Ferritin, as an iron storage protein, has the potential to inhibit ferroptosis by reducing excess intracellular free iron concentrations and lipid reactive oxygen species (ROS). An insufficient amount of ferritin is one of the conditions that can lead to ferroptosis through the Fenton reaction mediated by ferrous iron. Consequently, upregulation of ferritin at the transcriptional or posttranscriptional level may inhibit ferroptosis. In this review, we have discussed the essential role of ferritin in ferroptosis and the regulatory mechanism of ferroptosis in ferritin-deficient individuals. The description of the regulatory factors governing ferritin and its properties in regulating ferroptosis as underlying mechanisms for the pathologies of diseases will allow potential therapeutic approaches to be developed.
{"title":"Ferritin Hinders Ferroptosis in Non-Tumorous Diseases: Regulatory Mechanisms and Potential Consequences.","authors":"Zhongcheng Xie, Qin Hou, Yinling He, Yushu Xie, Qinger Mo, Ziyi Wang, Ziye Zhao, Xi Chen, Tianhong Peng, Liang Li, Wei Xie","doi":"10.2174/0113892037315874240826112422","DOIUrl":"https://doi.org/10.2174/0113892037315874240826112422","url":null,"abstract":"<p><p>Ferritin, as an iron storage protein, has the potential to inhibit ferroptosis by reducing excess intracellular free iron concentrations and lipid reactive oxygen species (ROS). An insufficient amount of ferritin is one of the conditions that can lead to ferroptosis through the Fenton reaction mediated by ferrous iron. Consequently, upregulation of ferritin at the transcriptional or posttranscriptional level may inhibit ferroptosis. In this review, we have discussed the essential role of ferritin in ferroptosis and the regulatory mechanism of ferroptosis in ferritin-deficient individuals. The description of the regulatory factors governing ferritin and its properties in regulating ferroptosis as underlying mechanisms for the pathologies of diseases will allow potential therapeutic approaches to be developed.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.2174/0113892037329528240827180820
Munmun Banerjee, Veda P Pandey
Diet has emerged as a pivotal factor in the current time for diet-induced obesity (DIO). A diet overloaded with fats and carbohydrates and unhealthy dietary habits contribute to the development of DIO through several mechanisms. The prominent ones include the transition of normal gut microbiota to obese microbiota, under-expression of AMPK, and abnormally high levels of adipogenesis. DIO is the root of many diseases. The present review deals with various aspects of DIO and its target proteins that can be specifically used for its treatment. Also, the currently available treatment strategies have been explored. It was found that the expression of five proteins, namely, PPARγ, FTO, CDK4, 14-3-3 ζ protein, and Galectin-1, is upregulated in DIO. They can be used as potential targets for drug-designing studies. Thus, with these targets, the treatment strategy for DIO using natural bioactive compounds can be a safer alternative to medications and bariatric surgeries.
