Rate of penetration is an important parameter in drilling performance analysis. The accurate prediction of rate of penetration during well planning leads to a reduction in capital and operating costs which is vital given the recent downturn in oil prices. The industry is seen to embrace the use of novel technologies and artificial intelligence in its bid to be sustainable which is why this study focuses on the use of artificial intelligent models in predicting the rate of penetration. The predictive performance of three data-driven models [artificial neural network (ANN), extreme learning machine (ELM) and least-square support vector machine (LS-SVM)] were evaluated using actual drilling data based on three performance evaluation criteria [mean square error (MSE), coefficient of determination (R2) and average absolute percentage error (AAPE)]. The models were validated using the physics based Bourgoyne and Young's model. The results show that all three models performed to an acceptable level of accuracy based on the range of the actual drilling data because, although the ELM had the least MSE (1317.44) and the highest R2 (0.52 i.e. 52% prediction capability) the LS-SVM model had a smaller spread of predicted ROP when compared with the actual ROP and the ANN had the least AAPE (38.14). The results can be improved upon by optimizing the controllable predictors. Validation of the model's performance with the Bourgoyne and Young's model resulted in R2 of 0.29 or 29% prediction capability confirming that artificial intelligent models outperformed the physics-based model.
{"title":"Comparative Evaluation of Artificial Intelligence Models for Drilling Rate of Penetration Prediction","authors":"Ololade Adetifa, I. Iyalla, K. Amadi","doi":"10.2118/208451-ms","DOIUrl":"https://doi.org/10.2118/208451-ms","url":null,"abstract":"\u0000 Rate of penetration is an important parameter in drilling performance analysis. The accurate prediction of rate of penetration during well planning leads to a reduction in capital and operating costs which is vital given the recent downturn in oil prices. The industry is seen to embrace the use of novel technologies and artificial intelligence in its bid to be sustainable which is why this study focuses on the use of artificial intelligent models in predicting the rate of penetration. The predictive performance of three data-driven models [artificial neural network (ANN), extreme learning machine (ELM) and least-square support vector machine (LS-SVM)] were evaluated using actual drilling data based on three performance evaluation criteria [mean square error (MSE), coefficient of determination (R2) and average absolute percentage error (AAPE)]. The models were validated using the physics based Bourgoyne and Young's model. The results show that all three models performed to an acceptable level of accuracy based on the range of the actual drilling data because, although the ELM had the least MSE (1317.44) and the highest R2 (0.52 i.e. 52% prediction capability) the LS-SVM model had a smaller spread of predicted ROP when compared with the actual ROP and the ANN had the least AAPE (38.14). The results can be improved upon by optimizing the controllable predictors. Validation of the model's performance with the Bourgoyne and Young's model resulted in R2 of 0.29 or 29% prediction capability confirming that artificial intelligent models outperformed the physics-based model.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72580022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Edem, O. Nwankwo, Jennifer. S Muku, F. Usman, Chidi. B Ike
The Department of Petroleum Resources (DPR), the Petroleum Regulatory agency of the Nigerian oil and gas industry is mandated by law to investigate accidents in the industry. Data obtained from the oil and gas accident database from the Department of Petroleum Resources shows that accidents in the downstream sector contribute about 70%, when compared to the upstream sector. One of the reoccurring root causes from investigations point to administrative barrier failure – which is a lack of training and re-training of staff in the downstream sector on workplace safety. Against this background, the DPR introduced the Minimum Industry Safety Training for Downstream Operations (MISTDO) as part of the Safety Audit Clearance policy launched to drive safety in the downstream sector. MISTDO is a basic safety training which must be undertaken by all personnel working in the downstream sector of the Nigerian oil and gas industry. This paper reviews the recorded accidents that have occurred in the downstream sector between 2014 – 2019; examines the MISTDO courses for the various workers in downstream facilities; analyses the MISTDO tripartite model (Training provider, Operator and DPR) adopted; the effects of implementation of MISTDO and concludes with the value additions of the MISTDO program to the industry.
