Pub Date : 2024-01-01DOI: 10.2174/1567201820666230119120314
Ailing Hui, Zheng Zhang, Jinghe Wang, Li Yang, Shaohuan Deng, Wencheng Zhang, An Zhou, Zeyu Wu
Background: Borneol can enhance the blood-brain barrier (BBB) permeability of some drugs and suppress the efflux transport of P-glycoprotein (P-gp), which will contribute to the brain delivery of salvianic acid A (SAA).
Objective: The study aimed to develop an approach to improve the brain targeting delivery of SAA with the aid of borneol.
Materials and methods: "Borneol" was involved in SAA via esterified prodrug SAA borneol ester (SBE) and combined administration (SAA-borneol, SAA-B). Subsequently, the blood-brain transport of SAA through brain/blood distribution and P-gp regulation via expression and function assay were investigated in rats.
Results: The SBE and SAA-B-treated group received a three-fold brain concentration and longer t1/2 and retention period of active SAA than that of SAA alone (20.18/13.82 min vs. 6.48 min; 18.30/17.42 min vs. 11.46 min). In addition, blood to brain transport of active SAA in SBE was altered in comparison to that of SAA-B, ultimately resulting in a better drug targeting index (9.93 vs. 3.63). Further studies revealed that SBE-induced downregulation of P-gp expression occurred at the later stage of administration (60 min, P < 0.01), but SBE always showed a more powerful drug transport activity across BBB represented by Kp value of rhodamine 123 than SAA-B (30, 60 min, P < 0.05).
Conclusion: The comparative results indicate that SBE exhibits prominent efficiency on SAA's targeting delivery through improved blood/brain metabolic properties and sustained inhibitory effect of "borneol" on P-gp efflux. Therefore, prodrug modification can be applied as a more effective approach for brain delivery of SAA.
背景:硼乙醇可以增强某些药物的血脑屏障(BBB)通透性,抑制P-糖蛋白(P-gp)的外流转运,从而有助于丹酚酸A(SAA)的脑部给药:该研究旨在开发一种方法,借助博奈醇改善SAA的脑靶向递送:"硼醇 "通过酯化原药SAA硼醇酯(SBE)和联合给药(SAA-硼醇,SAA-B)参与SAA。随后,在大鼠体内研究了 SAA 通过脑/血分布的血脑转运以及通过表达和功能检测对 P-gp 的调控:结果:SBE和SAA-B处理组的脑内活性SAA浓度是单用SAA组的三倍,t1/2和滞留期也更长(20.18/13.82 min vs. 6.48 min; 18.30/17.42 min vs. 11.46 min)。此外,与 SAA-B 相比,SBE 中活性 SAA 从血液到大脑的转运发生了改变,最终导致了更好的药物靶向指数(9.93 vs. 3.63)。进一步的研究发现,SBE诱导的P-gp表达下调发生在给药的后期(60分钟,P<0.01),但与SAA-B相比,SBE始终表现出更强的药物跨BBB转运活性(以罗丹明123的Kp值表示)(30、60分钟,P<0.05):比较结果表明,SBE通过改善血液/脑代谢特性和 "borneol "对P-gp外流的持续抑制作用,对SAA的靶向递送具有显著效果。因此,原药修饰可以作为一种更有效的方法用于 SAA 的脑部给药。
{"title":"Enhanced Brain Targeting Delivery of Salvianic Acid Using Borneol as a Promoter of Blood/Brain Transport and Regulator of P-gp.","authors":"Ailing Hui, Zheng Zhang, Jinghe Wang, Li Yang, Shaohuan Deng, Wencheng Zhang, An Zhou, Zeyu Wu","doi":"10.2174/1567201820666230119120314","DOIUrl":"10.2174/1567201820666230119120314","url":null,"abstract":"<p><strong>Background: </strong>Borneol can enhance the blood-brain barrier (BBB) permeability of some drugs and suppress the efflux transport of P-glycoprotein (P-gp), which will contribute to the brain delivery of salvianic acid A (SAA).</p><p><strong>Objective: </strong>The study aimed to develop an approach to improve the brain targeting delivery of SAA with the aid of borneol.</p><p><strong>Materials and methods: </strong>\"Borneol\" was involved in SAA <i>via</i> esterified prodrug SAA borneol ester (SBE) and combined administration (SAA-borneol, SAA-B). Subsequently, the blood-brain transport of SAA through brain/blood distribution and P-gp regulation <i>via</i> expression and function assay were investigated in rats.</p><p><strong>Results: </strong>The SBE and SAA-B-treated group received a three-fold brain concentration and longer t1/2 and retention period of active SAA than that of SAA alone (20.18/13.82 min vs. 6.48 min; 18.30/17.42 min vs. 11.46 min). In addition, blood to brain transport of active SAA in SBE was altered in comparison to that of SAA-B, ultimately resulting in a better drug targeting index (9.93 vs. 3.63). Further studies revealed that SBE-induced downregulation of P-gp expression occurred at the later stage of administration (60 min, <i>P</i> < 0.01), but SBE always showed a more powerful drug transport activity across BBB represented by Kp value of rhodamine 123 than SAA-B (30, 60 min, <i>P</i> < 0.05).</p><p><strong>Conclusion: </strong>The comparative results indicate that SBE exhibits prominent efficiency on SAA's targeting delivery through improved blood/brain metabolic properties and sustained inhibitory effect of \"borneol\" on P-gp efflux. Therefore, prodrug modification can be applied as a more effective approach for brain delivery of SAA.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"726-733"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10550998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1567201820666230203115752