饮食已成为当前饮食诱发肥胖(DIO)的关键因素。富含脂肪和碳水化合物的饮食以及不健康的饮食习惯通过多种机制导致了饮食诱发肥胖症的发生。其中最主要的机制包括正常肠道微生物群向肥胖微生物群的转变、AMPK 表达不足以及异常高水平的脂肪生成。DIO 是许多疾病的根源。本综述涉及 DIO 的各个方面及其可专门用于治疗的靶蛋白。此外,还探讨了目前可用的治疗策略。研究发现,PPARγ、FTO、CDK4、14-3-3 ζ 蛋白和 Galectin-1 这五种蛋白在 DIO 中的表达上调。它们可作为药物设计研究的潜在靶点。因此,有了这些靶点,利用天然生物活性化合物治疗 DIO 的策略可以成为药物治疗和减肥手术的更安全替代方案。
{"title":"Diet-induced Obesity: Pathophysiology, Consequences and Target Specific Therapeutic Strategies.","authors":"Munmun Banerjee, Veda P Pandey","doi":"10.2174/0113892037329528240827180820","DOIUrl":"https://doi.org/10.2174/0113892037329528240827180820","url":null,"abstract":"<p><p>Diet has emerged as a pivotal factor in the current time for diet-induced obesity (DIO). A diet overloaded with fats and carbohydrates and unhealthy dietary habits contribute to the development of DIO through several mechanisms. The prominent ones include the transition of normal gut microbiota to obese microbiota, under-expression of AMPK, and abnormally high levels of adipogenesis. DIO is the root of many diseases. The present review deals with various aspects of DIO and its target proteins that can be specifically used for its treatment. Also, the currently available treatment strategies have been explored. It was found that the expression of five proteins, namely, PPARγ, FTO, CDK4, 14-3-3 ζ protein, and Galectin-1, is upregulated in DIO. They can be used as potential targets for drug-designing studies. Thus, with these targets, the treatment strategy for DIO using natural bioactive compounds can be a safer alternative to medications and bariatric surgeries.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.2174/0113892037316932240806102854
Emily Hendrix, Xinyu Xia, Amy O Stevens, Yi He
Introduction: The PICK1 PDZ domain has been identified as a potential drug target for neurological disorders. After many years of effort, a few inhibitors, such as TAT-C5 and mPD5, have been discovered experimentally to bind to the PDZ domain with a relatively high binding affinity. With the rapid growth of computational research, there is an urgent need for more efficient computational methods to design viable ligands that target proteins.
Method: Recently, a newly developed program called AfDesign (part of ColabDesign) at https:// github.com/sokrypton/ColabDesign), an open-source software built on AlphaFold, has been suggested to be capable of generating ligands that bind to targeted proteins, thus potentially facilitating the ligand development process. To evaluate the performance of this program, we explored its ability to target the PICK1 PDZ domain, given our current understanding of it. We found that the designated length of the ligand and the number of recycles play vital roles in generating ligands with optimal properties.
Results: Utilizing AfDesign with a sequence length of 5 for the ligand produced the highest comparable ligands to that of prior identified ligands. Moreover, these designed ligands displayed significantly lower binding energy compared to manually created sequences.
Conclusion: This work demonstrated that AfDesign can potentially be a powerful tool to facilitate the exploration of the ligand space for the purpose of targeting PDZ domains.
{"title":"Utilizing AfDesign for Developing a Small Molecule Inhibitor of PICK 1-PDZ.","authors":"Emily Hendrix, Xinyu Xia, Amy O Stevens, Yi He","doi":"10.2174/0113892037316932240806102854","DOIUrl":"https://doi.org/10.2174/0113892037316932240806102854","url":null,"abstract":"<p><strong>Introduction: </strong>The PICK1 PDZ domain has been identified as a potential drug target for neurological disorders. After many years of effort, a few inhibitors, such as TAT-C5 and mPD5, have been discovered experimentally to bind to the PDZ domain with a relatively high binding affinity. With the rapid growth of computational research, there is an urgent need for more efficient computational methods to design viable ligands that target proteins.</p><p><strong>Method: </strong>Recently, a newly developed program called AfDesign (part of ColabDesign) at https:// github.com/sokrypton/ColabDesign), an open-source software built on AlphaFold, has been suggested to be capable of generating ligands that bind to targeted proteins, thus potentially facilitating the ligand development process. To evaluate the performance of this program, we explored its ability to target the PICK1 PDZ domain, given our current understanding of it. We found that the designated length of the ligand and the number of recycles play vital roles in generating ligands with optimal properties.</p><p><strong>Results: </strong>Utilizing AfDesign with a sequence length of 5 for the ligand produced the highest comparable ligands to that of prior identified ligands. Moreover, these designed ligands displayed significantly lower binding energy compared to manually created sequences.</p><p><strong>Conclusion: </strong>This work demonstrated that AfDesign can potentially be a powerful tool to facilitate the exploration of the ligand space for the purpose of targeting PDZ domains.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.2174/0113892037319188240806074731
Devesh U Kapoor, Mansi Gaur, Akash Kumar, Mohd Nazam Ansari, Bhupendra Prajapati
The biotechnology field has witnessed rapid advancements, leading to the development of numerous proteins and peptides (PPs) for disease management. The production and isolation of bioactive milk peptides (BAPs) involve enzymatic hydrolysis and fermentation, followed by purification through various techniques such as ultrafiltration and chromatography. The nutraceutical potential of bioactive milk peptides has gained significant attention in nutritional research, as these peptides may regulate blood sugar levels, mitigate oxidative stress, improve cardiovascular health, gut health, bone health, and immune responses, and exhibit anticancer properties. However, to enhance BAP bioavailability, the encapsulation method can be used to offer protection against protease degradation and controlled release. This article provides insights into the composition, types, production, isolation, bioavailability, and health benefits of BAPs.