{"title":"Reducing Accidents Through the Implementation of the Minimum Industry Safety Training for Downstream Operations Mistdo in the Nigerian Oil and Gas Industry","authors":"Michael Edem, O. Nwankwo, Jennifer. S Muku, F. Usman, Chidi. B Ike","doi":"10.2118/207085-ms","DOIUrl":"https://doi.org/10.2118/207085-ms","url":null,"abstract":"\u0000 The Department of Petroleum Resources (DPR), the Petroleum Regulatory agency of the Nigerian oil and gas industry is mandated by law to investigate accidents in the industry. Data obtained from the oil and gas accident database from the Department of Petroleum Resources shows that accidents in the downstream sector contribute about 70%, when compared to the upstream sector. One of the reoccurring root causes from investigations point to administrative barrier failure – which is a lack of training and re-training of staff in the downstream sector on workplace safety. Against this background, the DPR introduced the Minimum Industry Safety Training for Downstream Operations (MISTDO) as part of the Safety Audit Clearance policy launched to drive safety in the downstream sector. MISTDO is a basic safety training which must be undertaken by all personnel working in the downstream sector of the Nigerian oil and gas industry. This paper reviews the recorded accidents that have occurred in the downstream sector between 2014 – 2019; examines the MISTDO courses for the various workers in downstream facilities; analyses the MISTDO tripartite model (Training provider, Operator and DPR) adopted; the effects of implementation of MISTDO and concludes with the value additions of the MISTDO program to the industry.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74761230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Commercial accumulation of hydrocarbons occurs mostly in sedimentary rocks due to their high porosity and permeability. Increased global energy demand has necessitated the need for unconventional methods of oil production. The world is gradually moving away from reliability on conventional oils. The need to ensure global energy sustainability has necessitated an urgent diversion to unconventional oils. In recent times, hydrocarbon accumulations have been found in igneous rocks. Their low porosity and permeability however prevents commercial production as oil and gas found in these rocks will not flow. Hydraulic fracturing is useful in increasing rock porosity as it involves the breaking of rocks to allow oil and gas trapped inside to flow to producing wells. This method is useful in developing unconventional resources such as oil and gas found in igneous rocks. This research explores the prospects, challenges and way forward in the use of hydraulic fracturing to increase the porosity of igneous rock for commercial production of oil and gas.
{"title":"Prospects, Challenges and Way Forward in the Use of Hydraulic Fracturing For Oil and Gas Production From Igneous Rocks","authors":"Agnes Anuka, Celestine A. Udie, G. Aquah","doi":"10.2118/207106-ms","DOIUrl":"https://doi.org/10.2118/207106-ms","url":null,"abstract":"\u0000 Commercial accumulation of hydrocarbons occurs mostly in sedimentary rocks due to their high porosity and permeability. Increased global energy demand has necessitated the need for unconventional methods of oil production. The world is gradually moving away from reliability on conventional oils. The need to ensure global energy sustainability has necessitated an urgent diversion to unconventional oils. In recent times, hydrocarbon accumulations have been found in igneous rocks. Their low porosity and permeability however prevents commercial production as oil and gas found in these rocks will not flow. Hydraulic fracturing is useful in increasing rock porosity as it involves the breaking of rocks to allow oil and gas trapped inside to flow to producing wells. This method is useful in developing unconventional resources such as oil and gas found in igneous rocks. This research explores the prospects, challenges and way forward in the use of hydraulic fracturing to increase the porosity of igneous rock for commercial production of oil and gas.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"120 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76227968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Over the past years, there has been an increase in the importation of Sodium Carboxymethyl cellulose (CMC), an important drilling mud polymer additive, in the Nigerian oil and gas industry. However, the ripple effects of the importation of this polymer and other oilfield chemicals on the Nigeria oil and gas industry includes rising cost of oil and gas field development, limited oil and gas industry growth, and capital flight. In order to mitigate this trend, studies on the use of local substitutes such as starch and its derivatives have gathered momentum with risk such as competition with food supply and increase in food cost. The use of sawdust wastes which offers a non-competing and a cheap source of feedstock in the production of CMC have rarely been investigated. The study therefore investigated production of CMC from sawdust waste of a highly underutilized wood (Delonix regia), after which drilling mud tests were conducted to determine the rheological and filtration properties of mud treated with the CMC products. The CMC production adopted the Williamson ether synthesis process in a slurry medium involving two main reactions of mercerization and etherification. All reaction parameters were held constant except the etherifying agent concentration. The CMC products were characterized using FTIR Spectroscopy. The synthesized carboxymethyl cellulose products yielded good filtration and rheological properties suitable for drilling fluid applications. The use of low concentrations of about 0.5g to 1.0g of the synthesized products per laboratory barrel of mud could reduce filtration volume by 11.4% to 32.9% at low temperature and pressure conditions. The synthesized CMC products obtained from this work can be used as local substitute of low viscosity foreign CMC products.
