首页 > 最新文献

Current drug delivery最新文献

英文 中文
A Compound Essential Oil Alters Stratum Corneum Structure, Potentially Promoting the Transdermal Permeation of Hydrophobic and Hydrophilic Ingredients. 一种复合精油能改变角质层结构,从而促进疏水性和亲水性成分的透皮渗透。
IF 2.4 4区 医学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230120122206
Na Yang, Xinyi Ai, Kang Cheng, Yihan Wu, Zhi Lu, Zhenda Liu, Teng Guo, Nianping Feng

Background: The stratum corneum (SC) is the main barrier of the skin, and cosmeceuticals are different from ordinary cosmetics in that they need to deliver active ingredients targeting specific skin problems through the SC into the deeper layers of the skin. Thus, we designed a compound essential oil (CEO) extracted from Salvia miltiorrhiza Bge and Cinnamomum cassia Presl, supplemented with borneol to deliver active ingredients through the SC.

Methods: The CEO was prepared by flash extraction combined with the microwave method. Moreover, the main components of the CEO were determined using gas chromatography-mass spectrometry (GCMS). Visualization techniques, such as scanning electron microscopy (SEM), haematoxylin-eosin (HE) staining, and confocal laser scanning microscopy (CLSM), were used to study the permeationpromoting mechanism of the CEO on the skin. Furthermore, the permeation-promoting effects of the CEO on both hydrophobic and hydrophilic ingredients were tested via in vitro skin penetration experiments and in vivo microdialysis experiments.

Results: The results indicated the ability of the CEO to alter the structure of the SC, leading to enhanced transdermal permeation of hydrophobic and hydrophilic ingredients. The 1.5% CEO group demonstrated the best permeation-promoting effect compared to the other CEO groups and blank groups (P<0.05). Furthermore, the CEO displayed an expedited permeability-promoting effect on hydrophobic ingredients compared to hydrophilic ingredients.

Conclusion: It is concluded that the prepared CEO can promote the transdermal permeation of hydrophobic and hydrophilic ingredients. This study will provide a reference for the application of the prepared CEO in the development of cosmeceuticals with natural efficacy.

背景:角质层(SC)是皮肤的主要屏障,而药妆不同于普通化妆品,它需要通过角质层向皮肤深层输送针对特定皮肤问题的活性成分。因此,我们设计了一种从丹参(Salvia miltiorrhiza Bge)和肉桂(Cinnamomum cassia Presl)中萃取的复合精油(CEO),并辅以龙脑(borneol),以通过SC输送活性成分:方法:采用闪蒸提取法和微波法制备 CEO。此外,还使用气相色谱-质谱法(GCMS)测定了 CEO 的主要成分。利用扫描电子显微镜(SEM)、血栓素-伊红(HE)染色和激光共聚焦扫描显微镜(CLSM)等可视化技术研究了 CEO 对皮肤的渗透促进机制。此外,还通过体外皮肤渗透实验和体内微透析实验测试了 CEO 对疏水性和亲水性成分的渗透促进作用:结果表明,CEO 能够改变 SC 的结构,从而增强疏水性和亲水性成分的透皮渗透。与其他 CEO 组和空白组相比,1.5% CEO 组的渗透促进效果最好:结论:制备的 CEO 可以促进疏水性和亲水性成分的透皮渗透。这项研究将为制备的 CEO 在具有天然功效的药用化妆品开发中的应用提供参考。
{"title":"A Compound Essential Oil Alters Stratum Corneum Structure, Potentially Promoting the Transdermal Permeation of Hydrophobic and Hydrophilic Ingredients.","authors":"Na Yang, Xinyi Ai, Kang Cheng, Yihan Wu, Zhi Lu, Zhenda Liu, Teng Guo, Nianping Feng","doi":"10.2174/1567201820666230120122206","DOIUrl":"10.2174/1567201820666230120122206","url":null,"abstract":"<p><strong>Background: </strong>The stratum corneum (SC) is the main barrier of the skin, and cosmeceuticals are different from ordinary cosmetics in that they need to deliver active ingredients targeting specific skin problems through the SC into the deeper layers of the skin. Thus, we designed a compound essential oil (CEO) extracted from <i>Salvia miltiorrhiza</i> Bge and <i>Cinnamomum cassia</i> Presl, supplemented with borneol to deliver active ingredients through the SC.</p><p><strong>Methods: </strong>The CEO was prepared by flash extraction combined with the microwave method. Moreover, the main components of the CEO were determined using gas chromatography-mass spectrometry (GCMS). Visualization techniques, such as scanning electron microscopy (SEM), haematoxylin-eosin (HE) staining, and confocal laser scanning microscopy (CLSM), were used to study the permeationpromoting mechanism of the CEO on the skin. Furthermore, the permeation-promoting effects of the CEO on both hydrophobic and hydrophilic ingredients were tested <i>via in vitro</i> skin penetration experiments and <i>in vivo</i> microdialysis experiments.</p><p><strong>Results: </strong>The results indicated the ability of the CEO to alter the structure of the SC, leading to enhanced transdermal permeation of hydrophobic and hydrophilic ingredients. The 1.5% CEO group demonstrated the best permeation-promoting effect compared to the other CEO groups and blank groups (P<0.05). Furthermore, the CEO displayed an expedited permeability-promoting effect on hydrophobic ingredients compared to hydrophilic ingredients.</p><p><strong>Conclusion: </strong>It is concluded that the prepared CEO can promote the transdermal permeation of hydrophobic and hydrophilic ingredients. This study will provide a reference for the application of the prepared CEO in the development of cosmeceuticals with natural efficacy.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9126742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Printed Personalized Colon-targeted Tablets: A Novel Approach in Ulcerative Colitis Management. 3D 打印个性化结肠靶向药片:治疗溃疡性结肠炎的新方法
IF 2.8 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-01-01 DOI: 10.2174/1567201821666230915150544
Yachana Mishra, Vijay Mishra, Alaa A A Aljabali, Mohamed El-Tanani, Gowhar A Naikoo, Nitin Charbe, Sai Raghuveer Chava, Murtaza M Tambuwala

Ulcerative colitis (UC) and Crohn's disease (CD) are two types of idiopathic inflammatory bowel disease (IBD) that are increasing in frequency and incidence worldwide, particularly in highly industrialized countries. Conventional tablets struggle to effectively deliver anti-inflammatory drugs since the inflammation is localized in different areas of the colon in each patient. The goal of 3D printing technology in pharmaceutics is to create personalized drug delivery systems (DDS) that are tailored to each individual's specific needs. This review provides an overview of existing 3D printing processes, with a focus on extrusion-based technologies, which have received the most attention. Personalized pharmaceutical products offer numerous benefits to patients worldwide, and 3D printing technology is becoming more affordable every day. Custom manufacturing of 3D printed tablets provides innovative ideas for developing a tailored colon DDS. In the future, 3D printing could be used to manufacture personalized tablets for UC patients based on the location of inflammation in the colon, resulting in improved therapeutic outcomes and a better quality of life.