{"title":"Bioactive Milk Peptides as a Nutraceutical Opportunity and Challenges.","authors":"Devesh U Kapoor, Mansi Gaur, Akash Kumar, Mohd Nazam Ansari, Bhupendra Prajapati","doi":"10.2174/0113892037319188240806074731","DOIUrl":"https://doi.org/10.2174/0113892037319188240806074731","url":null,"abstract":"<p><p>The biotechnology field has witnessed rapid advancements, leading to the development of numerous proteins and peptides (PPs) for disease management. The production and isolation of bioactive milk peptides (BAPs) involve enzymatic hydrolysis and fermentation, followed by purification through various techniques such as ultrafiltration and chromatography. The nutraceutical potential of bioactive milk peptides has gained significant attention in nutritional research, as these peptides may regulate blood sugar levels, mitigate oxidative stress, improve cardiovascular health, gut health, bone health, and immune responses, and exhibit anticancer properties. However, to enhance BAP bioavailability, the encapsulation method can be used to offer protection against protease degradation and controlled release. This article provides insights into the composition, types, production, isolation, bioavailability, and health benefits of BAPs.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Preeclampsia (PE) is an immensely prevalent condition that poses a significant risk to both maternal and fetal health. It is recognized as a primary cause of perinatal morbidity and mortality. Despite extensive research efforts, the precise impact of JDP2 on trophoblast invasion and migration in the context of preeclampsia remains unclear.
Materials and methods: The present study aimed to investigate the differential expression of JDP2 between normal control and preeclampsia placentas through the use of quantitative polymerase chain reaction (qPCR), western blotting, and immunostaining techniques. Furthermore, the effects of JDP2 overexpression and silencing on the migration, invasion, and wound healing capabilities of HTR-8/SVneo cells were evaluated. In addition, this study also examined the impact of JDP2 on epithelial-mesenchymal transition (EMT)-associated biomarkers and the Wnt/β-catenin pathway.
Results: In the present investigation, it was ascertained that Jun dimerization protein 2 (JDP2) exhibited a substantial decrease in expression levels in placentae afflicted with preeclampsia in comparison to those of normal placentae. Impairment in migration and invasion was noted upon JDP2 down-regulation, whereas augmentation of migration and invasion was observed upon JDP2 overexpression in HTR-8/SVneo cells. Subsequently, western blot and immunofluorescence assays were conducted, revealing marked alterations in EMT-associated biomarkers, such as E-cadherin, N-cadherin, and β-catenin, thereby indicating that JDP2 can facilitate cell invasion by modulating the EMT process in HTR-8/SVneo cells. Finally, activation of Wnt/β-catenin signaling was observed as a result of JDP2. After that, IWR-1, a Wnt inhibitor, was used in the recovery study. IWR-1 could inhibit the role of JDP2 in promoting migration and invasion in HTR-8/SVneo cells.