{"title":"Effect of Sodium Carboxymethyl Cellulose from Delonix regia Sawdust on Rheological and Filtration Properties of Water Based Drilling Fluid","authors":"Odion Uvo-Oise Imohiosen, S. Akintola","doi":"10.2118/207200-ms","DOIUrl":"https://doi.org/10.2118/207200-ms","url":null,"abstract":"\u0000 Over the past years, there has been an increase in the importation of Sodium Carboxymethyl cellulose (CMC), an important drilling mud polymer additive, in the Nigerian oil and gas industry. However, the ripple effects of the importation of this polymer and other oilfield chemicals on the Nigeria oil and gas industry includes rising cost of oil and gas field development, limited oil and gas industry growth, and capital flight. In order to mitigate this trend, studies on the use of local substitutes such as starch and its derivatives have gathered momentum with risk such as competition with food supply and increase in food cost. The use of sawdust wastes which offers a non-competing and a cheap source of feedstock in the production of CMC have rarely been investigated.\u0000 The study therefore investigated production of CMC from sawdust waste of a highly underutilized wood (Delonix regia), after which drilling mud tests were conducted to determine the rheological and filtration properties of mud treated with the CMC products. The CMC production adopted the Williamson ether synthesis process in a slurry medium involving two main reactions of mercerization and etherification. All reaction parameters were held constant except the etherifying agent concentration. The CMC products were characterized using FTIR Spectroscopy.\u0000 The synthesized carboxymethyl cellulose products yielded good filtration and rheological properties suitable for drilling fluid applications. The use of low concentrations of about 0.5g to 1.0g of the synthesized products per laboratory barrel of mud could reduce filtration volume by 11.4% to 32.9% at low temperature and pressure conditions. The synthesized CMC products obtained from this work can be used as local substitute of low viscosity foreign CMC products.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76743398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper discusses how production rates can be sustained and further increased from an indepth gas-lift design that considers the holistic properties associated oil and gas Well production lifecycles. An example is shown of a Well 58 in a field onshore Nigeria which was shut-in for 2-days as part of scheduled Field shut-down. After several failed attempts to restart the Well post shut-down period, lessons learnt analysis indicated that while the affected Well had all the required gas-lift system installed, it's inability to flow may have been due to inadequate gas-lift design that did not account for the full life cycle of the reservoir, Well and surface facilities. A major re-analysis is carried out on the gas-lift design technique, this time capturing key requirements and the resultant proposal is discussed in detail. The proposed gaslift design optimizes the depth of gas injection with consideration given to the latter production phase of the the Well. Through the example of Well 58, this paper outlines and proposes a checklist of recommendations for gas lift design for new Wells and re-working or workover of existing gas-lift installations from which Well performance can be sustained and optimized. Even if quality gaslift-production results can be achieved through a wide range of other activities such as; special training for production operators, optimizing gas injection rates, modifying surface piping systems, identifying and replacing defective wireline-retrievable gas-lift valves, the most important variable that will ensure the full benefit of the above listed range of activities is the improved gas-lift design technique. Although Well 58 was revived via unconventional methods, the recorded 3-week downtime and the associated financial losses could have been avoided if an adequate gas lift design as proposed in this paper was explored during the Well planning and completion.