溃疡性结肠炎(UC)和克罗恩病(CD)是特发性炎症性肠病(IBD)的两种类型,在全球范围内,尤其是在高度工业化国家,这两种疾病的发病率越来越高。由于每位患者的炎症都分布在结肠的不同部位,因此传统药片很难有效地输送抗炎药物。三维打印技术在制药学中的目标是创建个性化的给药系统(DDS),以满足每个人的特定需求。本综述概述了现有的 3D 打印工艺,重点介绍最受关注的基于挤压的技术。个性化医药产品为全球患者带来了诸多益处,而三维打印技术的价格也日趋合理。3D 打印药片的定制生产为开发量身定制的结肠 DDS 提供了创新思路。未来,3D 打印技术可用于根据结肠炎症的位置为 UC 患者制造个性化药片,从而提高治疗效果和生活质量。
{"title":"3D Printed Personalized Colon-targeted Tablets: A Novel Approach in Ulcerative Colitis Management.","authors":"Yachana Mishra, Vijay Mishra, Alaa A A Aljabali, Mohamed El-Tanani, Gowhar A Naikoo, Nitin Charbe, Sai Raghuveer Chava, Murtaza M Tambuwala","doi":"10.2174/1567201821666230915150544","DOIUrl":"10.2174/1567201821666230915150544","url":null,"abstract":"<p><p>Ulcerative colitis (UC) and Crohn's disease (CD) are two types of idiopathic inflammatory bowel disease (IBD) that are increasing in frequency and incidence worldwide, particularly in highly industrialized countries. Conventional tablets struggle to effectively deliver anti-inflammatory drugs since the inflammation is localized in different areas of the colon in each patient. The goal of 3D printing technology in pharmaceutics is to create personalized drug delivery systems (DDS) that are tailored to each individual's specific needs. This review provides an overview of existing 3D printing processes, with a focus on extrusion-based technologies, which have received the most attention. Personalized pharmaceutical products offer numerous benefits to patients worldwide, and 3D printing technology is becoming more affordable every day. Custom manufacturing of 3D printed tablets provides innovative ideas for developing a tailored colon DDS. In the future, 3D printing could be used to manufacture personalized tablets for UC patients based on the location of inflammation in the colon, resulting in improved therapeutic outcomes and a better quality of life.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10634609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered Exosomes for Drug Delivery in Cancer Therapy: A Promising Approach and Application. 用于癌症治疗的工程外泌体给药:前景广阔的方法和应用。
IF 2.4 4区 医学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230712103942
Peiwen Fu, Siqi Yin, Huiying Cheng, Wenrong Xu, Jiajia Jiang

A significant amount of research effort is currently focused on investigating the role of exosomes in various cancers. These tiny vesicles, apart from acting as biomarkers, also play a crucial role in tumor formation and development. Several studies have demonstrated that exosomes can be a drug delivery vehicle for cancer therapy. In this paper, we highlight the key advantages of exosomes as a drug delivery candidate, with a particular focus on their low immunogenicity, natural targeting ability and suitable mechanical properties. Furthermore, we propose that the selection of appropriate exosomes and drug loading methods based on therapeutic goals and product heterogeneity is essential for preparing engineered exosomes. We comprehensively analyzed the superiorities of current drug-loading methods to improve the creation of designed exosomes. Moreover, we systematically review the applications of engineered exosomes in various therapies such as immunotherapy, gene therapy, protein therapy, chemotherapy, indicating that engineered exosomes have the potential to be reliable and, safe drug carriers that can address the unmet needs in cancer clinical practice.

目前,大量研究工作都集中在研究外泌体在各种癌症中的作用。这些微小的囊泡除了作为生物标记物外,还在肿瘤的形成和发展过程中发挥着至关重要的作用。多项研究表明,外泌体可作为一种药物输送载体用于癌症治疗。在本文中,我们强调了外泌体作为药物递送候选物的主要优势,尤其是其低免疫原性、天然靶向能力和合适的机械特性。此外,我们还提出,根据治疗目标和产品异质性选择合适的外泌体和药物负载方法对于制备工程外泌体至关重要。我们全面分析了当前药物负载方法的优越性,以改进设计外泌体的创建。此外,我们还系统回顾了工程外泌体在免疫疗法、基因疗法、蛋白质疗法、化疗等各种疗法中的应用,表明工程外泌体有可能成为可靠、安全的药物载体,满足癌症临床实践中尚未满足的需求。
{"title":"Engineered Exosomes for Drug Delivery in Cancer Therapy: A Promising Approach and Application.","authors":"Peiwen Fu, Siqi Yin, Huiying Cheng, Wenrong Xu, Jiajia Jiang","doi":"10.2174/1567201820666230712103942","DOIUrl":"10.2174/1567201820666230712103942","url":null,"abstract":"<p><p>A significant amount of research effort is currently focused on investigating the role of exosomes in various cancers. These tiny vesicles, apart from acting as biomarkers, also play a crucial role in tumor formation and development. Several studies have demonstrated that exosomes can be a drug delivery vehicle for cancer therapy. In this paper, we highlight the key advantages of exosomes as a drug delivery candidate, with a particular focus on their low immunogenicity, natural targeting ability and suitable mechanical properties. Furthermore, we propose that the selection of appropriate exosomes and drug loading methods based on therapeutic goals and product heterogeneity is essential for preparing engineered exosomes. We comprehensively analyzed the superiorities of current drug-loading methods to improve the creation of designed exosomes. Moreover, we systematically review the applications of engineered exosomes in various therapies such as immunotherapy, gene therapy, protein therapy, chemotherapy, indicating that engineered exosomes have the potential to be reliable and, safe drug carriers that can address the unmet needs in cancer clinical practice.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10150216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Oral Bioavailability of Domperidone Maleate: Formulation, In vitro Permeability Evaluation In-caco-2 Cell Monolayers and In situ Rat Intestinal Permeability Studies. 提高马来酸多潘立酮的口服生物利用度:配方、体外渗透性评估、Caco-2 细胞单层和原位大鼠肠道渗透性研究。
IF 2.4 4区 医学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230214091509
Neslihan Üstündağ Okur, Emre Şefik Çağlar, Mustafa Sinan Kaynak, Mine Diril, Saniye Özcan, Hatice Yeşim Karasulu

