首页 > 最新文献

Current protein & peptide science最新文献

英文 中文
Intercellular Interactions Mediated by HGF And TGF-Β Promote the 3D Spherical and Xenograft Growth of Liver Cancer Cells. 由 HGF 和 TGF-Β 介导的细胞间相互作用促进肝癌细胞的三维球形和异种移植生长
IF 2.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/1389203724666230825100318
Zheng Peng, Xiaolan Lv, Pengfei Zhang, Qiao Chen, Hongyu Zhang, Jianlin Chen, Xingxuan Ma, Bohui Ouyang, Meng Hao, Haibo Tong, Dongwei Guo, Yi Luo, Shigao Huang

Background: Recently, the importance of the interactions between liver cancer cells and fibroblasts has been increasingly recognized; however, many details remain to be explored.

Methods: In this work, we first studied their intercellular interactions using conditioned medium from mouse embryonic fibroblasts (MEFs), then through a previously established coculture model.

Results: Culturing in a conditioned medium from MEFs could significantly increase the growth, migration, and invasion of liver cancer cells. The coculture model further demonstrated that a positive feedback loop was formed between transforming growth factor-β (TGF-β) from HepG2 cells and mHGF (mouse hepatocyte growth factor) from MEFs during coculture. In this feedback loop, c-Met expression in HepG2 cells was significantly increased, and its downstream signaling pathways, such as Src/FAK, PI3K/AKT, and RAF/MEK/ERK, were activated. Moreover, the proportion of activated MEFs was also increased. More importantly, the growth-promoting effects caused by the interaction of these two cell types were validated in vitro by a 3D spheroid growth assay and in vivo by a xenograft mouse model.

Conclusion: Collectively, these findings provide valuable insights into the interactions between fibroblasts and liver cancer cells, which may have therapeutic implications for the treatment of liver cancer.

背景:近来,肝癌细胞与成纤维细胞之间相互作用的重要性日益得到认可,但许多细节仍有待探索:近来,肝癌细胞与成纤维细胞之间相互作用的重要性日益得到认可;然而,许多细节仍有待探索:在这项工作中,我们首先使用小鼠胚胎成纤维细胞(MEFs)的条件培养基研究了它们的细胞间相互作用,然后通过之前建立的共培养模型进行了研究:结果:用小鼠胚胎成纤维细胞的条件培养基培养肝癌细胞,能显著提高肝癌细胞的生长、迁移和侵袭能力。共培养模型进一步证明,在共培养过程中,来自 HepG2 细胞的转化生长因子-β(TGF-β)和来自 MEFs 的 mHGF(小鼠肝细胞生长因子)之间形成了正反馈回路。在这一反馈回路中,HepG2 细胞中的 c-Met 表达明显增加,其下游信号通路,如 Src/FAK、PI3K/AKT 和 RAF/MEK/ERK,也被激活。此外,活化的 MEFs 比例也有所增加。更重要的是,这两种细胞的相互作用所产生的促进生长效应在体外通过三维球状生长试验得到了验证,在体内则通过异种移植小鼠模型得到了验证:总之,这些发现为了解成纤维细胞与肝癌细胞之间的相互作用提供了宝贵的视角,可能对肝癌的治疗具有重要意义。
{"title":"Intercellular Interactions Mediated by HGF And TGF-Β Promote the 3D Spherical and Xenograft Growth of Liver Cancer Cells.","authors":"Zheng Peng, Xiaolan Lv, Pengfei Zhang, Qiao Chen, Hongyu Zhang, Jianlin Chen, Xingxuan Ma, Bohui Ouyang, Meng Hao, Haibo Tong, Dongwei Guo, Yi Luo, Shigao Huang","doi":"10.2174/1389203724666230825100318","DOIUrl":"10.2174/1389203724666230825100318","url":null,"abstract":"<p><strong>Background: </strong>Recently, the importance of the interactions between liver cancer cells and fibroblasts has been increasingly recognized; however, many details remain to be explored.</p><p><strong>Methods: </strong>In this work, we first studied their intercellular interactions using conditioned medium from mouse embryonic fibroblasts (MEFs), then through a previously established coculture model.</p><p><strong>Results: </strong>Culturing in a conditioned medium from MEFs could significantly increase the growth, migration, and invasion of liver cancer cells. The coculture model further demonstrated that a positive feedback loop was formed between transforming growth factor-β (TGF-β) from HepG2 cells and mHGF (mouse hepatocyte growth factor) from MEFs during coculture. In this feedback loop, c-Met expression in HepG2 cells was significantly increased, and its downstream signaling pathways, such as Src/FAK, PI3K/AKT, and RAF/MEK/ERK, were activated. Moreover, the proportion of activated MEFs was also increased. More importantly, the growth-promoting effects caused by the interaction of these two cell types were validated <i>in vitro</i> by a 3D spheroid growth assay and <i>in vivo</i> by a xenograft mouse model.</p><p><strong>Conclusion: </strong>Collectively, these findings provide valuable insights into the interactions between fibroblasts and liver cancer cells, which may have therapeutic implications for the treatment of liver cancer.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"71-82"},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10111453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Review on the Significance of Cysteine in Various Metabolic Disorders; Particularly CVD, Diabetes, Renal Dysfunction, and Ischemic Stroke. 全面回顾半胱氨酸在各种代谢紊乱,尤其是心血管疾病、糖尿病、肾功能障碍和缺血性中风中的重要作用。
IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892037287215240424090908
Namra Aziz, Pranay Wal, Rishika Sinha, Prashant Ramesh Shirode, GunoSindhu Chakraborthy, Mukesh Chandra Sharma, Pankaj Kumar

Metabolic disorders have long been a challenge for medical professionals and are a leading cause of mortality in adults. Diabetes, cardiovascular disorders (CVD), renal dysfunction, and ischemic stroke are the most prevalent ailments contributing to a high mortality rate worldwide. Reactive oxygen species are one of the leading factors that act as a fundamental root cause of metabolic syndrome. All of these disorders have their respective treatments, which, to some degree, sabotage the pathological worsening of the disease and an inevitable death. However, they pose a perilous health hazard to humankind. Cysteine, a functional amino acid shows promise for the prevention and treatment of metabolic disorders, such as CVD, Diabetes mellitus, renal dysfunction, and ischemic stroke. In this review, we explored whether cysteine can eradicate reactive oxygen species and subsequently prevent and treat these diseases.