Rohitas Deshmukh, Aman Kumar Jain, Rajesh Singh, Swarnali Das Paul, Ranjit K Harwansh
Cancer is one of the deadliest illnesses of the 21st century. Chemotherapy and radiation therapies both have considerable side effects. Antitumor antibiotics are one of them. Coughs, common colds, fevers, laryngitis, and infectious disorders have all been treated with Andrographis paniculata for centuries. Extracts of Andrographis effectively treat various ailments, as well as cancer. The most active molecule in Andrographis paniculata is andrographolide a, diterpene, and lactone. Andrographis paniculata and its derivatives have long been used to treat various ailments. Anti-inflammatory and cancerfighting characteristics have been observed in Andrographolide. Andrographolide, a diterpene lactone separated from Andrographis paniculata, has also been shown to have important criticalessential biological protective properties. It has also been suggested that it could be used to treat major human diseases like-rheumatoid like rheumatoid, colitis, and Parkinsons disease. This summary aims to highlight Andrographolide as a promising cancer treatment option. Several databases were searched for andrographolides cytotoxic/anti-cancer effects in pre-clinical and clinical research to serve this purpose. Several studies have shown that Andrographolide is helpful in cancer medication, as detailed in this review.
{"title":"<i>Andrographis paniculata</i> and Andrographolide - A Snapshot on Recent Advances in Nano Drug Delivery Systems against Cancer.","authors":"Rohitas Deshmukh, Aman Kumar Jain, Rajesh Singh, Swarnali Das Paul, Ranjit K Harwansh","doi":"10.2174/1567201820666230203115752","DOIUrl":"10.2174/1567201820666230203115752","url":null,"abstract":"<p><p>Cancer is one of the deadliest illnesses of the 21st century. Chemotherapy and radiation therapies both have considerable side effects. Antitumor antibiotics are one of them. Coughs, common colds, fevers, laryngitis, and infectious disorders have all been treated with <i>Andrographis paniculata</i> for centuries. Extracts of <i>Andrographis</i> effectively treat various ailments, as well as cancer. The most active molecule in <i>Andrographis paniculata</i> is andrographolide a, diterpene, and lactone. <i>Andrographis paniculata</i> and its derivatives have long been used to treat various ailments. Anti-inflammatory and cancerfighting characteristics have been observed in Andrographolide. Andrographolide, a diterpene lactone separated from <i>Andrographis paniculata</i>, has also been shown to have important criticalessential biological protective properties. It has also been suggested that it could be used to treat major human diseases like-rheumatoid like rheumatoid, colitis, and Parkinsons disease. This summary aims to highlight Andrographolide as a promising cancer treatment option. Several databases were searched for andrographolides cytotoxic/anti-cancer effects in pre-clinical and clinical research to serve this purpose. Several studies have shown that Andrographolide is helpful in cancer medication, as detailed in this review.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"631-644"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10653230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1567201820666230622105503
Hongshuai Lv, Weiping Jia, Peng Dong, Jiaojiao Liu, Si Wang, Xiaohai Li, Jinghua Hu, Ling Zhao, Yikang Shi
Background: Most chemotherapeutic agents are characterized by poor water solubility and non-specific distribution. Polymer-based conjugates are promising strategies for overcoming these limitations.
Objective: This study aims to fabricate a polysaccharide, dextran-based, dual-drug conjugate by covalently grafting docetaxel (DTX) and docosahexaenoic acid (DHA) onto the bifunctionalized dextran through a long linker, and to investigate the antitumor efficacy of this conjugate against breast cancer.
Methods: DTX was firstly coupled with DHA and covalently bounded with the bifunctionalized dextran (100 kDa) through a long linker to produce a conjugate dextran-DHA-DTX (termed C-DDD). Cytotoxicity and cellular uptake of this conjugate were measured in vitro. Drug biodistribution and pharmacokinetics were investigated through liquid chromatography/mass spectrometry analysis. The inhibitory effects on tumor growth were evaluated in MCF-7- and 4T1-tumor-bearing mice.
