing drug stability and slow-release effect, but also were simple to prepare without any biological toxicity. The current methods of nanoparticle preparation mainly include the ion gel method and solvent exchange method, which use the total electrostatic force, van der Waals force, hydrophobic interaction force and hydrogen bond force between molecules to embed materials with different characteristics. At present, there are more and more studies on the use of γ-polyglutamic acid to encapsulate drugs, and the research on the mechanism of its encapsulation and sustained release has gradually matured. The development and application of polyglutamic acid nanoparticles have broad prospects.

γ-聚谷氨酸是一种生物材料和环保型高分子材料,具有水溶性和良好的生物相容性。它在医药、食品、化妆品等领域有着广泛的应用。本文综述了γ-聚谷氨酸纳米粒子的制备、表征和医学应用。利用γ-聚谷氨酸制备的纳米颗粒不仅具有增强药物稳定性和缓释效果的传统优势,而且制备简单,无生物毒性。目前制备纳米粒子的方法主要有离子凝胶法和溶剂交换法,利用分子间的总静电力、范德华力、疏水作用力和氢键力来包埋不同特性的材料。目前,利用γ-聚谷氨酸包封药物的研究越来越多,对其包封和缓释机理的研究也逐渐成熟。聚谷氨酸纳米颗粒的开发和应用具有广阔的前景。
{"title":"Preparation, Characterization and Drug Delivery Research of γ-Polyglutamic Acid Nanoparticles: A Review.","authors":"Zhihan Liu, Yan He, Xia Ma","doi":"10.2174/1567201820666230102140450","DOIUrl":"10.2174/1567201820666230102140450","url":null,"abstract":"<p><p>γ-Polyglutamic acid is a kind of biomaterial and environmentally friendly polymer material with the characteristics of water solubility and good biocompatibility. It has a wide range of applications in medicine, food, cosmetics and other fields. This article reviews the preparation, characterization and medical applications of γ-polyglutamic acid nanoparticles. Nanoparticles prepared by using γ- polyglutamic acid not only had the traditional advantages of enhancing drug stability and slow-release effect, but also were simple to prepare without any biological toxicity. The current methods of nanoparticle preparation mainly include the ion gel method and solvent exchange method, which use the total electrostatic force, van der Waals force, hydrophobic interaction force and hydrogen bond force between molecules to embed materials with different characteristics. At present, there are more and more studies on the use of γ-polyglutamic acid to encapsulate drugs, and the research on the mechanism of its encapsulation and sustained release has gradually matured. The development and application of polyglutamic acid nanoparticles have broad prospects.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"795-806"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10468926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oral Insulin Delivery: A Review on Recent Advancements and Novel Strategies. 口服胰岛素给药:最新进展和新策略综述。
IF 3 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230518161330
Ashkan Barfar, Helia Alizadeh, Salar Masoomzadeh, Yousef Javadzadeh

Background: Due to the lifestyle of people in the community in recent years, the prevalence of diabetes mellitus has increased, so New drugs and related treatments are also being developed.

Introduction: One of the essential treatments for diabetes today is injectable insulin forms, which have their problems and limitations, such as invasive and less admission of patients and high cost of production. According to the mentioned issues, Theoretically, Oral insulin forms can solve many problems of injectable forms.

Methods: Many efforts have been made to design and introduce Oral delivery systems of insulin, such as lipid-based, synthetic polymer-based, and polysaccharide-based nano/microparticle formulations. The present study reviewed these novel formulations and strategies in the past five years and checked their properties and results.

Results: According to peer-reviewed research, insulin-transporting particles may preserve insulin in the acidic and enzymatic medium and decrease peptide degradation; in fact, they could deliver appropriate insulin levels to the intestinal environment and then to blood. Some of the studied systems increase the permeability of insulin to the absorption membrane in cellular models. In most investigations, in vivo results revealed a lower ability of formulations to reduce BGL than subcutaneous form, despite promising results in in vitro and stability testing.

Conclusion: Although taking insulin orally currently seems unfeasible, future systems may be able to overcome mentioned obstacles, making oral insulin delivery feasible and producing acceptable bioavailability and treatment effects in comparison to injection forms.