长期以来,代谢紊乱一直是医学专家面临的难题,也是导致成人死亡的主要原因之一。糖尿病、心血管疾病(CVD)、肾功能障碍和缺血性中风是导致全球高死亡率的最常见疾病。活性氧是导致代谢综合征的主要因素之一。所有这些疾病都有各自的治疗方法,在一定程度上可以阻止疾病的病理恶化和不可避免的死亡。然而,它们对人类的健康构成了危险的威胁。半胱氨酸作为一种功能性氨基酸,在预防和治疗心血管疾病、糖尿病、肾功能障碍和缺血性中风等代谢性疾病方面大有可为。在这篇综述中,我们探讨了半胱氨酸能否消除活性氧,进而预防和治疗这些疾病。
{"title":"A Comprehensive Review on the Significance of Cysteine in Various Metabolic Disorders; Particularly CVD, Diabetes, Renal Dysfunction, and Ischemic Stroke.","authors":"Namra Aziz, Pranay Wal, Rishika Sinha, Prashant Ramesh Shirode, GunoSindhu Chakraborthy, Mukesh Chandra Sharma, Pankaj Kumar","doi":"10.2174/0113892037287215240424090908","DOIUrl":"10.2174/0113892037287215240424090908","url":null,"abstract":"<p><p>Metabolic disorders have long been a challenge for medical professionals and are a leading cause of mortality in adults. Diabetes, cardiovascular disorders (CVD), renal dysfunction, and ischemic stroke are the most prevalent ailments contributing to a high mortality rate worldwide. Reactive oxygen species are one of the leading factors that act as a fundamental root cause of metabolic syndrome. All of these disorders have their respective treatments, which, to some degree, sabotage the pathological worsening of the disease and an inevitable death. However, they pose a perilous health hazard to humankind. Cysteine, a functional amino acid shows promise for the prevention and treatment of metabolic disorders, such as CVD, Diabetes mellitus, renal dysfunction, and ischemic stroke. In this review, we explored whether cysteine can eradicate reactive oxygen species and subsequently prevent and treat these diseases.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"682-707"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bile Acids as Signaling Molecules: Role of Ursodeoxycholic Acid in Cholestatic Liver Disease. 作为信号分子的胆汁酸:熊去氧胆酸在胆汁淤积性肝病中的作用
IF 2.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/1389203724666230818092800
Eduardo Cifuentes-Silva, Claudio Cabello-Verrugio

Ursodeoxycholic acid (UDCA) is a natural substance physiologically produced in the liver. Initially used to dissolve gallstones, it is now successfully used in treating primary biliary cirrhosis and as adjuvant therapy for various hepatobiliary cholestatic diseases. However, the mechanisms underlying its beneficial effects still need to be clarified. Evidence suggests three mechanisms of action for UDCA that could benefit humans with cholestatic liver disease (CLD): protection of cholangiocytes against hydrophobic bile acid (BA) cytotoxicity, stimulation of hepatobiliary excretion, and protection of hepatocytes against BA-induced apoptosis. These mechanisms may act individually or together to potentiate them. At the molecular level, it has been observed that UDCA can generate modifications in the transcription and translation of proteins essential in the transport of BA, correcting the deficit in BA secretion in CLD, in addition to activating signaling pathways to translocate these transporters to the sites where they should fulfill their function. Inhibition of BA-induced hepatocyte apoptosis may play a role in CLD, characterized by BA retention in the hepatocyte. Thus, different mechanisms of action contribute to the improvement after UDCA administration in CLD. On the other hand, the effects of UDCA on tissues that possess receptors that may interact with BAs in pathological contexts, such as skeletal muscle, are still unclear. This work aims to describe the main molecular mechanisms by which UDCA acts in the human body, emphasizing the interaction in tissues other than the liver.