Results: The loading capacity of the C-DDD for DTX was 15.90 (weight/weight). The C-DDD possessed good water solubility and was able to self-assemble into nanoparticles measuring 76.8 ± 5.5 nm. The maximum plasma concentration and area under the curve (0-∞) for the released DTX and total DTX from the C-DDD were significantly enhanced compared with the conventional DTX formulation. The C-DDD selectively accumulated in the tumor, with limited distribution was observed in normal tissues. The C-DDD exhibited greater antitumor activity than the conventional DTX in the triplenegative breast cancer model. Furthermore, the C-DDD nearly eliminated all MCF-7 tumors in nude mice without leading to systemic adverse effects.
Conclusion: This dual-drug C-DDD has the potential to become a candidate for clinical application through the optimization of the linker.
{"title":"Improved Antitumor Efficacy of a Dextran-based Docetaxel-coupled Conjugate against Triple-Negative Breast Cancer.","authors":"Hongshuai Lv, Weiping Jia, Peng Dong, Jiaojiao Liu, Si Wang, Xiaohai Li, Jinghua Hu, Ling Zhao, Yikang Shi","doi":"10.2174/1567201820666230622105503","DOIUrl":"10.2174/1567201820666230622105503","url":null,"abstract":"<p><strong>Background: </strong>Most chemotherapeutic agents are characterized by poor water solubility and non-specific distribution. Polymer-based conjugates are promising strategies for overcoming these limitations.</p><p><strong>Objective: </strong>This study aims to fabricate a polysaccharide, dextran-based, dual-drug conjugate by covalently grafting docetaxel (DTX) and docosahexaenoic acid (DHA) onto the bifunctionalized dextran through a long linker, and to investigate the antitumor efficacy of this conjugate against breast cancer.</p><p><strong>Methods: </strong>DTX was firstly coupled with DHA and covalently bounded with the bifunctionalized dextran (100 kDa) through a long linker to produce a conjugate dextran-DHA-DTX (termed C-DDD). Cytotoxicity and cellular uptake of this conjugate were measured <i>in vitro</i>. Drug biodistribution and pharmacokinetics were investigated through liquid chromatography/mass spectrometry analysis. The inhibitory effects on tumor growth were evaluated in MCF-7- and 4T1-tumor-bearing mice.</p><p><strong>Results: </strong>The loading capacity of the C-DDD for DTX was 15.90 (weight/weight). The C-DDD possessed good water solubility and was able to self-assemble into nanoparticles measuring 76.8 ± 5.5 nm. The maximum plasma concentration and area under the curve (0-∞) for the released DTX and total DTX from the C-DDD were significantly enhanced compared with the conventional DTX formulation. The C-DDD selectively accumulated in the tumor, with limited distribution was observed in normal tissues. The C-DDD exhibited greater antitumor activity than the conventional DTX in the triplenegative breast cancer model. Furthermore, the C-DDD nearly eliminated all MCF-7 tumors in nude mice without leading to systemic adverse effects.</p><p><strong>Conclusion: </strong>This dual-drug C-DDD has the potential to become a candidate for clinical application through the optimization of the linker.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"775-784"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10050822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The application of therapeutically active molecules through the dermal/transdermal route into the skin has evolved as an attractive formulation strategy in comparison to oral delivery systems for the treatment of various disease conditions. However, the delivery of drugs across the skin is limited due to poor permeability. Dermal/transdermal delivery is associated with ease of accessibility, enhanced safety, better patient compliance, and reduced variability in plasma drug concentrations. It has the ability to bypass the first-pass metabolism, which ultimately results in steady and sustained drug levels in the systemic circulation. Vesicular drug delivery systems, including bilosomes, have gained significant interest due to their colloidal nature, improved drug solubility, absorption, and bioavailability with prolonged circulation time for a large number of new drug molecules. Bilosomes are novel lipid vesicular nanocarriers comprising bile salts, such as deoxycholic acid, sodium cholate, deoxycholate, taurocholate, glycocholate or sorbitan tristearate. These bilosomes are associated with high flexibility, deformability, and elasticity attributed to their bile acid component. These carriers are advantageous in terms of improved skin permeation, increased dermal and epidermal drug concentration, and enhanced local action with reduced systemic absorption of the drug, resulting in reduced side effects. The present article provides a comprehensive overview of the biopharmaceutical aspects of dermal/transdermal bilosome delivery systems, their composition, formulation techniques, characterization methods, and applications.