Background: The domperidone maleate, a lipophilic agent classified as a Biopharmaceutical Classification System Class II substance with weak water solubility. Self- Emulsifying Drug Delivery System is a novel approach to improve water solubility and, ultimately bioavailability of drugs.

Objective: This study aimed to develop and characterize new domperidone-loaded self-emulsifying drug delivery systems as an alternative formulation and to evaluate the permeability of domperidone-loaded self-emulsifying drug delivery systems by using Caco-2 cells and via single-pass intestinal perfusion method.

Methods: Three self-emulsifying drug delivery systems were prepared and characterized in terms of pH, viscosity, droplet size, zeta potential, polydispersity index, conductivity, etc. Each formulation underwent 10, 100, 200, and 500 times dilution in intestinal buffer pH 6.8 and stomach buffer pH 1.2, respectively. Female Sprague Dawley rats were employed for in situ single-pass intestinal perfusion investigations.

Results: Results of the study revealed that the ideal self-emulsifying drug delivery systems formulation showed narrow droplet size, ideal zeta potential, and no conductivity. Additionally, as compared to the control groups, the optimum formulation had better apparent permeability (12.74 ± 0.02×10-4) from Caco-2 cell monolayer permeability experiments. The study also revealed greater Peff values (2.122 ± 0.892×10-4 cm/s) for the optimal formulation from in situ intestinal perfusion analyses in comparison to control groups (Domperidone; 0.802 ± 0.418×10-4 cm/s).

Conclusion: To conclude, prepared formulations can be a promising way of oral administration of Biopharmaceutical Classification System Class II drugs.

背景:马来酸多潘立酮是一种亲脂性药物,属于生物制药分类系统二级物质,水溶性较弱。自乳化给药系统是一种改善水溶性并最终提高药物生物利用度的新方法:本研究旨在开发和表征新的多潘立酮自乳化给药系统,将其作为一种替代制剂,并利用 Caco-2 细胞和单通道肠道灌注法评估多潘立酮自乳化给药系统的渗透性:制备了三种自乳化给药系统,并对其 pH 值、粘度、液滴大小、zeta 电位、多分散指数、电导率等进行了表征。每种配方分别在 pH 值为 6.8 的肠道缓冲液和 pH 值为 1.2 的胃缓冲液中稀释 10、100、200 和 500 倍。采用雌性 Sprague Dawley 大鼠进行原位单通道肠道灌注研究:研究结果表明,理想的自乳化给药系统配方显示出窄液滴尺寸、理想的 zeta 电位和无传导性。此外,与对照组相比,最佳配方在 Caco-2 细胞单层渗透性实验中具有更好的表观渗透性(12.74 ± 0.02×10-4)。研究还发现,与对照组(多潘立酮;0.802±0.418×10-4 厘米/秒)相比,原位肠道灌注分析显示最佳配方的 Peff 值更高(2.122±0.892×10-4 厘米/秒):总之,制备制剂是口服生物制药分类系统 II 类药物的一种可行方法。
{"title":"Enhancing Oral Bioavailability of Domperidone Maleate: Formulation, <i>In vitro</i> Permeability Evaluation In-caco-2 Cell Monolayers and <i>In situ</i> Rat Intestinal Permeability Studies.","authors":"Neslihan Üstündağ Okur, Emre Şefik Çağlar, Mustafa Sinan Kaynak, Mine Diril, Saniye Özcan, Hatice Yeşim Karasulu","doi":"10.2174/1567201820666230214091509","DOIUrl":"10.2174/1567201820666230214091509","url":null,"abstract":"<p><strong>Background: </strong>The domperidone maleate, a lipophilic agent classified as a Biopharmaceutical Classification System Class II substance with weak water solubility. Self- Emulsifying Drug Delivery System is a novel approach to improve water solubility and, ultimately bioavailability of drugs.</p><p><strong>Objective: </strong>This study aimed to develop and characterize new domperidone-loaded self-emulsifying drug delivery systems as an alternative formulation and to evaluate the permeability of domperidone-loaded self-emulsifying drug delivery systems by using Caco-2 cells and <i>via</i> single-pass intestinal perfusion method.</p><p><strong>Methods: </strong>Three self-emulsifying drug delivery systems were prepared and characterized in terms of pH, viscosity, droplet size, zeta potential, polydispersity index, conductivity, <i>etc</i>. Each formulation underwent 10, 100, 200, and 500 times dilution in intestinal buffer pH 6.8 and stomach buffer pH 1.2, respectively. Female Sprague Dawley rats were employed for <i>in situ</i> single-pass intestinal perfusion investigations.</p><p><strong>Results: </strong>Results of the study revealed that the ideal self-emulsifying drug delivery systems formulation showed narrow droplet size, ideal zeta potential, and no conductivity. Additionally, as compared to the control groups, the optimum formulation had better apparent permeability (12.74 ± 0.02×10-4) from Caco-2 cell monolayer permeability experiments. The study also revealed greater Peff values (2.122 ± 0.892×10-4 cm/s) for the optimal formulation from <i>in situ</i> intestinal perfusion analyses in comparison to control groups (Domperidone; 0.802 ± 0.418×10-4 cm/s).</p><p><strong>Conclusion: </strong>To conclude, prepared formulations can be a promising way of oral administration of Biopharmaceutical Classification System Class II drugs.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10767561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Artificial Intelligence in Drug Discovery and Target Identification in Cancer. 人工智能在癌症药物发现和靶点识别中的作用。
IF 2.4 4区 医学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-01-01 DOI: 10.2174/1567201821666230905090621
Vishal Sharma, Amit Singh, Sanjana Chauhan, Pramod Kumar Sharma, Shubham Chaudhary, Astha Sharma, Omji Porwal, Neeraj Kumar Fuloria