熊去氧胆酸(UDCA)是一种在肝脏中生理生成的天然物质。它最初用于溶解胆结石,现在已成功用于治疗原发性胆汁性肝硬化和各种肝胆胆汁淤积性疾病的辅助治疗。然而,其有益作用的机制仍有待明确。有证据表明,UDCA 的三种作用机制可使胆汁淤积性肝病(CLD)患者受益:保护胆管细胞免受疏水性胆汁酸(BA)的细胞毒性作用;刺激肝胆排泄;保护肝细胞免受 BA 诱导的细胞凋亡作用。这些机制可能单独起作用,也可能共同起作用,从而增强它们的功效。在分子水平上,除了激活信号通路将这些转运体转运到它们应该发挥功能的部位外,还观察到 UDCA 可以改变转运 BA 所必需的蛋白质的转录和翻译,从而纠正 CLD 中 BA 分泌的不足。抑制 BA 诱导的肝细胞凋亡可能对以 BA 在肝细胞内滞留为特征的 CLD 起到一定作用。因此,不同的作用机制有助于在服用 UDCA 后改善 CLD 的病情。另一方面,UDCA 对骨骼肌等组织的影响仍不清楚,因为这些组织拥有受体,在病理情况下可能会与 BA 发生相互作用。本研究旨在描述 UDCA 在人体内发挥作用的主要分子机制,并强调其在肝脏以外组织中的相互作用。
{"title":"Bile Acids as Signaling Molecules: Role of Ursodeoxycholic Acid in Cholestatic Liver Disease.","authors":"Eduardo Cifuentes-Silva, Claudio Cabello-Verrugio","doi":"10.2174/1389203724666230818092800","DOIUrl":"10.2174/1389203724666230818092800","url":null,"abstract":"<p><p>Ursodeoxycholic acid (UDCA) is a natural substance physiologically produced in the liver. Initially used to dissolve gallstones, it is now successfully used in treating primary biliary cirrhosis and as adjuvant therapy for various hepatobiliary cholestatic diseases. However, the mechanisms underlying its beneficial effects still need to be clarified. Evidence suggests three mechanisms of action for UDCA that could benefit humans with cholestatic liver disease (CLD): protection of cholangiocytes against hydrophobic bile acid (BA) cytotoxicity, stimulation of hepatobiliary excretion, and protection of hepatocytes against BA-induced apoptosis. These mechanisms may act individually or together to potentiate them. At the molecular level, it has been observed that UDCA can generate modifications in the transcription and translation of proteins essential in the transport of BA, correcting the deficit in BA secretion in CLD, in addition to activating signaling pathways to translocate these transporters to the sites where they should fulfill their function. Inhibition of BA-induced hepatocyte apoptosis may play a role in CLD, characterized by BA retention in the hepatocyte. Thus, different mechanisms of action contribute to the improvement after UDCA administration in CLD. On the other hand, the effects of UDCA on tissues that possess receptors that may interact with BAs in pathological contexts, such as skeletal muscle, are still unclear. This work aims to describe the main molecular mechanisms by which UDCA acts in the human body, emphasizing the interaction in tissues other than the liver.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"206-214"},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10012709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein Engineering in Cyanobacterial Biotechnology: Tools and Recent Updates. 蓝藻生物技术中的蛋白质工程:工具和最新进展。
IF 2.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/1389203724666230822100104
Swati Tyagi, Srabani Kar, Amit Srivastava, Pratyoosh Shukla

Cyanobacteria have emerged as a microbial cell factory to produce a variety of bioproducts, including peptides and proteins. Cyanobacteria stand out among other organisms due to their photoautotrophic metabolism and ability to produce a wide range of metabolites. As photoautotrophic hosts can produce industrial compounds and proteins by using minimal resources such as sunlight, atmospheric carbon dioxide, and fewer nutrients, cyanobacteria are cost-effective industrial hosts. Therefore, the use of protein engineering tools for rational protein design, and the desired modification of enzyme activity has become a desirable undertaking in cyanobacterial biology. Protein engineering can improve their biological functions as well as the stability of their intracellular proteins. This review aims to highlight the success of protein engineering in the direction of cyanobacterial biotechnology and outlines the emerging technologies, current challenges, and prospects of protein engineering in cyanobacterial biotechnology.

蓝藻已成为生产包括肽和蛋白质在内的各种生物产品的微生物细胞工厂。蓝藻因其光自养新陈代谢和生产多种代谢物的能力而在众多生物中脱颖而出。由于光自养宿主可以利用最少的资源(如阳光、大气中的二氧化碳和较少的营养物质)生产工业化合物和蛋白质,因此蓝藻是具有成本效益的工业宿主。因此,利用蛋白质工程工具进行合理的蛋白质设计,并对酶活性进行理想的改造,已成为蓝藻生物学领域的一项理想工作。蛋白质工程可提高蓝藻的生物功能及其胞内蛋白质的稳定性。本综述旨在强调蛋白质工程在蓝藻生物技术方向上取得的成功,并概述蛋白质工程在蓝藻生物技术中的新兴技术、当前挑战和前景。
{"title":"Protein Engineering in Cyanobacterial Biotechnology: Tools and Recent Updates.","authors":"Swati Tyagi, Srabani Kar, Amit Srivastava, Pratyoosh Shukla","doi":"10.2174/1389203724666230822100104","DOIUrl":"10.2174/1389203724666230822100104","url":null,"abstract":"<p><p>Cyanobacteria have emerged as a microbial cell factory to produce a variety of bioproducts, including peptides and proteins. Cyanobacteria stand out among other organisms due to their photoautotrophic metabolism and ability to produce a wide range of metabolites. As photoautotrophic hosts can produce industrial compounds and proteins by using minimal resources such as sunlight, atmospheric carbon dioxide, and fewer nutrients, cyanobacteria are cost-effective industrial hosts. Therefore, the use of protein engineering tools for rational protein design, and the desired modification of enzyme activity has become a desirable undertaking in cyanobacterial biology. Protein engineering can improve their biological functions as well as the stability of their intracellular proteins. This review aims to highlight the success of protein engineering in the direction of cyanobacterial biotechnology and outlines the emerging technologies, current challenges, and prospects of protein engineering in cyanobacterial biotechnology.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"95-106"},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10041969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unfolded Protein Response Signaling in Hepatic Stem Cell Activation in Liver Fibrosis. 肝纤维化中肝脏干细胞活化过程中的折叠蛋白反应信号传导
IF 2.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/1389203724666230822085951
Zohreh Salimi, Mehdi Rostami, Yaser Eshaghi Milasi, Alireza Mafi, Ramin Raoufinia, Amirhossein Kiani, Fariba Sakhaei, Behrooz Ghezelbash, Alexandra E Butler, Maryam Mohammad-Sadeghipour, Amirhossein Sahebkar