{"title":"Gas-Lift Design: Importance of Well/Reservoir Full Life Cycle Consideration and Analysis","authors":"O. Onwuemene","doi":"10.2118/207082-ms","DOIUrl":"https://doi.org/10.2118/207082-ms","url":null,"abstract":"\u0000 This paper discusses how production rates can be sustained and further increased from an indepth gas-lift design that considers the holistic properties associated oil and gas Well production lifecycles.\u0000 An example is shown of a Well 58 in a field onshore Nigeria which was shut-in for 2-days as part of scheduled Field shut-down. After several failed attempts to restart the Well post shut-down period, lessons learnt analysis indicated that while the affected Well had all the required gas-lift system installed, it's inability to flow may have been due to inadequate gas-lift design that did not account for the full life cycle of the reservoir, Well and surface facilities.\u0000 A major re-analysis is carried out on the gas-lift design technique, this time capturing key requirements and the resultant proposal is discussed in detail. The proposed gaslift design optimizes the depth of gas injection with consideration given to the latter production phase of the the Well.\u0000 Through the example of Well 58, this paper outlines and proposes a checklist of recommendations for gas lift design for new Wells and re-working or workover of existing gas-lift installations from which Well performance can be sustained and optimized.\u0000 Even if quality gaslift-production results can be achieved through a wide range of other activities such as; special training for production operators, optimizing gas injection rates, modifying surface piping systems, identifying and replacing defective wireline-retrievable gas-lift valves, the most important variable that will ensure the full benefit of the above listed range of activities is the improved gas-lift design technique.\u0000 Although Well 58 was revived via unconventional methods, the recorded 3-week downtime and the associated financial losses could have been avoided if an adequate gas lift design as proposed in this paper was explored during the Well planning and completion.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"132 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88813331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Ifeduba, Bernard Ainoje, Tunde Alabi, John Akadang, Ena Agbahovbe, Sophia Weaver, Amira Abdulrazaq, T. Odubanjo
In horizontal open hole wells, the formation of filter cake while drilling the open hole section of the well is desirable. This filter cake serves the purpose of forming a semi-impervious layer around the reservoir drain-hole. This layer helps reduce losses considering the overbalance required for well control during drilling. It also serves as an additional structural support to keep the open hole stable when the drilling bottom hole assembly (BHA) is pulled out of hole and the screens and lower completions accessories are being run in hole. However, when thewell is put into production, the filter cake becomes a contributor to skin and poor reservoir productivity. It is therefore required to get rid of the filter cake after running the screens and the lower completion. Having procured and prepared the sand screens for deployment after drilling the open hole section, it is important that they are run to the bottom successfully with minimal damage and plugging. Usually, the open hole section of the horizontal well is drilled with specially formulated drill-in-fluids (DIF). Since this section is drilled in over balanced mode, the exerted pressure keeps the hole open so that the sand screen can be run successfully. The DIF replaces the drilling mud used to drill the earlier hole section(s) but in addition to providing well control via overbalance and transporting cuttings from the hole to surface, it also minimizes invasion damage to the reservoir pay zone. A commonly used weighing material when densities up to 11.5ppg are required for well control is calcium carbonate (CaCO3). When densities above 11.5ppg are required (for deeper, abnormally pressured reservoirs), it becomes necessary to weight up the mud with a heavier material, usually barite + CaCO3. During the drilling process, this overbalance pressure exerted on the reservoir forces the CaCO3 out of the DIF solution and it forms a semi-impervious filter cake on the sand face of the reservoir. This desirable filter cake helps minimize excessive fluid losses into the reservoir hence limiting invasion and damage. It also contributes to the structural integrity of the open hole, keeping it stable prior to running of the screens. Depending on the weighting material used in the drilling of the reservoir drain-hole, the micro-emulsion breaker (MEB) can be designed to break down the filter cake and any undisolvedparticulates can be mobilized and water-wetted and can be then flowed during production or injection. The challenge is that depending on the lower completion configuration, it may take some time to get the wash pipe and work string out of the lower completion and close the formation isolation device. In some cases, it is possible for the formation isolation device to fail. If the Micro-emulsion Blend (MEB) is quick acting, any of these scenarios can lead to uncontrollable losses and serious difficulties in continuing the completion operation. This elucidates the need for a delayed actin