Drug discovery and development (DDD) is a highly complex process that necessitates precise monitoring and extensive data analysis at each stage. Furthermore, the DDD process is both timeconsuming and costly. To tackle these concerns, artificial intelligence (AI) technology can be used, which facilitates rapid and precise analysis of extensive datasets within a limited timeframe. The pathophysiology of cancer disease is complicated and requires extensive research for novel drug discovery and development. The first stage in the process of drug discovery and development involves identifying targets. Cell structure and molecular functioning are complex due to the vast number of molecules that function constantly, performing various roles. Furthermore, scientists are continually discovering novel cellular mechanisms and molecules, expanding the range of potential targets. Accurately identifying the correct target is a crucial step in the preparation of a treatment strategy. Various forms of AI, such as machine learning, neural-based learning, deep learning, and network-based learning, are currently being utilised in applications, online services, and databases. These technologies facilitate the identification and validation of targets, ultimately contributing to the success of projects. This review focuses on the different types and subcategories of AI databases utilised in the field of drug discovery and target identification for cancer.

药物研发(DDD)是一个高度复杂的过程,需要在每个阶段进行精确监控和大量数据分析。此外,药物研发过程既耗时又昂贵。为了解决这些问题,可以使用人工智能(AI)技术,以便在有限的时间内对大量数据集进行快速、精确的分析。癌症疾病的病理生理学非常复杂,需要进行大量研究才能发现和开发出新型药物。药物发现和开发过程的第一阶段是确定靶点。细胞结构和分子功能非常复杂,因为有大量的分子在不断发挥作用,扮演着不同的角色。此外,科学家们还在不断发现新的细胞机制和分子,从而扩大了潜在靶点的范围。准确识别正确的靶点是制定治疗策略的关键一步。目前,各种形式的人工智能,如机器学习、基于神经的学习、深度学习和基于网络的学习,正在应用于应用程序、在线服务和数据库中。这些技术有助于识别和验证目标,最终促进项目的成功。本综述重点介绍在癌症药物发现和靶点识别领域使用的人工智能数据库的不同类型和子类别。
{"title":"Role of Artificial Intelligence in Drug Discovery and Target Identification in Cancer.","authors":"Vishal Sharma, Amit Singh, Sanjana Chauhan, Pramod Kumar Sharma, Shubham Chaudhary, Astha Sharma, Omji Porwal, Neeraj Kumar Fuloria","doi":"10.2174/1567201821666230905090621","DOIUrl":"10.2174/1567201821666230905090621","url":null,"abstract":"<p><p>Drug discovery and development (DDD) is a highly complex process that necessitates precise monitoring and extensive data analysis at each stage. Furthermore, the DDD process is both timeconsuming and costly. To tackle these concerns, artificial intelligence (AI) technology can be used, which facilitates rapid and precise analysis of extensive datasets within a limited timeframe. The pathophysiology of cancer disease is complicated and requires extensive research for novel drug discovery and development. The first stage in the process of drug discovery and development involves identifying targets. Cell structure and molecular functioning are complex due to the vast number of molecules that function constantly, performing various roles. Furthermore, scientists are continually discovering novel cellular mechanisms and molecules, expanding the range of potential targets. Accurately identifying the correct target is a crucial step in the preparation of a treatment strategy. Various forms of AI, such as machine learning, neural-based learning, deep learning, and network-based learning, are currently being utilised in applications, online services, and databases. These technologies facilitate the identification and validation of targets, ultimately contributing to the success of projects. This review focuses on the different types and subcategories of AI databases utilised in the field of drug discovery and target identification for cancer.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10164900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasound-mediated PLGA-PEI Nanobubbles Carrying STAT6 SiRNA Enhances NSCLC Treatment via Repolarizing Tumor-associated Macrophages from M2 to M1 Phenotypes. 超声波介导的携带 STAT6 SiRNA 的 PLGA-PEI 纳米气泡能使肿瘤相关巨噬细胞从 M2 型恢复到 M1 型,从而增强对 NSCLC 的治疗。
IF 2.4 4区 医学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230724151545
Hong Shu, Wenhao Lv, Zhi-Jian Ren, Hui Li, Tiantian Dong, Yao Zhang, Fang Nie

Background: Tumor-associated macrophages (TAMs) are crucial for non-small cell lung cancer (NSCLC) development.

Objective: In this study, polylactic acid-co-glycolic acid (PLGA)-polyethylenimine (PEI) nanobubbles (NBs) carrying STAT6 siRNA were prepared and combined with ultrasound-mediated nanobubbles destruction (UMND) to silence the STAT6 gene, ultimately repolarizing TAMs from the M2 to the M1 phenotype, treating NSCLC in vitro.

Methods: PLGA-PEI NBs-siRNA were prepared and characterised, and their respective ultrasound imaging, biological stabilities and cytotoxicities were detected. Transfection efficiency was evaluated by fluorescence microscopy and flow cytometry. Repolarization of THP-1-derived M2-like macrophages was determined by qPCR and flow cytometry. NSCLC cells (A549) were co-cultured with transfected M2-like macrophages or their associated conditioned medium (CM). Western blotting was used to detect STAT6 gene silencing in M2-like macrophages and markers of epithelial and mesenchymal in A549 cells. The proliferation of A549 cells was detected using CCK-8 and cell colony formation assays. Transwell assays were used to detect the migration and invasion of A549 cells.