Frequent exposure to various external and internal adverse forces (stresses) disrupts cell protein homeostasis through endoplasmic reticulum (ER) capacity saturation. This process leads to the unfolded protein response (UPR), which aims to re-establish/maintain optimal cellular equilibrium. This complex mechanism is involved in the pathogenesis of various disorders, such as metabolic syndrome, fibrotic diseases, neurodegeneration, and cancer, by altering cellular metabolic changes integral to activating the hepatic stellate cells (HSCs). The development of hepatic fibrosis is one of the consequences of UPR activation. Therefore, novel therapies that target the UPR pathway effectively and specifically are being studied. This article covers the involvement of the UPR signaling pathway in cellular damage in liver fibrosis. Investigating the pathogenic pathways related to the ER/UPR stress axis that contribute to liver fibrosis can help to guide future drug therapy approaches.

频繁暴露于各种外部和内部不利力量(压力)之下,会导致内质网(ER)容量饱和,从而破坏细胞蛋白质的平衡。这一过程导致了旨在重建/维持最佳细胞平衡的未折叠蛋白反应(UPR)。这种复杂的机制通过改变激活肝星状细胞(HSCs)不可或缺的细胞代谢变化,参与了代谢综合征、纤维化疾病、神经变性和癌症等各种疾病的发病机制。肝纤维化的发展是 UPR 激活的后果之一。因此,针对 UPR 通路进行有效和特异性治疗的新型疗法正在研究之中。本文介绍了 UPR 信号通路参与肝纤维化中细胞损伤的情况。研究与导致肝纤维化的ER/UPR应激轴相关的致病途径有助于指导未来的药物治疗方法。
{"title":"Unfolded Protein Response Signaling in Hepatic Stem Cell Activation in Liver Fibrosis.","authors":"Zohreh Salimi, Mehdi Rostami, Yaser Eshaghi Milasi, Alireza Mafi, Ramin Raoufinia, Amirhossein Kiani, Fariba Sakhaei, Behrooz Ghezelbash, Alexandra E Butler, Maryam Mohammad-Sadeghipour, Amirhossein Sahebkar","doi":"10.2174/1389203724666230822085951","DOIUrl":"10.2174/1389203724666230822085951","url":null,"abstract":"<p><p>Frequent exposure to various external and internal adverse forces (stresses) disrupts cell protein homeostasis through endoplasmic reticulum (ER) capacity saturation. This process leads to the unfolded protein response (UPR), which aims to re-establish/maintain optimal cellular equilibrium. This complex mechanism is involved in the pathogenesis of various disorders, such as metabolic syndrome, fibrotic diseases, neurodegeneration, and cancer, by altering cellular metabolic changes integral to activating the hepatic stellate cells (HSCs). The development of hepatic fibrosis is one of the consequences of UPR activation. Therefore, novel therapies that target the UPR pathway effectively and specifically are being studied. This article covers the involvement of the UPR signaling pathway in cellular damage in liver fibrosis. Investigating the pathogenic pathways related to the ER/UPR stress axis that contribute to liver fibrosis can help to guide future drug therapy approaches.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"59-70"},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10051372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Update on Dipeptidyl Peptidase-IV Inhibiting Peptides. 二肽基肽酶-IV 抑制肽的最新进展。
IF 2.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892037287976231212104607
Sachithanantham Annapoorani Sivaraman, Varatharajan Sabareesh

Diabetes is a chronic metabolic disorder. According to the International Diabetes Federation, about 537 million people are living with diabetes. The two types of diabetes are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), among which the population affected by T2DM is relatively higher. A major reason for T2DM is that insulin stimulation is hampered due to the inactivation of incretin hormones. Dipeptidyl peptidase-IV (DPP-IV) is a serine protease that is directly involved in the inactivation of incretin hormones, e.g., glucagon-like peptide-1 (GLP-1). Therefore, the inhibition of DPP-IV can be a promising method for managing T2DM, in addition to other enzyme inhibition strategies, such as inhibition of α-amylase and α -glucosidase. Currently, about 12 different gliptin drugs are available in the market that inhibit DPP-IV in a dose-dependent manner. Instead of gliptins, 'peptides' can also be employed as an alternative and promising way to inhibit DPP-IV. Peptide inhibitors of DPP-IV have been identified from various plants and animals. Chemically synthesized peptides have also been experimented for inhibiting DPP-IV. Most peptides have been analysed by biochemical assays, whereas some in vitro assays have also been reported. Molecular docking analysis has been applied to comprehend the mechanism of inhibition. In this review, certain aspects of natural as well as synthetic peptides are described that have been proven to inhibit DPP-IV.