{"title":"Delayed Action Micro-Emulsion Breaker and Its Applications to Improved Completions Operations – An NNPC/FEPDC JV Approach During Completions Operations","authors":"E. Ifeduba, Bernard Ainoje, Tunde Alabi, John Akadang, Ena Agbahovbe, Sophia Weaver, Amira Abdulrazaq, T. Odubanjo","doi":"10.2118/207142-ms","DOIUrl":"https://doi.org/10.2118/207142-ms","url":null,"abstract":"\u0000 In horizontal open hole wells, the formation of filter cake while drilling the open hole section of the well is desirable. This filter cake serves the purpose of forming a semi-impervious layer around the reservoir drain-hole. This layer helps reduce losses considering the overbalance required for well control during drilling. It also serves as an additional structural support to keep the open hole stable when the drilling bottom hole assembly (BHA) is pulled out of hole and the screens and lower completions accessories are being run in hole. However, when thewell is put into production, the filter cake becomes a contributor to skin and poor reservoir productivity. It is therefore required to get rid of the filter cake after running the screens and the lower completion.\u0000 Having procured and prepared the sand screens for deployment after drilling the open hole section, it is important that they are run to the bottom successfully with minimal damage and plugging.\u0000 Usually, the open hole section of the horizontal well is drilled with specially formulated drill-in-fluids (DIF). Since this section is drilled in over balanced mode, the exerted pressure keeps the hole open so that the sand screen can be run successfully. The DIF replaces the drilling mud used to drill the earlier hole section(s) but in addition to providing well control via overbalance and transporting cuttings from the hole to surface, it also minimizes invasion damage to the reservoir pay zone. A commonly used weighing material when densities up to 11.5ppg are required for well control is calcium carbonate (CaCO3). When densities above 11.5ppg are required (for deeper, abnormally pressured reservoirs), it becomes necessary to weight up the mud with a heavier material, usually barite + CaCO3.\u0000 During the drilling process, this overbalance pressure exerted on the reservoir forces the CaCO3 out of the DIF solution and it forms a semi-impervious filter cake on the sand face of the reservoir. This desirable filter cake helps minimize excessive fluid losses into the reservoir hence limiting invasion and damage. It also contributes to the structural integrity of the open hole, keeping it stable prior to running of the screens.\u0000 Depending on the weighting material used in the drilling of the reservoir drain-hole, the micro-emulsion breaker (MEB) can be designed to break down the filter cake and any undisolvedparticulates can be mobilized and water-wetted and can be then flowed during production or injection. The challenge is that depending on the lower completion configuration, it may take some time to get the wash pipe and work string out of the lower completion and close the formation isolation device. In some cases, it is possible for the formation isolation device to fail. If the Micro-emulsion Blend (MEB) is quick acting, any of these scenarios can lead to uncontrollable losses and serious difficulties in continuing the completion operation. This elucidates the need for a delayed actin","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"161 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91533497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Ayodele, Victoria Ezeagwula, Precious Igbokwubiri
Bamboo trees are one of the fastest growing trees in tropical rainforests around the world, they have various uses ranging from construction to fly ash generation used in oil and gas cementing, to development of activated carbon which is one of the latest uses of bamboo trees. This paper focuses on development of activated carbon from bamboo trees for carbon capture and sequestration. The need for improved air quality becomes imperative as the SDG Goal 12 and SDG Goal13 implies. One of the major greenhouse gases is CO2 which accounts for over 80% of greenhouse gases in the environment. Eliminating the greenhouse gases without adding another pollutant to the environment is highly sought after in the 21st century. Bamboo trees are mostly seen as agricultural waste with the advent of scaffolding and other support systems being in the construction industry. Instead of burning bamboo trees or using them for cooking in the local communities which in turn generates CO2 and fly ash, an alternative was considered in this research work, which is the usage of bamboo trees to generate activated, moderately porous and high surface area carbon for extracting CO2 from various CO2 discharge sources atmosphere and for water purification. This paper focuses on the quality testing of activated carbon that can effectively absorb CO2. The porosity, pore volume, bulk volume, and BET surface area were measured. The porosity of the activated carbon is 27%, BET surface area as 1260m²/g. Fixed carbon was 11.7%, Volatility 73%, ash content 1.7%.