背景:近年来,随着人们生活方式的改变,糖尿病的发病率也在不断上升,因此新的药物和相关治疗方法也在不断研发中:注射胰岛素是目前治疗糖尿病的基本方法之一,但注射胰岛素有其自身的问题和局限性,如侵入性强、病人入院少、生产成本高。针对上述问题,口服胰岛素理论上可以解决注射胰岛素的许多问题:方法:人们在设计和引进胰岛素口服给药系统方面做出了许多努力,如基于脂质、基于合成聚合物和基于多糖的纳米/微粒制剂。本研究回顾了过去五年中的这些新型配方和策略,并检查了它们的特性和结果:根据同行评议研究,胰岛素运输颗粒可在酸性和酶介质中保存胰岛素,并减少肽降解;事实上,它们可将适当水平的胰岛素输送到肠道环境,然后再输送到血液中。所研究的一些系统增加了细胞模型中胰岛素对吸收膜的渗透性。在大多数研究中,尽管体外试验和稳定性测试结果良好,但体内试验结果表明,与皮下注射形式相比,制剂降低血糖胆固醇的能力较低:尽管目前口服胰岛素似乎并不可行,但未来的系统可能会克服上述障碍,使口服胰岛素给药成为可行,并产生可接受的生物利用度和治疗效果。
{"title":"Oral Insulin Delivery: A Review on Recent Advancements and Novel Strategies.","authors":"Ashkan Barfar, Helia Alizadeh, Salar Masoomzadeh, Yousef Javadzadeh","doi":"10.2174/1567201820666230518161330","DOIUrl":"10.2174/1567201820666230518161330","url":null,"abstract":"<p><strong>Background: </strong>Due to the lifestyle of people in the community in recent years, the prevalence of diabetes mellitus has increased, so New drugs and related treatments are also being developed.</p><p><strong>Introduction: </strong>One of the essential treatments for diabetes today is injectable insulin forms, which have their problems and limitations, such as invasive and less admission of patients and high cost of production. According to the mentioned issues, Theoretically, Oral insulin forms can solve many problems of injectable forms.</p><p><strong>Methods: </strong>Many efforts have been made to design and introduce Oral delivery systems of insulin, such as lipid-based, synthetic polymer-based, and polysaccharide-based nano/microparticle formulations. The present study reviewed these novel formulations and strategies in the past five years and checked their properties and results.</p><p><strong>Results: </strong>According to peer-reviewed research, insulin-transporting particles may preserve insulin in the acidic and enzymatic medium and decrease peptide degradation; in fact, they could deliver appropriate insulin levels to the intestinal environment and then to blood. Some of the studied systems increase the permeability of insulin to the absorption membrane in cellular models. In most investigations, in vivo results revealed a lower ability of formulations to reduce BGL than subcutaneous form, despite promising results in in vitro and stability testing.</p><p><strong>Conclusion: </strong>Although taking insulin orally currently seems unfeasible, future systems may be able to overcome mentioned obstacles, making oral insulin delivery feasible and producing acceptable bioavailability and treatment effects in comparison to injection forms.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"887-900"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9492281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research Progress on the Mechanism of Intestinal Barrier Damage and Drug Therapy in a High Altitude Environment. 高海拔环境下肠道屏障损伤机制和药物治疗的研究进展。
IF 3 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230309090241
Junfei Cheng, Yuemei Sun, Yilan Zhao, Qianwen Guo, ZiHan Wang, Rong Wang

The plateau is a typical extreme environment with low temperature, low oxygen and high ultraviolet rays. The integrity of the intestinal barrier is the basis for the functioning of the intestine, which plays an important role in absorbing nutrients, maintaining the balance of intestinal flora, and blocking the invasion of toxins. Currently, there is increasing evidence that high altitude environment can enhance intestinal permeability and disrupt intestinal barrier integrity. This article mainly focuses on the regulation of the expression of HIF and tight junction proteins in the high altitude environment, which promotes the release of pro-inflammatory factors, especially the imbalance of intestinal flora caused by the high altitude environment. The mechanism of intestinal barrier damage and the drugs to protect the intestinal barrier are reviewed. Studying the mechanism of intestinal barrier damage in high altitude environment is not only conducive to understanding the mechanism of high altitude environment affecting intestinal barrier function, but also provides a more scientific medicine treatment method for intestinal damage caused by the special high altitude environment.

高原是典型的极端环境,温度低、氧气少、紫外线强。肠道屏障的完整性是肠道功能的基础,在吸收营养、维持肠道菌群平衡、阻挡毒素入侵等方面发挥着重要作用。目前,越来越多的证据表明,高海拔环境会增强肠道通透性,破坏肠道屏障的完整性。本文主要研究高海拔环境对 HIF 和紧密连接蛋白表达的调控,促进促炎因子的释放,尤其是高海拔环境导致的肠道菌群失调。本文综述了肠屏障受损的机制和保护肠屏障的药物。研究高海拔环境下肠道屏障损伤的机制,不仅有利于了解高海拔环境影响肠道屏障功能的机制,也为特殊高海拔环境导致的肠道损伤提供了更科学的药物治疗方法。
{"title":"Research Progress on the Mechanism of Intestinal Barrier Damage and Drug Therapy in a High Altitude Environment.","authors":"Junfei Cheng, Yuemei Sun, Yilan Zhao, Qianwen Guo, ZiHan Wang, Rong Wang","doi":"10.2174/1567201820666230309090241","DOIUrl":"10.2174/1567201820666230309090241","url":null,"abstract":"<p><p>The plateau is a typical extreme environment with low temperature, low oxygen and high ultraviolet rays. The integrity of the intestinal barrier is the basis for the functioning of the intestine, which plays an important role in absorbing nutrients, maintaining the balance of intestinal flora, and blocking the invasion of toxins. Currently, there is increasing evidence that high altitude environment can enhance intestinal permeability and disrupt intestinal barrier integrity. This article mainly focuses on the regulation of the expression of HIF and tight junction proteins in the high altitude environment, which promotes the release of pro-inflammatory factors, especially the imbalance of intestinal flora caused by the high altitude environment. The mechanism of intestinal barrier damage and the drugs to protect the intestinal barrier are reviewed. Studying the mechanism of intestinal barrier damage in high altitude environment is not only conducive to understanding the mechanism of high altitude environment affecting intestinal barrier function, but also provides a more scientific medicine treatment method for intestinal damage caused by the special high altitude environment.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"807-816"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10870941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current drug delivery
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1