Conclusion: Our findings elucidated the impact of JDP2 on trophoblast invasion and migration in preeclampsia by suppressing the EMT through the Wnt/β-catenin signaling pathway, thereby offering a potential prognostic and therapeutic biomarker for this condition.
{"title":"Down-Regulated JDP2 Attenuated Trophoblast Invasion and Migration in Preeclampsia by Inhibiting Epithelial-Mesenchymal Transition through the Wnt/β-Catenin Pathway.","authors":"Ziyan Jiang, Shiyun Huang, Tingting Ying, Lenan Liu, Yufei Han, Runrun Feng, Haiyan Sun, Ceng Cao, Qing Zuo, Zhiping Ge","doi":"10.2174/0113892037332988240816052550","DOIUrl":"https://doi.org/10.2174/0113892037332988240816052550","url":null,"abstract":"<p><strong>Introduction: </strong>Preeclampsia (PE) is an immensely prevalent condition that poses a significant risk to both maternal and fetal health. It is recognized as a primary cause of perinatal morbidity and mortality. Despite extensive research efforts, the precise impact of JDP2 on trophoblast invasion and migration in the context of preeclampsia remains unclear.</p><p><strong>Materials and methods: </strong>The present study aimed to investigate the differential expression of JDP2 between normal control and preeclampsia placentas through the use of quantitative polymerase chain reaction (qPCR), western blotting, and immunostaining techniques. Furthermore, the effects of JDP2 overexpression and silencing on the migration, invasion, and wound healing capabilities of HTR-8/SVneo cells were evaluated. In addition, this study also examined the impact of JDP2 on epithelial-mesenchymal transition (EMT)-associated biomarkers and the Wnt/β-catenin pathway.</p><p><strong>Results: </strong>In the present investigation, it was ascertained that Jun dimerization protein 2 (JDP2) exhibited a substantial decrease in expression levels in placentae afflicted with preeclampsia in comparison to those of normal placentae. Impairment in migration and invasion was noted upon JDP2 down-regulation, whereas augmentation of migration and invasion was observed upon JDP2 overexpression in HTR-8/SVneo cells. Subsequently, western blot and immunofluorescence assays were conducted, revealing marked alterations in EMT-associated biomarkers, such as E-cadherin, N-cadherin, and β-catenin, thereby indicating that JDP2 can facilitate cell invasion by modulating the EMT process in HTR-8/SVneo cells. Finally, activation of Wnt/β-catenin signaling was observed as a result of JDP2. After that, IWR-1, a Wnt inhibitor, was used in the recovery study. IWR-1 could inhibit the role of JDP2 in promoting migration and invasion in HTR-8/SVneo cells.</p><p><strong>Conclusion: </strong>Our findings elucidated the impact of JDP2 on trophoblast invasion and migration in preeclampsia by suppressing the EMT through the Wnt/β-catenin signaling pathway, thereby offering a potential prognostic and therapeutic biomarker for this condition.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.2174/0113892037317887240625054710
Brandt Bertrand, Pablo Luis Hernández Adame, Carlos Munoz-Garay
Antimicrobial peptides (AMPs) are recognized for their potential application as new generation antibiotics, however, up to date, they have not been widely commercialized as expected. Although current bioinformatic tools can predict antimicrobial activity based on only amino acid sequences with astounding accuracy, peptide selectivity and potency are not foreseeable. This, in turn, creates a bottleneck not only in the discovery and isolation of promising candidates but, most importantly, in the design and development of novel synthetic peptides. In this paper, we discuss the challenges faced when trying to predict peptide selectivity and potency, based on peptide sequence, structure and relevant biophysical properties such as length, net charge and hydrophobicity. Here, pore-forming alpha-helical antimicrobial peptides family isolated from anurans was used as the case study. Our findings revealed no congruent relationship between the predicted peptide properties and reported microbial assay data, such as minimum inhibitory concentrations against microorganisms and hemolysis. In many instances, the peptides with the best physicochemical properties performed poorly against microbial strains. In some cases, the predicted properties were so similar that differences in activity amongst peptides of the same family could not be projected. Our general conclusion is that antimicrobial peptides of interest must be carefully examined since there is no universal strategy for accurately predicting their behavior.