Results: PLGA-PEI NBs-siRNA had an average size of 223.13 ± 0.92 nm and a zeta potential of about -5.59 ± 0.97 mV. PLGA-PEI NBs showed excellent ultrasonic imaging capability in addition to biological stability to protect siRNA from degradation. UMND enhanced PLGA-PEI NBs-STAT6 siRNA transfection in M2-like macrophages, which made M2-like macrophages repolarize to M1-like macrophages and prevented proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in A549 cells.

Conclusion: UMND enhanced PLGA-PEI NBs-STAT6 siRNA to repolarize TAMs from the M2 to the M1 phenotype, thus treating NSCLC. These findings provide a promising therapeutic approach for enhancing NSCLC immunotherapy.

背景:肿瘤相关巨噬细胞(TAM肿瘤相关巨噬细胞(TAMs)对非小细胞肺癌(NSCLC)的发展至关重要:本研究制备了携带STAT6 siRNA的聚乳酸-共聚乙醇酸(PLGA)-聚乙烯亚胺(PEI)纳米气泡(NBs),并结合超声介导的纳米气泡破坏(UMND)来沉默STAT6基因,最终将TAMs从M2表型重新极化为M1表型,在体外治疗NSCLC:方法:制备并表征了 PLGA-PEI NBs-siRNA,并检测了它们各自的超声成像、生物稳定性和细胞毒性。荧光显微镜和流式细胞术评估了转染效率。THP-1 衍生的 M2 样巨噬细胞的再极化是通过 qPCR 和流式细胞仪测定的。NSCLC细胞(A549)与转染的M2样巨噬细胞或其相关的条件培养基(CM)共培养。用 Western 印迹法检测 M2 样巨噬细胞中的 STAT6 基因沉默以及 A549 细胞中上皮和间质的标记。使用 CCK-8 和细胞集落形成试验检测 A549 细胞的增殖情况。Transwell试验用于检测A549细胞的迁移和侵袭:结果:PLGA-PEI NBs-siRNA 的平均尺寸为 223.13 ± 0.92 nm,zeta 电位约为 -5.59 ± 0.97 mV。PLGA-PEI NBs 除了具有保护 siRNA 不被降解的生物稳定性外,还具有出色的超声波成像能力。UMND增强了PLGA-PEI NBs-STAT6 siRNA在M2样巨噬细胞中的转染,使M2样巨噬细胞重新极化为M1样巨噬细胞,阻止了A549细胞的增殖、迁移、侵袭和上皮-间质转化(EMT):UMND增强了PLGA-PEI NBs-STAT6 siRNA使TAMs从M2表型重新极化为M1表型的能力,从而治疗了NSCLC。这些发现为增强 NSCLC 免疫疗法提供了一种前景广阔的治疗方法。
{"title":"Ultrasound-mediated PLGA-PEI Nanobubbles Carrying STAT6 SiRNA Enhances NSCLC Treatment <i>via</i> Repolarizing Tumor-associated Macrophages from M2 to M1 Phenotypes.","authors":"Hong Shu, Wenhao Lv, Zhi-Jian Ren, Hui Li, Tiantian Dong, Yao Zhang, Fang Nie","doi":"10.2174/1567201820666230724151545","DOIUrl":"10.2174/1567201820666230724151545","url":null,"abstract":"<p><strong>Background: </strong>Tumor-associated macrophages (TAMs) are crucial for non-small cell lung cancer (NSCLC) development.</p><p><strong>Objective: </strong>In this study, polylactic acid-co-glycolic acid (PLGA)-polyethylenimine (PEI) nanobubbles (NBs) carrying STAT6 siRNA were prepared and combined with ultrasound-mediated nanobubbles destruction (UMND) to silence the STAT6 gene, ultimately repolarizing TAMs from the M2 to the M1 phenotype, treating NSCLC <i>in vitro</i>.</p><p><strong>Methods: </strong>PLGA-PEI NBs-siRNA were prepared and characterised, and their respective ultrasound imaging, biological stabilities and cytotoxicities were detected. Transfection efficiency was evaluated by fluorescence microscopy and flow cytometry. Repolarization of THP-1-derived M2-like macrophages was determined by qPCR and flow cytometry. NSCLC cells (A549) were co-cultured with transfected M2-like macrophages or their associated conditioned medium (CM). Western blotting was used to detect STAT6 gene silencing in M2-like macrophages and markers of epithelial and mesenchymal in A549 cells. The proliferation of A549 cells was detected using CCK-8 and cell colony formation assays. Transwell assays were used to detect the migration and invasion of A549 cells.</p><p><strong>Results: </strong>PLGA-PEI NBs-siRNA had an average size of 223.13 ± 0.92 nm and a zeta potential of about -5.59 ± 0.97 mV. PLGA-PEI NBs showed excellent ultrasonic imaging capability in addition to biological stability to protect siRNA from degradation. UMND enhanced PLGA-PEI NBs-STAT6 siRNA transfection in M2-like macrophages, which made M2-like macrophages repolarize to M1-like macrophages and prevented proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in A549 cells.</p><p><strong>Conclusion: </strong>UMND enhanced PLGA-PEI NBs-STAT6 siRNA to repolarize TAMs from the M2 to the M1 phenotype, thus treating NSCLC. These findings provide a promising therapeutic approach for enhancing NSCLC immunotherapy.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10247880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered Clay-Polymer Composite for Biomedical Drug Delivery and Future Challenges: A Survey. 用于生物医学给药的工程粘土-聚合物复合材料及未来挑战:调查。
IF 2.4 4区 医学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230410110206
Rakesh Swain, Souvik Nandi, Sujata Mohapatra, Subrata Mallick

Clay materials are widely used in drug delivery systems due to their unique characteristics. Montmorillonite is a major component of bentonite and it has a large surface area, better swelling capacity, and high adsorption capacity. The modification of natural bentonite could improve its sorption ability for new emerging applications. Recent advancements in the polymer-silicate composite have novel biomedical applications in drug delivery, tissue regeneration, wound healing, cancer therapy, enzyme immobilization, diagnostic and therapeutic devices, etc. Perspective view of the montmorillonite- polymer composite as a pharmaceutical carrier in drug delivery systems has been discussed in this review. Different types of modification of montmorillonite for the development of pharmaceutical formulations have also been documented. Many challenges in clay nanocomposite systems of polymer of natural/synthetic origin are yet to be explored in improving antimicrobial properties, mechanical strength, stimuli responsiveness, resistance to hydrolysis, etc. Drug interaction and binding capability, swelling of clay may be carried out for finding possible applications in monitoring delivery systems. Pharmaceutical properties of active drugs in the formulation could also be improved along with dissolution rate, solubility, and adsorption. The clay-incorporated polymeric drug delivery systems may be examined for a possible increase in swelling capacity and residence time after mucosal administration.