{"title":"Novel Vesicular Bilosomal Delivery Systems for Dermal/Transdermal Applications.","authors":"Vasanti Suvarna, Rashmi Mallya, Kajal Deshmukh, Bhakti Sawant, Tabassum Asif Khan, Abdelwahab Omri","doi":"10.2174/1567201820666230707161206","DOIUrl":"10.2174/1567201820666230707161206","url":null,"abstract":"<p><p>The application of therapeutically active molecules through the dermal/transdermal route into the skin has evolved as an attractive formulation strategy in comparison to oral delivery systems for the treatment of various disease conditions. However, the delivery of drugs across the skin is limited due to poor permeability. Dermal/transdermal delivery is associated with ease of accessibility, enhanced safety, better patient compliance, and reduced variability in plasma drug concentrations. It has the ability to bypass the first-pass metabolism, which ultimately results in steady and sustained drug levels in the systemic circulation. Vesicular drug delivery systems, including bilosomes, have gained significant interest due to their colloidal nature, improved drug solubility, absorption, and bioavailability with prolonged circulation time for a large number of new drug molecules. Bilosomes are novel lipid vesicular nanocarriers comprising bile salts, such as deoxycholic acid, sodium cholate, deoxycholate, taurocholate, glycocholate or sorbitan tristearate. These bilosomes are associated with high flexibility, deformability, and elasticity attributed to their bile acid component. These carriers are advantageous in terms of improved skin permeation, increased dermal and epidermal drug concentration, and enhanced local action with reduced systemic absorption of the drug, resulting in reduced side effects. The present article provides a comprehensive overview of the biopharmaceutical aspects of dermal/transdermal bilosome delivery systems, their composition, formulation techniques, characterization methods, and applications.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"961-977"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10123080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1567201821666230915150544
Yachana Mishra, Vijay Mishra, Alaa A A Aljabali, Mohamed El-Tanani, Gowhar A Naikoo, Nitin Charbe, Sai Raghuveer Chava, Murtaza M Tambuwala
Ulcerative colitis (UC) and Crohn's disease (CD) are two types of idiopathic inflammatory bowel disease (IBD) that are increasing in frequency and incidence worldwide, particularly in highly industrialized countries. Conventional tablets struggle to effectively deliver anti-inflammatory drugs since the inflammation is localized in different areas of the colon in each patient. The goal of 3D printing technology in pharmaceutics is to create personalized drug delivery systems (DDS) that are tailored to each individual's specific needs. This review provides an overview of existing 3D printing processes, with a focus on extrusion-based technologies, which have received the most attention. Personalized pharmaceutical products offer numerous benefits to patients worldwide, and 3D printing technology is becoming more affordable every day. Custom manufacturing of 3D printed tablets provides innovative ideas for developing a tailored colon DDS. In the future, 3D printing could be used to manufacture personalized tablets for UC patients based on the location of inflammation in the colon, resulting in improved therapeutic outcomes and a better quality of life.
溃疡性结肠炎(UC)和克罗恩病(CD)是特发性炎症性肠病(IBD)的两种类型,在全球范围内,尤其是在高度工业化国家,这两种疾病的发病率越来越高。由于每位患者的炎症都分布在结肠的不同部位,因此传统药片很难有效地输送抗炎药物。三维打印技术在制药学中的目标是创建个性化的给药系统(DDS),以满足每个人的特定需求。本综述概述了现有的 3D 打印工艺,重点介绍最受关注的基于挤压的技术。个性化医药产品为全球患者带来了诸多益处,而三维打印技术的价格也日趋合理。3D 打印药片的定制生产为开发量身定制的结肠 DDS 提供了创新思路。未来,3D 打印技术可用于根据结肠炎症的位置为 UC 患者制造个性化药片,从而提高治疗效果和生活质量。
{"title":"3D Printed Personalized Colon-targeted Tablets: A Novel Approach in Ulcerative Colitis Management.","authors":"Yachana Mishra, Vijay Mishra, Alaa A A Aljabali, Mohamed El-Tanani, Gowhar A Naikoo, Nitin Charbe, Sai Raghuveer Chava, Murtaza M Tambuwala","doi":"10.2174/1567201821666230915150544","DOIUrl":"10.2174/1567201821666230915150544","url":null,"abstract":"<p><p>Ulcerative colitis (UC) and Crohn's disease (CD) are two types of idiopathic inflammatory bowel disease (IBD) that are increasing in frequency and incidence worldwide, particularly in highly industrialized countries. Conventional tablets struggle to effectively deliver anti-inflammatory drugs since the inflammation is localized in different areas of the colon in each patient. The goal of 3D printing technology in pharmaceutics is to create personalized drug delivery systems (DDS) that are tailored to each individual's specific needs. This review provides an overview of existing 3D printing processes, with a focus on extrusion-based technologies, which have received the most attention. Personalized pharmaceutical products offer numerous benefits to patients worldwide, and 3D printing technology is becoming more affordable every day. Custom manufacturing of 3D printed tablets provides innovative ideas for developing a tailored colon DDS. In the future, 3D printing could be used to manufacture personalized tablets for UC patients based on the location of inflammation in the colon, resulting in improved therapeutic outcomes and a better quality of life.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"1211-1225"},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10634609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1567201820666230214091509
Neslihan Üstündağ Okur, Emre Şefik Çağlar, Mustafa Sinan Kaynak, Mine Diril, Saniye Özcan, Hatice Yeşim Karasulu
Background: The domperidone maleate, a lipophilic agent classified as a Biopharmaceutical Classification System Class II substance with weak water solubility. Self- Emulsifying Drug Delivery System is a novel approach to improve water solubility and, ultimately bioavailability of drugs.