{"title":"Carbon Dioxide Sequestration Using Activated Carbon From Agro Waste-Waste Bamboo","authors":"E. Ayodele, Victoria Ezeagwula, Precious Igbokwubiri","doi":"10.2118/207182-ms","DOIUrl":"https://doi.org/10.2118/207182-ms","url":null,"abstract":"\u0000 Bamboo trees are one of the fastest growing trees in tropical rainforests around the world, they have various uses ranging from construction to fly ash generation used in oil and gas cementing, to development of activated carbon which is one of the latest uses of bamboo trees. This paper focuses on development of activated carbon from bamboo trees for carbon capture and sequestration. The need for improved air quality becomes imperative as the SDG Goal 12 and SDG Goal13 implies. One of the major greenhouse gases is CO2 which accounts for over 80% of greenhouse gases in the environment. Eliminating the greenhouse gases without adding another pollutant to the environment is highly sought after in the 21st century. Bamboo trees are mostly seen as agricultural waste with the advent of scaffolding and other support systems being in the construction industry. Instead of burning bamboo trees or using them for cooking in the local communities which in turn generates CO2 and fly ash, an alternative was considered in this research work, which is the usage of bamboo trees to generate activated, moderately porous and high surface area carbon for extracting CO2 from various CO2 discharge sources atmosphere and for water purification. This paper focuses on the quality testing of activated carbon that can effectively absorb CO2. The porosity, pore volume, bulk volume, and BET surface area were measured. The porosity of the activated carbon is 27%, BET surface area as 1260m²/g. Fixed carbon was 11.7%, Volatility 73%, ash content 1.7%.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"360 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86802165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily Ako, E. Nnanna, Odumodu Somtochukwu, Akinmade Moradeke
Chemical Sand Consolidation (SCON) has been used as a means of downhole sand control in Niger Delta since the early 70s. The countries where SCON has been used include Nigeria (Niger Delta), Gabon (Gamba) and UK (North Sea). SCON provides grain-to-grain cementation and locks formation fines in place through the process of adsorption of the sand grains and subsequent polymerization of the resin at elevated well temperatures. The polymerized resin serves to consolidate the surfaces of the sand grain while retaining permeability through the pore spaces. In a typical Niger Delta asset, over 30% of the wells may be completed with SCON. A high percentage are still producing without failure since installation from1970s. Where the original SCON jobs have failed, re-consolidation has also been carried out successfully. Chemical Sand Consolidation development has evolved over the years from: Eposand 112A and B, Eposand 212A and B, Wellfix 2000, Wellfix 3000, Sandstop (resin based), Sandtrap 225, 350 & 500 (resin based) and lately Sandtrap 225,350, 500 (solvent based) and Sandtrap ABC (aqueous based). There have been mixed results experienced with the deployment of either of the latest recipes of SCON. This was due to the fact that the conventional deployment work procedure was followed with the tendency for one-size-fits-all approach to the treatment. This paper details the challenges faced with sand production in ARAMU037, the previous interventions and how an integrated approach to the design and delivery of the most recent intervention restored the way to normal production. The well has now produced for about 2 years with minimal interruption with the activity paying out in less than 6 months. The paper also recommends the best practice for remedial sand control especially for wells in mature assets.