粘土材料因其独特的特性被广泛应用于给药系统。蒙脱石是膨润土的主要成分,它具有较大的表面积、较好的溶胀能力和较高的吸附能力。对天然膨润土进行改性可以提高其吸附能力,从而实现新的新兴应用。聚合物-硅酸盐复合材料在药物输送、组织再生、伤口愈合、癌症治疗、酶固定化、诊断和治疗设备等方面具有新颖的生物医学应用。本综述探讨了蒙脱石-聚合物复合材料作为药物载体在给药系统中的应用前景。此外,还介绍了为开发药物制剂而对蒙脱石进行的不同类型的改性。天然/合成来源的聚合物粘土纳米复合材料系统在提高抗菌性能、机械强度、刺激响应性、抗水解性等方面还有许多挑战有待探索。还可进行药物相互作用和结合能力、粘土溶胀等方面的研究,以寻找在监测给药系统中的可能应用。制剂中活性药物的药理特性也可随着溶解速率、溶解度和吸附性的提高而得到改善。还可以研究粘土掺入聚合物的给药系统在粘膜给药后可能增加的膨胀能力和停留时间。
{"title":"Engineered Clay-Polymer Composite for Biomedical Drug Delivery and Future Challenges: A Survey.","authors":"Rakesh Swain, Souvik Nandi, Sujata Mohapatra, Subrata Mallick","doi":"10.2174/1567201820666230410110206","DOIUrl":"10.2174/1567201820666230410110206","url":null,"abstract":"<p><p>Clay materials are widely used in drug delivery systems due to their unique characteristics. Montmorillonite is a major component of bentonite and it has a large surface area, better swelling capacity, and high adsorption capacity. The modification of natural bentonite could improve its sorption ability for new emerging applications. Recent advancements in the polymer-silicate composite have novel biomedical applications in drug delivery, tissue regeneration, wound healing, cancer therapy, enzyme immobilization, diagnostic and therapeutic devices, etc. Perspective view of the montmorillonite- polymer composite as a pharmaceutical carrier in drug delivery systems has been discussed in this review. Different types of modification of montmorillonite for the development of pharmaceutical formulations have also been documented. Many challenges in clay nanocomposite systems of polymer of natural/synthetic origin are yet to be explored in improving antimicrobial properties, mechanical strength, stimuli responsiveness, resistance to hydrolysis, etc. Drug interaction and binding capability, swelling of clay may be carried out for finding possible applications in monitoring delivery systems. Pharmaceutical properties of active drugs in the formulation could also be improved along with dissolution rate, solubility, and adsorption. The clay-incorporated polymeric drug delivery systems may be examined for a possible increase in swelling capacity and residence time after mucosal administration.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9642674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current Landscape of Therapeutics for the Management of Hypertension - A Review. 高血压治疗药物的现状 - 综述。
IF 2.4 4区 医学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230623121433
Neda Fatima, Sumel Ashique, Aakash Upadhyay, Shubneesh Kumar, Himanshu Kumar, Nitish Kumar, Prashant Kumar

Hypertension is a critical health problem. It is also the primary reason for coronary heart disease, stroke, and renal vascular disease. The use of herbal drugs in the management of any disease is increasing. They are considered the best immune booster to fight against several types of diseases. To date, the demand for herbal drugs has been increasing because of their excellent properties. This review highlights antihypertensive drugs, polyphenols, and synbiotics for managing hypertension. Evidence is mounting in favour of more aggressive blood pressure control with reduced adverse effects, especially for specific patient populations. This review aimed to present contemporary viewpoints and novel treatment options, including cutting-edge technological applications and emerging interventional and pharmaceutical therapies, as well as key concerns arising from several years of research and epidemiological observations related to the management of hypertension.

高血压是一个严重的健康问题。它也是导致冠心病、中风和肾血管疾病的主要原因。在任何疾病的治疗中,草药的使用都在不断增加。它们被认为是抵抗多种疾病的最佳免疫增强剂。迄今为止,由于草药的优良特性,对草药的需求一直在增加。本综述重点介绍了用于治疗高血压的降压药、多酚类物质和益生元。越来越多的证据表明,更积极的血压控制可减少不良反应,尤其是对特定的患者群体。本综述旨在介绍当代观点和新的治疗方案,包括前沿技术应用和新兴的介入和药物疗法,以及多年来与高血压管理相关的研究和流行病学观察所产生的主要问题。
{"title":"Current Landscape of Therapeutics for the Management of Hypertension - A Review.","authors":"Neda Fatima, Sumel Ashique, Aakash Upadhyay, Shubneesh Kumar, Himanshu Kumar, Nitish Kumar, Prashant Kumar","doi":"10.2174/1567201820666230623121433","DOIUrl":"10.2174/1567201820666230623121433","url":null,"abstract":"<p><p>Hypertension is a critical health problem. It is also the primary reason for coronary heart disease, stroke, and renal vascular disease. The use of herbal drugs in the management of any disease is increasing. They are considered the best immune booster to fight against several types of diseases. To date, the demand for herbal drugs has been increasing because of their excellent properties. This review highlights antihypertensive drugs, polyphenols, and synbiotics for managing hypertension. Evidence is mounting in favour of more aggressive blood pressure control with reduced adverse effects, especially for specific patient populations. This review aimed to present contemporary viewpoints and novel treatment options, including cutting-edge technological applications and emerging interventional and pharmaceutical therapies, as well as key concerns arising from several years of research and epidemiological observations related to the management of hypertension.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10121748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Age-Related Macular Degeneration - Therapies and Their Delivery. 老年性黄斑变性--疗法及其实施。
IF 2.4 4区 医学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230510100742
Chandrasekar Ponnusamy, Puratchikody Ayarivan, Preethi Selvamuthu, Subramanian Natesan