Objective: This study aimed to develop and characterize new domperidone-loaded self-emulsifying drug delivery systems as an alternative formulation and to evaluate the permeability of domperidone-loaded self-emulsifying drug delivery systems by using Caco-2 cells and via single-pass intestinal perfusion method.
Methods: Three self-emulsifying drug delivery systems were prepared and characterized in terms of pH, viscosity, droplet size, zeta potential, polydispersity index, conductivity, etc. Each formulation underwent 10, 100, 200, and 500 times dilution in intestinal buffer pH 6.8 and stomach buffer pH 1.2, respectively. Female Sprague Dawley rats were employed for in situ single-pass intestinal perfusion investigations.
Results: Results of the study revealed that the ideal self-emulsifying drug delivery systems formulation showed narrow droplet size, ideal zeta potential, and no conductivity. Additionally, as compared to the control groups, the optimum formulation had better apparent permeability (12.74 ± 0.02×10-4) from Caco-2 cell monolayer permeability experiments. The study also revealed greater Peff values (2.122 ± 0.892×10-4 cm/s) for the optimal formulation from in situ intestinal perfusion analyses in comparison to control groups (Domperidone; 0.802 ± 0.418×10-4 cm/s).
Conclusion: To conclude, prepared formulations can be a promising way of oral administration of Biopharmaceutical Classification System Class II drugs.
{"title":"Enhancing Oral Bioavailability of Domperidone Maleate: Formulation, <i>In vitro</i> Permeability Evaluation In-caco-2 Cell Monolayers and <i>In situ</i> Rat Intestinal Permeability Studies.","authors":"Neslihan Üstündağ Okur, Emre Şefik Çağlar, Mustafa Sinan Kaynak, Mine Diril, Saniye Özcan, Hatice Yeşim Karasulu","doi":"10.2174/1567201820666230214091509","DOIUrl":"10.2174/1567201820666230214091509","url":null,"abstract":"<p><strong>Background: </strong>The domperidone maleate, a lipophilic agent classified as a Biopharmaceutical Classification System Class II substance with weak water solubility. Self- Emulsifying Drug Delivery System is a novel approach to improve water solubility and, ultimately bioavailability of drugs.</p><p><strong>Objective: </strong>This study aimed to develop and characterize new domperidone-loaded self-emulsifying drug delivery systems as an alternative formulation and to evaluate the permeability of domperidone-loaded self-emulsifying drug delivery systems by using Caco-2 cells and <i>via</i> single-pass intestinal perfusion method.</p><p><strong>Methods: </strong>Three self-emulsifying drug delivery systems were prepared and characterized in terms of pH, viscosity, droplet size, zeta potential, polydispersity index, conductivity, <i>etc</i>. Each formulation underwent 10, 100, 200, and 500 times dilution in intestinal buffer pH 6.8 and stomach buffer pH 1.2, respectively. Female Sprague Dawley rats were employed for <i>in situ</i> single-pass intestinal perfusion investigations.</p><p><strong>Results: </strong>Results of the study revealed that the ideal self-emulsifying drug delivery systems formulation showed narrow droplet size, ideal zeta potential, and no conductivity. Additionally, as compared to the control groups, the optimum formulation had better apparent permeability (12.74 ± 0.02×10-4) from Caco-2 cell monolayer permeability experiments. The study also revealed greater Peff values (2.122 ± 0.892×10-4 cm/s) for the optimal formulation from <i>in situ</i> intestinal perfusion analyses in comparison to control groups (Domperidone; 0.802 ± 0.418×10-4 cm/s).</p><p><strong>Conclusion: </strong>To conclude, prepared formulations can be a promising way of oral administration of Biopharmaceutical Classification System Class II drugs.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"1010-1023"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10767561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1567201820666230120122206
Na Yang, Xinyi Ai, Kang Cheng, Yihan Wu, Zhi Lu, Zhenda Liu, Teng Guo, Nianping Feng
Background: The stratum corneum (SC) is the main barrier of the skin, and cosmeceuticals are different from ordinary cosmetics in that they need to deliver active ingredients targeting specific skin problems through the SC into the deeper layers of the skin. Thus, we designed a compound essential oil (CEO) extracted from Salvia miltiorrhiza Bge and Cinnamomum cassia Presl, supplemented with borneol to deliver active ingredients through the SC.