糖尿病是一种慢性代谢紊乱疾病。据国际糖尿病联合会统计,目前约有 5.37 亿人患有糖尿病。糖尿病分为1型糖尿病(T1DM)和2型糖尿病(T2DM),其中T2DM的患病人群相对较多。T2DM 的一个主要原因是增量素激素失活导致胰岛素刺激受阻。二肽基肽酶-IV(DPP-IV)是一种丝氨酸蛋白酶,直接参与增量素激素(如胰高血糖素样肽-1(GLP-1))的失活。因此,除了抑制α-淀粉酶和α-葡萄糖苷酶等其他酶抑制策略外,抑制DPP-IV也是治疗T2DM的一种有前景的方法。目前,市场上约有 12 种格列汀类药物,它们以剂量依赖的方式抑制 DPP-IV。除了格列汀类药物,肽类药物也可作为抑制 DPP-IV 的另一种有前途的方法。在各种植物和动物中都发现了 DPP-IV 的肽抑制剂。化学合成肽也被用于抑制 DPP-IV。大多数肽都是通过生化试验进行分析的,但也有一些体外试验的报道。分子对接分析用于理解抑制机制。在这篇综述中,介绍了已被证实能抑制 DPP-IV 的天然肽和合成肽的某些方面。
{"title":"An Update on Dipeptidyl Peptidase-IV Inhibiting Peptides.","authors":"Sachithanantham Annapoorani Sivaraman, Varatharajan Sabareesh","doi":"10.2174/0113892037287976231212104607","DOIUrl":"10.2174/0113892037287976231212104607","url":null,"abstract":"<p><p>Diabetes is a chronic metabolic disorder. According to the International Diabetes Federation, about 537 million people are living with diabetes. The two types of diabetes are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), among which the population affected by T2DM is relatively higher. A major reason for T2DM is that insulin stimulation is hampered due to the inactivation of incretin hormones. Dipeptidyl peptidase-IV (DPP-IV) is a serine protease that is directly involved in the inactivation of incretin hormones, e.g., glucagon-like peptide-1 (GLP-1). Therefore, the inhibition of DPP-IV can be a promising method for managing T2DM, in addition to other enzyme inhibition strategies, such as inhibition of α-amylase and α -glucosidase. Currently, about 12 different gliptin drugs are available in the market that inhibit DPP-IV in a dose-dependent manner. Instead of gliptins, 'peptides' can also be employed as an alternative and promising way to inhibit DPP-IV. Peptide inhibitors of DPP-IV have been identified from various plants and animals. Chemically synthesized peptides have also been experimented for inhibiting DPP-IV. Most peptides have been analysed by biochemical assays, whereas some <i>in vitro</i> assays have also been reported. Molecular docking analysis has been applied to comprehend the mechanism of inhibition. In this review, certain aspects of natural as well as synthetic peptides are described that have been proven to inhibit DPP-IV.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"267-285"},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139086260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Novel HLM Peptide Activity and Toxicity against Planktonic and Biofilm Bacteria: Comparison to Standard Antibiotics. 评估新型 HLM 肽对浮游细菌和生物膜细菌的活性和毒性:与标准抗生素的比较。
IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892037291252240528110516
Majed M Masadeh, Haneen Alshogran, Mohammad Alsaggar, Salsabeel H Sabi, Enaam M Al Momany, Majd M Masadeh, Nasr Alrabadi, Karem H Alzoubi

Background: Antibiotic resistance is one of the main concerns of public health, and the whole world is trying to overcome such a challenge by finding novel therapeutic modalities and approaches. This study has applied the sequence hybridization approach to the original sequence of two cathelicidin natural parent peptides (BMAP-28 and LL-37) to design a novel HLM peptide with broad antimicrobial activity.

Methods: The physicochemical characteristics of the newly designed peptide were determined. As well, the new peptide's antimicrobial activity (Minimum Inhibitory Concentration (MIC), Minimum Bacterial Eradication Concentration (MBEC), and antibiofilm activity) was tested on two control (Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922) and two resistant (Methicillin-resistant Staphylococcus aureus (MRSA) ATCC BAA41, New Delhi metallo-beta- lactamase-1 Escherichia coli ATCC BAA-2452) bacterial strains. Furthermore, synergistic studies have been applied to HLM-hybridized peptides with five conventional antibiotics by checkerboard assays. Also, the toxicity of HLM-hybridized peptide was studied on Vero cell lines to obtain the IC50 value. Besides the percentage of hemolysis action, the peptide was tested in freshly heparinized blood.

Results: The MIC values for the HLM peptide were obtained as 20, 10, 20, and 20 μM, respectively. Also, the results showed no hemolysis action, with low to slightly moderate toxicity action against mammalian cells, with an IC50 value of 10.06. The Biomatik corporate labs, where HLM was manufactured, determined the stability results of the product by Mass Spectrophotometry (MS) and High-performance Liquid Chromatography (HPLC) methods. The HLM-hybridized peptide exhibited a range of synergistic to additive antimicrobial activities upon combination with five commercially available different antibiotics. It has demonstrated the biofilm-killing effects in the same concentration required to eradicate the control strains.

Conclusion: The results indicated that HLM-hybridized peptide displayed a broad-spectrum activity toward different bacterial strains in planktonic and biofilm forms. It showed synergistic or additive antimicrobial activity upon combining with commercially available different antibiotics.