{"title":"How Useful are Antimicrobial Peptide Properties for Predicting Activity, Selectivity, and Potency?","authors":"Brandt Bertrand, Pablo Luis Hernández Adame, Carlos Munoz-Garay","doi":"10.2174/0113892037317887240625054710","DOIUrl":"10.2174/0113892037317887240625054710","url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are recognized for their potential application as new generation antibiotics, however, up to date, they have not been widely commercialized as expected. Although current bioinformatic tools can predict antimicrobial activity based on only amino acid sequences with astounding accuracy, peptide selectivity and potency are not foreseeable. This, in turn, creates a bottleneck not only in the discovery and isolation of promising candidates but, most importantly, in the design and development of novel synthetic peptides. In this paper, we discuss the challenges faced when trying to predict peptide selectivity and potency, based on peptide sequence, structure and relevant biophysical properties such as length, net charge and hydrophobicity. Here, pore-forming alpha-helical antimicrobial peptides family isolated from anurans was used as the case study. Our findings revealed no congruent relationship between the predicted peptide properties and reported microbial assay data, such as minimum inhibitory concentrations against microorganisms and hemolysis. In many instances, the peptides with the best physicochemical properties performed poorly against microbial strains. In some cases, the predicted properties were so similar that differences in activity amongst peptides of the same family could not be projected. Our general conclusion is that antimicrobial peptides of interest must be carefully examined since there is no universal strategy for accurately predicting their behavior.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.2174/0113892037293525240621120033
Shishi Jiang, Hongbing Nie, Shan Hua, Meng Xie, Renshi Xu
Objective: Proteomic elucidation is an essential step in improving our understanding of the biological properties of proteins in amyotrophic lateral sclerosis (ALS).
Methods: Preliminary proteomic analysis was performed on the spinal cord and brain of SOD1 G93A (TG) and wild-type (WT) mice using isobaric tags for relative and absolute quantitation.
Results: Partial up- and downregulated proteins showing significant differences between TG and WT mice were identified, of which 105 proteins overlapped with differentially expressed proteins in both the spinal cord and brain of progression mice. Bioinformatic analyses using Gene Ontology, a cluster of orthologous groups, and Kyoto Encyclopedia of Genes and Genomes pathway revealed that the significantly up- and downregulated proteins represented multiple biological functions closely related to ALS, with 105 overlapping differentially expressed proteins in the spinal cord and brain at the progression stage of TG mice closely related to 122 pathways. Differentially expressed proteins involved in a set of molecular functions play essential roles in maintaining neural cell survival.
Conclusion: This study provides additional proteomic profiles of TG mice, including potential overlapping proteins in both the spinal cord and brain that participate in pathogenesis, as well as novel insights into the up- and downregulation of proteins involved in the pathogenesis of ALS.