Age-related macular degeneration (ARMD) is a degenerative ocular disease that is the most important cause of irreversible vision loss in old-aged people in developed countries. Around fifty percent of vision impairments in developed countries are due to ARMD. It is a multifaceted disease that is associated with both genetic and environmental risk factors. The most important treatments option for ARMD includes laser photocoagulation, photodynamic therapy (PDT), Anti-VEGF Injections, and combination therapies. In this review, we also propose that topical ocular drug delivery with nanocarriers has more attention for the treatment of ARMD. The nanocarriers were specially designed for enhanced corneal residential time, prolonged drug release and action, and minimizing the frequency of administrations. Different types of nanocarriers were developed for the topical ocular delivery system, such as nanomicelles, nanoemulsions, nanosuspensions, liposomes, and polymeric nanoparticles. These topical ocular nanocarriers were administered topically, and they can fix the hydrophobic substances, increase solubility and improve the bioavailability of an administered drug. Hence the topical ocular delivery systems with nanocarriers provide a safe and effective therapeutic strategy and promising tool for the treatment of posterior segment ocular diseases ARMD.

老年黄斑变性(ARMD)是一种退行性眼病,是发达国家老年人视力不可逆转丧失的最主要原因。在发达国家,约 50% 的视力损伤是由 ARMD 引起的。这是一种与遗传和环境风险因素相关的多发性疾病。ARMD 最重要的治疗方法包括激光光凝、光动力疗法 (PDT)、抗血管内皮生长因子注射和综合疗法。在这篇综述中,我们还提出,使用纳米载体进行局部眼部给药治疗 ARMD 更受关注。纳米载体经过专门设计,可延长角膜停留时间,延长药物释放和作用时间,并最大限度地减少给药次数。为眼部局部给药系统开发了不同类型的纳米载体,如纳米细胞、纳米乳液、纳米悬浮液、脂质体和聚合物纳米颗粒。这些局部眼用纳米载体可局部给药,能固定疏水性物质,增加溶解度,提高给药的生物利用度。因此,纳米载体局部眼部给药系统为治疗后节眼病 ARMD 提供了一种安全有效的治疗策略和前景广阔的工具。
{"title":"Age-Related Macular Degeneration - Therapies and Their Delivery.","authors":"Chandrasekar Ponnusamy, Puratchikody Ayarivan, Preethi Selvamuthu, Subramanian Natesan","doi":"10.2174/1567201820666230510100742","DOIUrl":"10.2174/1567201820666230510100742","url":null,"abstract":"<p><p>Age-related macular degeneration (ARMD) is a degenerative ocular disease that is the most important cause of irreversible vision loss in old-aged people in developed countries. Around fifty percent of vision impairments in developed countries are due to ARMD. It is a multifaceted disease that is associated with both genetic and environmental risk factors. The most important treatments option for ARMD includes laser photocoagulation, photodynamic therapy (PDT), Anti-VEGF Injections, and combination therapies. In this review, we also propose that topical ocular drug delivery with nanocarriers has more attention for the treatment of ARMD. The nanocarriers were specially designed for enhanced corneal residential time, prolonged drug release and action, and minimizing the frequency of administrations. Different types of nanocarriers were developed for the topical ocular delivery system, such as nanomicelles, nanoemulsions, nanosuspensions, liposomes, and polymeric nanoparticles. These topical ocular nanocarriers were administered topically, and they can fix the hydrophobic substances, increase solubility and improve the bioavailability of an administered drug. Hence the topical ocular delivery systems with nanocarriers provide a safe and effective therapeutic strategy and promising tool for the treatment of posterior segment ocular diseases ARMD.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9498293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Multiple-site Injections of a Plasmid Encoding Human MnSOD Mitigate Radiation-induced Skin Injury by Inhibiting Ferroptosis. 局部多部位注射编码人类 MnSOD 的质粒可通过抑制铁凋亡减轻辐射诱发的皮肤损伤
IF 2.4 4区 医学 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-01-01 DOI: 10.2174/1567201820666230508120720
Xiaoying Wang, Yuxin Lu, Xiaochen Cheng, Xuefeng Zhu, Dujuan Li, Haiying Duan, Shenhui Hu, Fengjun Xiao, Li Du, Qinglin Zhang

Background: Most patients who undergo radiotherapy develop radiation skin injury, for which effective treatment is urgently needed. MnSOD defends against reactive oxygen species (ROS) damage and may be valuable for treating radiation-induced injury. Here, we (i) investigated the therapeutic and preventive effects of local multiple-site injections of a plasmid, encoding human MnSOD, on radiation-induced skin injury in rats and (ii) explored the mechanism underlying the protective effects of pMnSOD.

Methods: The recombinant plasmid (pMnSOD) was constructed with human cytomegalovirus (CMV) promoter and pUC-ori. The protective effects of pMnSOD against 20-Gy X-ray irradiation were evaluated in human keratinocytes (HaCaT cells) by determining cell viability, ROS levels, and ferroptosisrelated gene expression. In therapeutic treatment, rats received local multiple-site injections of pMnSOD on days 12, 19, and 21 after 40-Gy γ-ray irradiation. In preventive treatment, rats received pMnSOD injections on day -3 pre-irradiation and on day 4 post-irradiation. The skin injuries were evaluated based on the injury score and pathological examination, and ferroptosis-related gene expression was determined.

Results: In irradiated HaCaT cells, pMnSOD transfection resulted in an increased SOD2 expression, reduced intracellular ROS levels, and increased cell viability. Moreover, GPX4 and SLC7A11 expression was significantly upregulated, and erastin-induced ferroptosis was inhibited in HaCaT cells. In the therapeutic and prevention treatment experiments, pMnSOD administration produced local SOD protein expression and evidently promoted the healing of radiation-induced skin injury. In the therapeutic treatment experiments, the injury score in the high-dose pMnSOD group was significantly lower than in the PBS group on day 33 post-irradiation (1.50 vs. 2.80, P < 0.05). In the prevention treatment experiments, the skin injury scores were much lower in the pMnSOD administration groups than in the PBS group from day 21 to day 34. GPX4, SLC7A11, and Bcl-2 were upregulated in irradiated skin tissues after pMnSOD treatment, while ACSL4 was downregulated.