背景:抗生素耐药性是公共卫生的主要问题之一,全世界都在试图通过寻找新的治疗模式和方法来克服这一挑战。本研究采用序列杂交的方法,对两种猫肝素天然母肽(BMAP-28 和 LL-37)的原始序列进行杂交,设计出一种具有广泛抗菌活性的新型 HLM 肽:方法:测定了新设计多肽的理化特性。方法:测定了新设计多肽的理化特性,并在两个对照组(金黄色葡萄球菌 ATCC 29213、大肠埃希菌 ATCC 2213、大肠杆菌 ATCC 2213)上测试了新多肽的抗菌活性[最低抑菌浓度(MIC)、最低除菌浓度(MBEC)和抗生物膜活性]、金黄色葡萄球菌 ATCC 29213、大肠埃希菌 ATCC 25922)和两种耐药菌株[耐甲氧西林金黄色葡萄球菌(MRSA)ATCC BAA41、新德里金属-β-内酰胺酶-1 型大肠埃希菌 ATCC BAA-2452]进行了测试。此外,还通过棋盘试验对 HLM 杂交肽与五种常规抗生素的协同作用进行了研究。此外,还研究了 HLM 杂交肽对 Vero 细胞系的毒性,以获得 IC50 值。除了溶血作用的百分比外,该肽还在新鲜肝素化血液中进行了测试:结果:HLM 肽的 MIC 值分别为 20、10、20 和 20 μM。此外,研究结果表明,HLM 肽对哺乳动物细胞无溶血作用,毒性为低至中等,IC50 值为 10.06。生产 HLM 的 Biomatik 公司实验室通过质谱光度法(MS)和高效液相色谱法(HPLC)测定了产品的稳定性。HLM杂化肽与五种市售不同抗生素结合后,表现出一系列协同和相加的抗菌活性。结论:结果表明,HLM-杂交肽与五种市售不同抗生素的组合具有协同和相加的抗菌活性:结果表明,HLM-杂化肽对浮游和生物膜形态的不同细菌菌株具有广谱活性。它与市售的不同抗生素结合后,显示出协同或相加的抗菌活性。
{"title":"Evaluation of Novel HLM Peptide Activity and Toxicity against Planktonic and Biofilm Bacteria: Comparison to Standard Antibiotics.","authors":"Majed M Masadeh, Haneen Alshogran, Mohammad Alsaggar, Salsabeel H Sabi, Enaam M Al Momany, Majd M Masadeh, Nasr Alrabadi, Karem H Alzoubi","doi":"10.2174/0113892037291252240528110516","DOIUrl":"10.2174/0113892037291252240528110516","url":null,"abstract":"<p><strong>Background: </strong>Antibiotic resistance is one of the main concerns of public health, and the whole world is trying to overcome such a challenge by finding novel therapeutic modalities and approaches. This study has applied the sequence hybridization approach to the original sequence of two cathelicidin natural parent peptides (BMAP-28 and LL-37) to design a novel HLM peptide with broad antimicrobial activity.</p><p><strong>Methods: </strong>The physicochemical characteristics of the newly designed peptide were determined. As well, the new peptide's antimicrobial activity (Minimum Inhibitory Concentration (MIC), Minimum Bacterial Eradication Concentration (MBEC), and antibiofilm activity) was tested on two control (<i>Staphylococcus aureus</i> ATCC 29213, <i>Escherichia coli</i> ATCC 25922) and two resistant (Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) ATCC BAA41, New Delhi metallo-beta- lactamase-1 Escherichia coli ATCC BAA-2452) bacterial strains. Furthermore, synergistic studies have been applied to HLM-hybridized peptides with five conventional antibiotics by checkerboard assays. Also, the toxicity of HLM-hybridized peptide was studied on Vero cell lines to obtain the IC<sub>50</sub> value. Besides the percentage of hemolysis action, the peptide was tested in freshly heparinized blood.</p><p><strong>Results: </strong>The MIC values for the HLM peptide were obtained as 20, 10, 20, and 20 μM, respectively. Also, the results showed no hemolysis action, with low to slightly moderate toxicity action against mammalian cells, with an IC<sub>50</sub> value of 10.06. The Biomatik corporate labs, where HLM was manufactured, determined the stability results of the product by Mass Spectrophotometry (MS) and High-performance Liquid Chromatography (HPLC) methods. The HLM-hybridized peptide exhibited a range of synergistic to additive antimicrobial activities upon combination with five commercially available different antibiotics. It has demonstrated the biofilm-killing effects in the same concentration required to eradicate the control strains.</p><p><strong>Conclusion: </strong>The results indicated that HLM-hybridized peptide displayed a broad-spectrum activity toward different bacterial strains in planktonic and biofilm forms. It showed synergistic or additive antimicrobial activity upon combining with commercially available different antibiotics.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"826-843"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Potential Role of Phytopharmaceuticals in Alleviating Toxicities of Chemotherapeutic Agents. 探索植物药在减轻化疗药物毒性方面的潜在作用。
IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892037307940240606075208
Ujwal N Katolkar, Sanjay J Surana

Background: Chemotherapy is the mainstay of cancer treatment, bringing patients optimism about recurrence and survival. However, the clinical effectiveness of chemotherapeutic drugs is frequently jeopardized by their intrinsic toxicity, resulting in side effects affecting the quality of life of cancer patients. This analysis explores the ethnopharmacological impact of phytopharmaceuticals, highlighting their traditional use in many cultures. The present study, which takes its cues from indigenous knowledge, aims to close the knowledge gap between traditional medicine and modern medicine in reducing the toxicities of chemotherapy treatments.

Aim: The present in-depth study aims to highlight the current research and upcoming developments in phytopharmaceuticals for reducing the toxicity of chemotherapeutic drugs. Further, we address the mechanisms through which phytopharmaceuticals may reduce chemotherapy-induced side effects that include nausea, vomiting, myelosuppression, nephropathy, neuropathy, and cardiotoxicity using data from a variety of preclinical and clinical investigations.

Materials and methods: The literature search was carried out by employing search engines such as PubMed and Google Scholar with keywords such as cancer, chemotherapy, CNS toxicity, hematopoietic toxicity, renal toxicity, GI toxicity, CNS toxicity, and phytopharmaceuticals.

Results: Bioactive chemicals found in plants, such as fruits, vegetables, herbs, and spices, are being studied for their capacity to improve the safety and acceptability of chemotherapy regimens. The current review also dives into the investigation of phytopharmaceuticals as adjuvant medicines in cancer treatment, which is a viable path for addressing the pressing need to lessen chemotherapy-induced toxicities.

Conclusion: The present review revealed that the potential of phytopharmaceuticals in alleviating chemotherapeutic drug toxicities would pave the way for better cancer treatment and patient outcomes, harmonizing with the larger trend towards personalized and holistic approaches to chemotherapy.