目的蛋白质组学分析是提高我们对肌萎缩性脊髓侧索硬化症(ALS)蛋白质生物学特性认识的重要一步:使用等位标签对 SOD1 G93A(TG)小鼠和野生型(WT)小鼠的脊髓和大脑进行了初步的蛋白质组分析,以进行相对和绝对定量:结果:发现了TG和WT小鼠之间存在显著差异的部分上调和下调蛋白,其中105个蛋白与进展期小鼠脊髓和大脑中的差异表达蛋白重叠。利用基因本体、同源群和京都基因组百科全书途径进行的生物信息学分析表明,显著上调和下调的蛋白质代表了与ALS密切相关的多种生物学功能,其中105个重叠的差异表达蛋白质在TG小鼠进展期的脊髓和大脑中与122种途径密切相关。参与一系列分子功能的差异表达蛋白在维持神经细胞存活方面发挥着至关重要的作用:本研究提供了更多 TG 小鼠的蛋白质组图谱,包括脊髓和大脑中参与发病机制的潜在重叠蛋白质,以及对参与 ALS 发病机制的蛋白质上调和下调的新见解。
{"title":"Preliminary Analysis of Potentially Overlapping Differentially Expressed Proteins in Both the Spinal Cord and Brain of SOD1 G93A Mice.","authors":"Shishi Jiang, Hongbing Nie, Shan Hua, Meng Xie, Renshi Xu","doi":"10.2174/0113892037293525240621120033","DOIUrl":"https://doi.org/10.2174/0113892037293525240621120033","url":null,"abstract":"<p><strong>Objective: </strong>Proteomic elucidation is an essential step in improving our understanding of the biological properties of proteins in amyotrophic lateral sclerosis (ALS).</p><p><strong>Methods: </strong>Preliminary proteomic analysis was performed on the spinal cord and brain of SOD1 G93A (TG) and wild-type (WT) mice using isobaric tags for relative and absolute quantitation.</p><p><strong>Results: </strong>Partial up- and downregulated proteins showing significant differences between TG and WT mice were identified, of which 105 proteins overlapped with differentially expressed proteins in both the spinal cord and brain of progression mice. Bioinformatic analyses using Gene Ontology, a cluster of orthologous groups, and Kyoto Encyclopedia of Genes and Genomes pathway revealed that the significantly up- and downregulated proteins represented multiple biological functions closely related to ALS, with 105 overlapping differentially expressed proteins in the spinal cord and brain at the progression stage of TG mice closely related to 122 pathways. Differentially expressed proteins involved in a set of molecular functions play essential roles in maintaining neural cell survival.</p><p><strong>Conclusion: </strong>This study provides additional proteomic profiles of TG mice, including potential overlapping proteins in both the spinal cord and brain that participate in pathogenesis, as well as novel insights into the up- and downregulation of proteins involved in the pathogenesis of ALS.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.2174/0113892037315931240618085529
Moahammadjavad Sotoudeheian
Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) is a broad condition characterized by lipid accumulation in the liver tissue, which can progress to fibrosis and cirrhosis if left untreated. Traditionally, liver biopsy is the gold standard for evaluating fibrosis. However, non-invasive biomarkers of liver fibrosis are developed to assess the fibrosis without the risk of biopsy complications. Novel serum biomarkers have emerged as a promising tool for non-invasive assessment of liver fibrosis in MAFLD patients. Several studies have shown that elevated levels of Mac-2 binding protein glycosylation isomer (M2BPGi) are associated with increased liver fibrosis severity in MAFLD patients. This suggests that M2BPGi could serve as a reliable marker for identifying individuals at higher risk of disease progression. Furthermore, the use of M2BPGi offers a non-invasive alternative to liver biopsy, which is invasive and prone to sampling errors. Overall, the usage of M2BPGi in assessing liver fibrosis in MAFLD holds great promise for improving risk stratification and monitoring disease progression in affected individuals. Further research is needed to validate its utility in clinical practice and establish standardized protocols for its implementation.