{"title":"Taming the Monster: Arresting Excessive Sand Production Problem in ARAMU037","authors":"Emily Ako, E. Nnanna, Odumodu Somtochukwu, Akinmade Moradeke","doi":"10.2118/207095-ms","DOIUrl":"https://doi.org/10.2118/207095-ms","url":null,"abstract":"\u0000 Chemical Sand Consolidation (SCON) has been used as a means of downhole sand control in Niger Delta since the early 70s. The countries where SCON has been used include Nigeria (Niger Delta), Gabon (Gamba) and UK (North Sea). SCON provides grain-to-grain cementation and locks formation fines in place through the process of adsorption of the sand grains and subsequent polymerization of the resin at elevated well temperatures. The polymerized resin serves to consolidate the surfaces of the sand grain while retaining permeability through the pore spaces.\u0000 In a typical Niger Delta asset, over 30% of the wells may be completed with SCON. A high percentage are still producing without failure since installation from1970s. Where the original SCON jobs have failed, re-consolidation has also been carried out successfully. Chemical Sand Consolidation development has evolved over the years from: Eposand 112A and B, Eposand 212A and B, Wellfix 2000, Wellfix 3000, Sandstop (resin based), Sandtrap 225, 350 & 500 (resin based) and lately Sandtrap 225,350, 500 (solvent based) and Sandtrap ABC (aqueous based).\u0000 There have been mixed results experienced with the deployment of either of the latest recipes of SCON. This was due to the fact that the conventional deployment work procedure was followed with the tendency for one-size-fits-all approach to the treatment.\u0000 This paper details the challenges faced with sand production in ARAMU037, the previous interventions and how an integrated approach to the design and delivery of the most recent intervention restored the way to normal production. The well has now produced for about 2 years with minimal interruption with the activity paying out in less than 6 months. The paper also recommends the best practice for remedial sand control especially for wells in mature assets.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"85 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83918314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Ezeaneche, Robinson Osita Madu, I. Oshilike, Orrelo Jerry Athoja, M. Onyekonwu
Proper understanding of reservoir producing mechanism forms a backbone for optimal fluid recovery in any reservoir. Such an understanding is usually fostered by a detailed petrophysical evaluation, structural interpretation, geological description and modelling as well as production performance assessment prior to history matching and reservoir simulation. In this study, gravity drainage mechanism was identified as the primary force for production in reservoir X located in Niger Delta province and this required proper model calibration using variation of vertical anisotropic ratio based on identified facies as against a single value method which does not capture heterogeneity properly. Using structural maps generated from interpretation of seismic data, and other petrophysical parameters from available well logs and core data such as porosity, permeability and facies description based on environment of deposition, a geological model capturing the structural dips, facies distribution and well locations was built. Dynamic modeling was conducted on the base case model and also on the low and high case conceptual models to capture different structural dips of the reservoir. The result from history matching of the base case model reveals that variation of vertical anisotropic ratio (i.e. kv/kh) based on identified facies across the system is more effective in capturing heterogeneity than using a deterministic value that is more popular. In addition, gas segregated fastest in the high case model with the steepest dip compared to the base and low case models. An improved dynamic model saturation match was achieved in line with the geological description and the observed reservoir performance. Quick wins scenarios were identified and this led to an additional reserve yield of over 1MMSTB. Therefore, structural control, facies type, reservoir thickness and nature of oil volatility are key forces driving the gravity drainage mechanism.