Methods: The CEO was prepared by flash extraction combined with the microwave method. Moreover, the main components of the CEO were determined using gas chromatography-mass spectrometry (GCMS). Visualization techniques, such as scanning electron microscopy (SEM), haematoxylin-eosin (HE) staining, and confocal laser scanning microscopy (CLSM), were used to study the permeationpromoting mechanism of the CEO on the skin. Furthermore, the permeation-promoting effects of the CEO on both hydrophobic and hydrophilic ingredients were tested via in vitro skin penetration experiments and in vivo microdialysis experiments.
Results: The results indicated the ability of the CEO to alter the structure of the SC, leading to enhanced transdermal permeation of hydrophobic and hydrophilic ingredients. The 1.5% CEO group demonstrated the best permeation-promoting effect compared to the other CEO groups and blank groups (P<0.05). Furthermore, the CEO displayed an expedited permeability-promoting effect on hydrophobic ingredients compared to hydrophilic ingredients.
Conclusion: It is concluded that the prepared CEO can promote the transdermal permeation of hydrophobic and hydrophilic ingredients. This study will provide a reference for the application of the prepared CEO in the development of cosmeceuticals with natural efficacy.
背景:角质层(SC)是皮肤的主要屏障,而药妆不同于普通化妆品,它需要通过角质层向皮肤深层输送针对特定皮肤问题的活性成分。因此,我们设计了一种从丹参(Salvia miltiorrhiza Bge)和肉桂(Cinnamomum cassia Presl)中萃取的复合精油(CEO),并辅以龙脑(borneol),以通过SC输送活性成分:方法:采用闪蒸提取法和微波法制备 CEO。此外,还使用气相色谱-质谱法(GCMS)测定了 CEO 的主要成分。利用扫描电子显微镜(SEM)、血栓素-伊红(HE)染色和激光共聚焦扫描显微镜(CLSM)等可视化技术研究了 CEO 对皮肤的渗透促进机制。此外,还通过体外皮肤渗透实验和体内微透析实验测试了 CEO 对疏水性和亲水性成分的渗透促进作用:结果表明,CEO 能够改变 SC 的结构,从而增强疏水性和亲水性成分的透皮渗透。与其他 CEO 组和空白组相比,1.5% CEO 组的渗透促进效果最好:结论:制备的 CEO 可以促进疏水性和亲水性成分的透皮渗透。这项研究将为制备的 CEO 在具有天然功效的药用化妆品开发中的应用提供参考。
{"title":"A Compound Essential Oil Alters Stratum Corneum Structure, Potentially Promoting the Transdermal Permeation of Hydrophobic and Hydrophilic Ingredients.","authors":"Na Yang, Xinyi Ai, Kang Cheng, Yihan Wu, Zhi Lu, Zhenda Liu, Teng Guo, Nianping Feng","doi":"10.2174/1567201820666230120122206","DOIUrl":"10.2174/1567201820666230120122206","url":null,"abstract":"<p><strong>Background: </strong>The stratum corneum (SC) is the main barrier of the skin, and cosmeceuticals are different from ordinary cosmetics in that they need to deliver active ingredients targeting specific skin problems through the SC into the deeper layers of the skin. Thus, we designed a compound essential oil (CEO) extracted from <i>Salvia miltiorrhiza</i> Bge and <i>Cinnamomum cassia</i> Presl, supplemented with borneol to deliver active ingredients through the SC.</p><p><strong>Methods: </strong>The CEO was prepared by flash extraction combined with the microwave method. Moreover, the main components of the CEO were determined using gas chromatography-mass spectrometry (GCMS). Visualization techniques, such as scanning electron microscopy (SEM), haematoxylin-eosin (HE) staining, and confocal laser scanning microscopy (CLSM), were used to study the permeationpromoting mechanism of the CEO on the skin. Furthermore, the permeation-promoting effects of the CEO on both hydrophobic and hydrophilic ingredients were tested <i>via in vitro</i> skin penetration experiments and <i>in vivo</i> microdialysis experiments.</p><p><strong>Results: </strong>The results indicated the ability of the CEO to alter the structure of the SC, leading to enhanced transdermal permeation of hydrophobic and hydrophilic ingredients. The 1.5% CEO group demonstrated the best permeation-promoting effect compared to the other CEO groups and blank groups (P<0.05). Furthermore, the CEO displayed an expedited permeability-promoting effect on hydrophobic ingredients compared to hydrophilic ingredients.</p><p><strong>Conclusion: </strong>It is concluded that the prepared CEO can promote the transdermal permeation of hydrophobic and hydrophilic ingredients. This study will provide a reference for the application of the prepared CEO in the development of cosmeceuticals with natural efficacy.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"744-752"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9126742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A significant amount of research effort is currently focused on investigating the role of exosomes in various cancers. These tiny vesicles, apart from acting as biomarkers, also play a crucial role in tumor formation and development. Several studies have demonstrated that exosomes can be a drug delivery vehicle for cancer therapy. In this paper, we highlight the key advantages of exosomes as a drug delivery candidate, with a particular focus on their low immunogenicity, natural targeting ability and suitable mechanical properties. Furthermore, we propose that the selection of appropriate exosomes and drug loading methods based on therapeutic goals and product heterogeneity is essential for preparing engineered exosomes. We comprehensively analyzed the superiorities of current drug-loading methods to improve the creation of designed exosomes. Moreover, we systematically review the applications of engineered exosomes in various therapies such as immunotherapy, gene therapy, protein therapy, chemotherapy, indicating that engineered exosomes have the potential to be reliable and, safe drug carriers that can address the unmet needs in cancer clinical practice.