{"title":"Value of Mac-2 Binding Protein Glycosylation Isomer (M2BPGi) in Assessing Liver Fibrosis in Metabolic Dysfunction-Associated Liver Disease: A Comprehensive Review of its Serum Biomarker Role.","authors":"Moahammadjavad Sotoudeheian","doi":"10.2174/0113892037315931240618085529","DOIUrl":"https://doi.org/10.2174/0113892037315931240618085529","url":null,"abstract":"<p><p>Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) is a broad condition characterized by lipid accumulation in the liver tissue, which can progress to fibrosis and cirrhosis if left untreated. Traditionally, liver biopsy is the gold standard for evaluating fibrosis. However, non-invasive biomarkers of liver fibrosis are developed to assess the fibrosis without the risk of biopsy complications. Novel serum biomarkers have emerged as a promising tool for non-invasive assessment of liver fibrosis in MAFLD patients. Several studies have shown that elevated levels of Mac-2 binding protein glycosylation isomer (M2BPGi) are associated with increased liver fibrosis severity in MAFLD patients. This suggests that M2BPGi could serve as a reliable marker for identifying individuals at higher risk of disease progression. Furthermore, the use of M2BPGi offers a non-invasive alternative to liver biopsy, which is invasive and prone to sampling errors. Overall, the usage of M2BPGi in assessing liver fibrosis in MAFLD holds great promise for improving risk stratification and monitoring disease progression in affected individuals. Further research is needed to validate its utility in clinical practice and establish standardized protocols for its implementation.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.2174/0113892037314062240618193044
Orkid Coskuner-Weber, Vladimir N Uversky
The phenomenon of Liquid-Liquid Phase Separation (LLPS) serves as a vital mechanism for the spatial organization of biomolecules, significantly influencing the elementary processes within the cellular milieu. Intrinsically disordered proteins, or proteins endowed with intrinsically disordered regions, are pivotal in driving this biophysical process, thereby dictating the formation of non-membranous cellular compartments. Compelling evidence has linked aberrations in LLPS to the pathogenesis of various neurodegenerative diseases, underscored by the disordered proteins' proclivity to form pathological aggregates. This study meticulously evaluates the arsenal of contemporary experimental and computational methodologies dedicated to the examination of intrinsically disordered proteins within the context of LLPS. Through a discerning discourse on the capabilities and constraints of these investigative techniques, we unravel the intricate contributions of these ubiquitous proteins to LLPS and neurodegeneration. Moreover, we project a future trajectory for the field, contemplating on innovative research tools and their potential to elucidate the underlying mechanisms of LLPS, with the ultimate goal of fostering new therapeutic avenues for combating neurodegenerative disorders.
{"title":"Liquid-Liquid Phase Separation Associated with Intrinsically Disordered Proteins: Experimental and Computational Tools.","authors":"Orkid Coskuner-Weber, Vladimir N Uversky","doi":"10.2174/0113892037314062240618193044","DOIUrl":"https://doi.org/10.2174/0113892037314062240618193044","url":null,"abstract":"<p><p>The phenomenon of Liquid-Liquid Phase Separation (LLPS) serves as a vital mechanism for the spatial organization of biomolecules, significantly influencing the elementary processes within the cellular milieu. Intrinsically disordered proteins, or proteins endowed with intrinsically disordered regions, are pivotal in driving this biophysical process, thereby dictating the formation of non-membranous cellular compartments. Compelling evidence has linked aberrations in LLPS to the pathogenesis of various neurodegenerative diseases, underscored by the disordered proteins' proclivity to form pathological aggregates. This study meticulously evaluates the arsenal of contemporary experimental and computational methodologies dedicated to the examination of intrinsically disordered proteins within the context of LLPS. Through a discerning discourse on the capabilities and constraints of these investigative techniques, we unravel the intricate contributions of these ubiquitous proteins to LLPS and neurodegeneration. Moreover, we project a future trajectory for the field, contemplating on innovative research tools and their potential to elucidate the underlying mechanisms of LLPS, with the ultimate goal of fostering new therapeutic avenues for combating neurodegenerative disorders.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.2174/0113892037307636240612112408
Rahul Pratap Singh, Sonali
{"title":"Current Trends and Challenges in Targeting Tumor Mitochondrial Glycolysis and Oxidative Phosphorylation Pathways for Cancer Therapy.","authors":"Rahul Pratap Singh, Sonali","doi":"10.2174/0113892037307636240612112408","DOIUrl":"https://doi.org/10.2174/0113892037307636240612112408","url":null,"abstract":"","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}