背景:化疗是癌症治疗的主要手段,为患者的复发和生存带来了希望。然而,化疗药物的内在毒性常常危及其临床疗效,导致副作用影响癌症患者的生活质量。本分析探讨了植物药的民族药理学影响,强调了它们在许多文化中的传统用途。本研究从本土知识中汲取灵感,旨在缩小传统医学与现代医学在降低化疗毒性方面的知识差距。目的:本深入研究旨在强调植物药在降低化疗药物毒性方面的现有研究和未来发展。此外,我们还利用各种临床前和临床研究的数据,探讨了植物药可减少化疗引起的副作用(包括恶心、呕吐、骨髓抑制、肾病、神经病变和心脏毒性)的机制:利用 PubMed 和谷歌学术等搜索引擎进行文献检索,关键词包括癌症、化疗、中枢神经系统毒性、造血毒性、肾毒性、消化道毒性、中枢神经系统毒性和植物药:在植物(如水果、蔬菜、草药和香料)中发现的生物活性化学物质正被研究用于提高化疗方案的安全性和可接受性。本综述还深入探讨了植物药作为癌症治疗辅助药物的研究,这是解决减轻化疗引起的毒性这一迫切需求的可行途径:本综述揭示了植物药在减轻化疗药物毒性方面的潜力,这将为更好的癌症治疗和患者预后铺平道路,并与个性化和整体化疗方法的大趋势相协调。
{"title":"Exploring the Potential Role of Phytopharmaceuticals in Alleviating Toxicities of Chemotherapeutic Agents.","authors":"Ujwal N Katolkar, Sanjay J Surana","doi":"10.2174/0113892037307940240606075208","DOIUrl":"10.2174/0113892037307940240606075208","url":null,"abstract":"<p><strong>Background: </strong>Chemotherapy is the mainstay of cancer treatment, bringing patients optimism about recurrence and survival. However, the clinical effectiveness of chemotherapeutic drugs is frequently jeopardized by their intrinsic toxicity, resulting in side effects affecting the quality of life of cancer patients. This analysis explores the ethnopharmacological impact of phytopharmaceuticals, highlighting their traditional use in many cultures. The present study, which takes its cues from indigenous knowledge, aims to close the knowledge gap between traditional medicine and modern medicine in reducing the toxicities of chemotherapy treatments.</p><p><strong>Aim: </strong>The present in-depth study aims to highlight the current research and upcoming developments in phytopharmaceuticals for reducing the toxicity of chemotherapeutic drugs. Further, we address the mechanisms through which phytopharmaceuticals may reduce chemotherapy-induced side effects that include nausea, vomiting, myelosuppression, nephropathy, neuropathy, and cardiotoxicity using data from a variety of preclinical and clinical investigations.</p><p><strong>Materials and methods: </strong>The literature search was carried out by employing search engines such as PubMed and Google Scholar with keywords such as cancer, chemotherapy, CNS toxicity, hematopoietic toxicity, renal toxicity, GI toxicity, CNS toxicity, and phytopharmaceuticals.</p><p><strong>Results: </strong>Bioactive chemicals found in plants, such as fruits, vegetables, herbs, and spices, are being studied for their capacity to improve the safety and acceptability of chemotherapy regimens. The current review also dives into the investigation of phytopharmaceuticals as adjuvant medicines in cancer treatment, which is a viable path for addressing the pressing need to lessen chemotherapy-induced toxicities.</p><p><strong>Conclusion: </strong>The present review revealed that the potential of phytopharmaceuticals in alleviating chemotherapeutic drug toxicities would pave the way for better cancer treatment and patient outcomes, harmonizing with the larger trend towards personalized and holistic approaches to chemotherapy.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"753-779"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of the Leishmanicidal Properties of Lectins. 回顾凝集素的利什曼杀虫特性
IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892037275751231221053730
Yasmim A Grangeiro, Ana L E Santos, Flávia E V Barbosa, Renato R Roma, Racquel O S Souza, Cláudio G L Silva, Claudener S Teixeira

Lectins are proteins widely distributed among plants, animals and microorganisms that have the ability to recognize and interact with specific carbohydrates. They have varied biological activities, such as the inhibition of the progression of infections caused by fungi, bacteria, viruses and protozoa, which is related to the interaction of these proteins with the carbohydrates present in the cell walls of these microorganisms. Leishmaniasis are a group of endemic infectious diseases caused by protozoa of the genus Leishmania. In vitro and in vivo tests with promastigotes and amastigotes of Leishmania demonstrated that lectins have the ability to interact with glycoconjugates present on the cell surface of the parasite, it prevents their development through various mechanisms of action, such as the production of ROS and alteration of membrane integrity, and can also interact with defense cells present in the human body, thus showing that these molecules can be considered alternative pharmacological targets for the treatment of leishmaniasis. The objective of the present work is to carry out a bibliographic review on lectins with leishmanicidal activity, emphasizing the advances and perspectives of research in this theme. Through the analysis of the selected studies, we were able to conclude that lectins have great potential for inhibiting the development of leishmaniasis. However, there are still few studies on this subject.