{"title":"Engineered Exosomes for Drug Delivery in Cancer Therapy: A Promising Approach and Application.","authors":"Peiwen Fu, Siqi Yin, Huiying Cheng, Wenrong Xu, Jiajia Jiang","doi":"10.2174/1567201820666230712103942","DOIUrl":"10.2174/1567201820666230712103942","url":null,"abstract":"<p><p>A significant amount of research effort is currently focused on investigating the role of exosomes in various cancers. These tiny vesicles, apart from acting as biomarkers, also play a crucial role in tumor formation and development. Several studies have demonstrated that exosomes can be a drug delivery vehicle for cancer therapy. In this paper, we highlight the key advantages of exosomes as a drug delivery candidate, with a particular focus on their low immunogenicity, natural targeting ability and suitable mechanical properties. Furthermore, we propose that the selection of appropriate exosomes and drug loading methods based on therapeutic goals and product heterogeneity is essential for preparing engineered exosomes. We comprehensively analyzed the superiorities of current drug-loading methods to improve the creation of designed exosomes. Moreover, we systematically review the applications of engineered exosomes in various therapies such as immunotherapy, gene therapy, protein therapy, chemotherapy, indicating that engineered exosomes have the potential to be reliable and, safe drug carriers that can address the unmet needs in cancer clinical practice.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"817-827"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10150216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1567201820666230724151545
Hong Shu, Wenhao Lv, Zhi-Jian Ren, Hui Li, Tiantian Dong, Yao Zhang, Fang Nie
Background: Tumor-associated macrophages (TAMs) are crucial for non-small cell lung cancer (NSCLC) development.
Objective: In this study, polylactic acid-co-glycolic acid (PLGA)-polyethylenimine (PEI) nanobubbles (NBs) carrying STAT6 siRNA were prepared and combined with ultrasound-mediated nanobubbles destruction (UMND) to silence the STAT6 gene, ultimately repolarizing TAMs from the M2 to the M1 phenotype, treating NSCLC in vitro.
Methods: PLGA-PEI NBs-siRNA were prepared and characterised, and their respective ultrasound imaging, biological stabilities and cytotoxicities were detected. Transfection efficiency was evaluated by fluorescence microscopy and flow cytometry. Repolarization of THP-1-derived M2-like macrophages was determined by qPCR and flow cytometry. NSCLC cells (A549) were co-cultured with transfected M2-like macrophages or their associated conditioned medium (CM). Western blotting was used to detect STAT6 gene silencing in M2-like macrophages and markers of epithelial and mesenchymal in A549 cells. The proliferation of A549 cells was detected using CCK-8 and cell colony formation assays. Transwell assays were used to detect the migration and invasion of A549 cells.
Results: PLGA-PEI NBs-siRNA had an average size of 223.13 ± 0.92 nm and a zeta potential of about -5.59 ± 0.97 mV. PLGA-PEI NBs showed excellent ultrasonic imaging capability in addition to biological stability to protect siRNA from degradation. UMND enhanced PLGA-PEI NBs-STAT6 siRNA transfection in M2-like macrophages, which made M2-like macrophages repolarize to M1-like macrophages and prevented proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in A549 cells.
Conclusion: UMND enhanced PLGA-PEI NBs-STAT6 siRNA to repolarize TAMs from the M2 to the M1 phenotype, thus treating NSCLC. These findings provide a promising therapeutic approach for enhancing NSCLC immunotherapy.