Conclusion: The present study provides evidence that the protective effects of MnSOD in irradiated HaCaT cells may be related to the inhibition of ferroptosis. The multi-site injections of pMnSOD had clear therapeutic and preventive effects on radiation-induced skin injury in rats. pMnSOD may have therapeutic value for the treatment of radiation-induced skin injury.

背景:大多数接受放疗的患者都会出现放射性皮肤损伤,急需有效的治疗方法。MnSOD 能抵御活性氧(ROS)损伤,可能对治疗辐射引起的损伤有价值。在此,我们(i)研究了局部多部位注射编码人MnSOD的质粒对辐射诱导的大鼠皮肤损伤的治疗和预防作用,(ii)探索了pMnSOD保护作用的机制:方法:用人巨细胞病毒(CMV)启动子和 pUC-ori 构建重组质粒(pMnSOD)。通过测定细胞活力、ROS 水平和铁变态反应相关基因的表达,评估了 pMnSOD 在人类角朊细胞(HaCaT 细胞)中对 20-Gy X 射线辐照的保护作用。在治疗过程中,大鼠在接受 40Gy γ 射线照射后的第 12、19 和 21 天接受局部多部位注射 pMnSOD。在预防性治疗中,大鼠在辐照前第 3 天和辐照后第 4 天接受 pMnSOD 注射。根据损伤评分和病理检查对皮肤损伤进行评估,并测定铁变态反应相关基因的表达:结果:在辐照过的 HaCaT 细胞中,pMnSOD 转染导致 SOD2 表达增加,细胞内 ROS 水平降低,细胞存活率提高。此外,HaCaT 细胞中 GPX4 和 SLC7A11 的表达明显上调,厄拉斯特诱导的铁蛋白沉着受到抑制。在治疗和预防治疗实验中,服用 pMnSOD 能促进局部 SOD 蛋白的表达,并明显促进辐射引起的皮肤损伤的愈合。在治疗实验中,高剂量 pMnSOD 组的损伤评分在辐射后第 33 天显著低于 PBS 组(1.50 对 2.80,P<0.05)。在预防治疗实验中,从第 21 天到第 34 天,pMnSOD 给药组的皮肤损伤评分远远低于 PBS 组。pMnSOD 处理后,辐照皮肤组织中 GPX4、SLC7A11 和 Bcl-2 上调,而 ACSL4 下调:本研究提供的证据表明,MnSOD 对辐照 HaCaT 细胞的保护作用可能与抑制铁变态反应有关。多部位注射 pMnSOD 对辐射诱导的大鼠皮肤损伤有明显的治疗和预防作用。
{"title":"Local Multiple-site Injections of a Plasmid Encoding Human <i>MnSOD</i> Mitigate Radiation-induced Skin Injury by Inhibiting Ferroptosis.","authors":"Xiaoying Wang, Yuxin Lu, Xiaochen Cheng, Xuefeng Zhu, Dujuan Li, Haiying Duan, Shenhui Hu, Fengjun Xiao, Li Du, Qinglin Zhang","doi":"10.2174/1567201820666230508120720","DOIUrl":"10.2174/1567201820666230508120720","url":null,"abstract":"<p><strong>Background: </strong>Most patients who undergo radiotherapy develop radiation skin injury, for which effective treatment is urgently needed. MnSOD defends against reactive oxygen species (ROS) damage and may be valuable for treating radiation-induced injury. Here, we (i) investigated the therapeutic and preventive effects of local multiple-site injections of a plasmid, encoding human MnSOD, on radiation-induced skin injury in rats and (ii) explored the mechanism underlying the protective effects of pMnSOD.</p><p><strong>Methods: </strong>The recombinant plasmid (pMnSOD) was constructed with human cytomegalovirus (CMV) promoter and pUC-ori. The protective effects of pMnSOD against 20-Gy X-ray irradiation were evaluated in human keratinocytes (HaCaT cells) by determining cell viability, ROS levels, and ferroptosisrelated gene expression. In therapeutic treatment, rats received local multiple-site injections of pMnSOD on days 12, 19, and 21 after 40-Gy γ-ray irradiation. In preventive treatment, rats received pMnSOD injections on day -3 pre-irradiation and on day 4 post-irradiation. The skin injuries were evaluated based on the injury score and pathological examination, and ferroptosis-related gene expression was determined.</p><p><strong>Results: </strong>In irradiated HaCaT cells, pMnSOD transfection resulted in an increased SOD2 expression, reduced intracellular ROS levels, and increased cell viability. Moreover, <i>GPX4</i> and <i>SLC7A11</i> expression was significantly upregulated, and erastin-induced ferroptosis was inhibited in HaCaT cells. In the therapeutic and prevention treatment experiments, pMnSOD administration produced local SOD protein expression and evidently promoted the healing of radiation-induced skin injury. In the therapeutic treatment experiments, the injury score in the high-dose pMnSOD group was significantly lower than in the PBS group on day 33 post-irradiation (1.50<i> vs</i>. 2.80, <i>P</i> < 0.05). In the prevention treatment experiments, the skin injury scores were much lower in the pMnSOD administration groups than in the PBS group from day 21 to day 34. <i>GPX4, SLC7A11</i>, and <i>Bcl-2</i> were upregulated in irradiated skin tissues after pMnSOD treatment, while <i>ACSL4</i> was downregulated.</p><p><strong>Conclusion: </strong>The present study provides evidence that the protective effects of MnSOD in irradiated HaCaT cells may be related to the inhibition of ferroptosis. The multi-site injections of pMnSOD had clear therapeutic and preventive effects on radiation-induced skin injury in rats. pMnSOD may have therapeutic value for the treatment of radiation-induced skin injury.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9425128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current drug delivery
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1