凝集素是广泛分布于植物、动物和微生物中的蛋白质,具有识别特定碳水化合物并与之相互作用的能力。它们具有多种生物活性,如抑制真菌、细菌、病毒和原生动物引起的感染的发展,这与这些蛋白质与这些微生物细胞壁中的碳水化合物相互作用有关。利什曼病是由利什曼属原虫引起的一组地方性传染病。用利什曼原虫和非原虫进行的体外和体内试验表明,凝集素能够与寄生虫细胞表面的糖类结合物相互作用,通过各种作用机制(如产生 ROS 和改变膜的完整性)阻止寄生虫的发展,还能与人体内的防御细胞相互作用,从而表明这些分子可被视为治疗利什曼病的替代药理靶标。本研究的目的是对具有利什曼杀虫活性的凝集素进行文献综述,强调这一主题的研究进展和前景。通过对所选研究的分析,我们得出结论:凝集素在抑制利什曼病发展方面具有巨大潜力。然而,有关这一主题的研究仍然很少。
{"title":"A Review of the Leishmanicidal Properties of Lectins.","authors":"Yasmim A Grangeiro, Ana L E Santos, Flávia E V Barbosa, Renato R Roma, Racquel O S Souza, Cláudio G L Silva, Claudener S Teixeira","doi":"10.2174/0113892037275751231221053730","DOIUrl":"10.2174/0113892037275751231221053730","url":null,"abstract":"<p><p>Lectins are proteins widely distributed among plants, animals and microorganisms that have the ability to recognize and interact with specific carbohydrates. They have varied biological activities, such as the inhibition of the progression of infections caused by fungi, bacteria, viruses and protozoa, which is related to the interaction of these proteins with the carbohydrates present in the cell walls of these microorganisms. Leishmaniasis are a group of endemic infectious diseases caused by protozoa of the genus <i>Leishmania. In vitro</i> and <i>in vivo</i> tests with promastigotes and amastigotes of <i>Leishmania</i> demonstrated that lectins have the ability to interact with glycoconjugates present on the cell surface of the parasite, it prevents their development through various mechanisms of action, such as the production of ROS and alteration of membrane integrity, and can also interact with defense cells present in the human body, thus showing that these molecules can be considered alternative pharmacological targets for the treatment of leishmaniasis. The objective of the present work is to carry out a bibliographic review on lectins with leishmanicidal activity, emphasizing the advances and perspectives of research in this theme. Through the analysis of the selected studies, we were able to conclude that lectins have great potential for inhibiting the development of leishmaniasis. However, there are still few studies on this subject.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"443-453"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combating Aminoglycoside Resistance: From Structural and Functional Characterisation to Therapeutic Challenges with RKAAT. 抗击氨基糖苷类药物耐药性:从 RKAAT 的结构和功能特性到治疗挑战。
IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892037278814231226104509
Sarah Oluwatobi Otun, Richard Graca, Ikechukwu Achilonu

A comprehensive knowledge of aminoglycoside-modifying enzymes (AMEs) and their role in bacterial resistance mechanisms is urgently required due to the rising incidence of antibiotic resistance, particularly in Klebsiella pneumoniae infections. This study explores the essential features of AMEs, including their structural and functional properties, the processes by which they contribute to antibiotic resistance, and the therapeutic importance of aminoglycosides. The study primarily examines the Recombinant Klebsiella pneumoniae Aminoglycoside Adenylyl Transferase (RKAAT), particularly emphasizing its biophysical characteristics and the sorts of resistance it imparts. Furthermore, this study examines the challenges presented by RKAAT-mediated resistance, an evaluation of treatment methods and constraints, and options for controlling infection. The analysis provides a prospective outlook on strategies to address and reduce antibiotic resistance. This extensive investigation seeks to provide vital insights into the continuing fight against bacterial resistance, directing future research efforts and medicinal approaches.

由于抗生素耐药性的发生率不断上升,尤其是在肺炎克雷伯氏菌感染中,因此迫切需要全面了解氨基糖苷修饰酶(AMEs)及其在细菌耐药性机制中的作用。本研究探讨了 AMEs 的基本特征,包括其结构和功能特性、导致抗生素耐药性的过程以及氨基糖苷类药物的治疗重要性。本研究主要探讨了重组肺炎克雷伯菌氨基糖苷腺苷酸转移酶(RKAAT),特别强调了它的生物物理特性及其产生的耐药性。此外,本研究还探讨了 RKAAT 介导的耐药性所带来的挑战、对治疗方法和限制因素的评估以及控制感染的方案。分析为解决和减少抗生素耐药性的策略提供了前瞻性展望。这项广泛的调查旨在为持续对抗细菌耐药性提供重要见解,指导未来的研究工作和医疗方法。
{"title":"Combating Aminoglycoside Resistance: From Structural and Functional Characterisation to Therapeutic Challenges with RKAAT.","authors":"Sarah Oluwatobi Otun, Richard Graca, Ikechukwu Achilonu","doi":"10.2174/0113892037278814231226104509","DOIUrl":"10.2174/0113892037278814231226104509","url":null,"abstract":"<p><p>A comprehensive knowledge of aminoglycoside-modifying enzymes (AMEs) and their role in bacterial resistance mechanisms is urgently required due to the rising incidence of antibiotic resistance, particularly in <i>Klebsiella pneumoniae</i> infections. This study explores the essential features of AMEs, including their structural and functional properties, the processes by which they contribute to antibiotic resistance, and the therapeutic importance of aminoglycosides. The study primarily examines the Recombinant <i>Klebsiella pneumoniae</i> Aminoglycoside Adenylyl Transferase (RKAAT), particularly emphasizing its biophysical characteristics and the sorts of resistance it imparts. Furthermore, this study examines the challenges presented by RKAAT-mediated resistance, an evaluation of treatment methods and constraints, and options for controlling infection. The analysis provides a prospective outlook on strategies to address and reduce antibiotic resistance. This extensive investigation seeks to provide vital insights into the continuing fight against bacterial resistance, directing future research efforts and medicinal approaches.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"454-468"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139680767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current protein & peptide science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1