{"title":"Ultrasound-mediated PLGA-PEI Nanobubbles Carrying STAT6 SiRNA Enhances NSCLC Treatment <i>via</i> Repolarizing Tumor-associated Macrophages from M2 to M1 Phenotypes.","authors":"Hong Shu, Wenhao Lv, Zhi-Jian Ren, Hui Li, Tiantian Dong, Yao Zhang, Fang Nie","doi":"10.2174/1567201820666230724151545","DOIUrl":"10.2174/1567201820666230724151545","url":null,"abstract":"<p><strong>Background: </strong>Tumor-associated macrophages (TAMs) are crucial for non-small cell lung cancer (NSCLC) development.</p><p><strong>Objective: </strong>In this study, polylactic acid-co-glycolic acid (PLGA)-polyethylenimine (PEI) nanobubbles (NBs) carrying STAT6 siRNA were prepared and combined with ultrasound-mediated nanobubbles destruction (UMND) to silence the STAT6 gene, ultimately repolarizing TAMs from the M2 to the M1 phenotype, treating NSCLC <i>in vitro</i>.</p><p><strong>Methods: </strong>PLGA-PEI NBs-siRNA were prepared and characterised, and their respective ultrasound imaging, biological stabilities and cytotoxicities were detected. Transfection efficiency was evaluated by fluorescence microscopy and flow cytometry. Repolarization of THP-1-derived M2-like macrophages was determined by qPCR and flow cytometry. NSCLC cells (A549) were co-cultured with transfected M2-like macrophages or their associated conditioned medium (CM). Western blotting was used to detect STAT6 gene silencing in M2-like macrophages and markers of epithelial and mesenchymal in A549 cells. The proliferation of A549 cells was detected using CCK-8 and cell colony formation assays. Transwell assays were used to detect the migration and invasion of A549 cells.</p><p><strong>Results: </strong>PLGA-PEI NBs-siRNA had an average size of 223.13 ± 0.92 nm and a zeta potential of about -5.59 ± 0.97 mV. PLGA-PEI NBs showed excellent ultrasonic imaging capability in addition to biological stability to protect siRNA from degradation. UMND enhanced PLGA-PEI NBs-STAT6 siRNA transfection in M2-like macrophages, which made M2-like macrophages repolarize to M1-like macrophages and prevented proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in A549 cells.</p><p><strong>Conclusion: </strong>UMND enhanced PLGA-PEI NBs-STAT6 siRNA to repolarize TAMs from the M2 to the M1 phenotype, thus treating NSCLC. These findings provide a promising therapeutic approach for enhancing NSCLC immunotherapy.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"1114-1127"},"PeriodicalIF":2.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10247880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Drug discovery and development (DDD) is a highly complex process that necessitates precise monitoring and extensive data analysis at each stage. Furthermore, the DDD process is both timeconsuming and costly. To tackle these concerns, artificial intelligence (AI) technology can be used, which facilitates rapid and precise analysis of extensive datasets within a limited timeframe. The pathophysiology of cancer disease is complicated and requires extensive research for novel drug discovery and development. The first stage in the process of drug discovery and development involves identifying targets. Cell structure and molecular functioning are complex due to the vast number of molecules that function constantly, performing various roles. Furthermore, scientists are continually discovering novel cellular mechanisms and molecules, expanding the range of potential targets. Accurately identifying the correct target is a crucial step in the preparation of a treatment strategy. Various forms of AI, such as machine learning, neural-based learning, deep learning, and network-based learning, are currently being utilised in applications, online services, and databases. These technologies facilitate the identification and validation of targets, ultimately contributing to the success of projects. This review focuses on the different types and subcategories of AI databases utilised in the field of drug discovery and target identification for cancer.
{"title":"Role of Artificial Intelligence in Drug Discovery and Target Identification in Cancer.","authors":"Vishal Sharma, Amit Singh, Sanjana Chauhan, Pramod Kumar Sharma, Shubham Chaudhary, Astha Sharma, Omji Porwal, Neeraj Kumar Fuloria","doi":"10.2174/1567201821666230905090621","DOIUrl":"10.2174/1567201821666230905090621","url":null,"abstract":"<p><p>Drug discovery and development (DDD) is a highly complex process that necessitates precise monitoring and extensive data analysis at each stage. Furthermore, the DDD process is both timeconsuming and costly. To tackle these concerns, artificial intelligence (AI) technology can be used, which facilitates rapid and precise analysis of extensive datasets within a limited timeframe. The pathophysiology of cancer disease is complicated and requires extensive research for novel drug discovery and development. The first stage in the process of drug discovery and development involves identifying targets. Cell structure and molecular functioning are complex due to the vast number of molecules that function constantly, performing various roles. Furthermore, scientists are continually discovering novel cellular mechanisms and molecules, expanding the range of potential targets. Accurately identifying the correct target is a crucial step in the preparation of a treatment strategy. Various forms of AI, such as machine learning, neural-based learning, deep learning, and network-based learning, are currently being utilised in applications, online services, and databases. These technologies facilitate the identification and validation of targets, ultimately contributing to the success of projects. This review focuses on the different types and subcategories of AI databases utilised in the field of drug discovery and target identification for cancer.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"870-886"},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10164900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}