{"title":"Gravity Drainage System: Investigation and Field Development Using Geological Modelling and Reservoir Simulation","authors":"O. Ezeaneche, Robinson Osita Madu, I. Oshilike, Orrelo Jerry Athoja, M. Onyekonwu","doi":"10.2118/207117-ms","DOIUrl":"https://doi.org/10.2118/207117-ms","url":null,"abstract":"\u0000 Proper understanding of reservoir producing mechanism forms a backbone for optimal fluid recovery in any reservoir. Such an understanding is usually fostered by a detailed petrophysical evaluation, structural interpretation, geological description and modelling as well as production performance assessment prior to history matching and reservoir simulation.\u0000 In this study, gravity drainage mechanism was identified as the primary force for production in reservoir X located in Niger Delta province and this required proper model calibration using variation of vertical anisotropic ratio based on identified facies as against a single value method which does not capture heterogeneity properly. Using structural maps generated from interpretation of seismic data, and other petrophysical parameters from available well logs and core data such as porosity, permeability and facies description based on environment of deposition, a geological model capturing the structural dips, facies distribution and well locations was built. Dynamic modeling was conducted on the base case model and also on the low and high case conceptual models to capture different structural dips of the reservoir.\u0000 The result from history matching of the base case model reveals that variation of vertical anisotropic ratio (i.e. kv/kh) based on identified facies across the system is more effective in capturing heterogeneity than using a deterministic value that is more popular. In addition, gas segregated fastest in the high case model with the steepest dip compared to the base and low case models. An improved dynamic model saturation match was achieved in line with the geological description and the observed reservoir performance. Quick wins scenarios were identified and this led to an additional reserve yield of over 1MMSTB.\u0000 Therefore, structural control, facies type, reservoir thickness and nature of oil volatility are key forces driving the gravity drainage mechanism.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82873616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effect of RHA on Compressive Strength as well as other parameters like Consistency and Rheological properties etc. on Class G cement slurry is studied. The following additives were used; Rice Husk Ash (for Compressive Strength), Guinea Corn Husk Ash (Retarder) and other liquid additives which are fluid Loss Additive, Antifoam, Dispersant, Retarder and Water in the formulation of the cement slurry. This research is a comparative analysis based on experimental study on the effectiveness of the various additives on the cement slurry using pure Class G cement slurry combined with all liquid additives as a control. At a Bottomhole Circulating Temperature of 140°C, the Compressive Strength tests carried out on the slurry samples showed that the strength of the concrete increases as the concentration of the RHA increases with time of curing, also the compressive strength started to increase. The best Compressive Strength result was obtained with the percentages of cement replaced by 13.01% RHA. The strength showed impressive increase with time, with highest compressive strength encountered in 24 hours. The Thickening Time of the set Cement Slurry was considered using Class G cement and different percentage of RHA. The final Thickening Time decreases with increase in Rice Husk Ash. Decrease in the setting time was noticeable from 1.87 hrs (at 13.01% RHA) from 40bc to 100 bc. At BHST of 700°C increasing the ash concentration resulted in decrease in the Plastic Viscosities (PV) and increase in the Yield Points of the slurries. The results indicate that the slurries formulated using this ash has viscosities which are within the recommended values showing it is desirable to pump such slurry. For both 124°C and Bottom Hole Pressure of 7700psi the amount of fluid loss increases as the percentage of RHA added increases but it is below 50cp which is acceptable.
{"title":"Performance Evaluation of Local Material Rice Husk Ash Under Downhole Conditions with the Addition of Basic Oil Well Additives Antifoam, Fluid Loss, Dispersant and Retarder on Oil Well Cementing","authors":"A. Akintola","doi":"10.2118/207144-ms","DOIUrl":"https://doi.org/10.2118/207144-ms","url":null,"abstract":"\u0000 The effect of RHA on Compressive Strength as well as other parameters like Consistency and Rheological properties etc. on Class G cement slurry is studied. The following additives were used; Rice Husk Ash (for Compressive Strength), Guinea Corn Husk Ash (Retarder) and other liquid additives which are fluid Loss Additive, Antifoam, Dispersant, Retarder and Water in the formulation of the cement slurry. This research is a comparative analysis based on experimental study on the effectiveness of the various additives on the cement slurry using pure Class G cement slurry combined with all liquid additives as a control.\u0000 At a Bottomhole Circulating Temperature of 140°C, the Compressive Strength tests carried out on the slurry samples showed that the strength of the concrete increases as the concentration of the RHA increases with time of curing, also the compressive strength started to increase. The best Compressive Strength result was obtained with the percentages of cement replaced by 13.01% RHA. The strength showed impressive increase with time, with highest compressive strength encountered in 24 hours. The Thickening Time of the set Cement Slurry was considered using Class G cement and different percentage of RHA. The final Thickening Time decreases with increase in Rice Husk Ash. Decrease in the setting time was noticeable from 1.87 hrs (at 13.01% RHA) from 40bc to 100 bc.\u0000 At BHST of 700°C increasing the ash concentration resulted in decrease in the Plastic Viscosities (PV) and increase in the Yield Points of the slurries. The results indicate that the slurries formulated using this ash has viscosities which are within the recommended values showing it is desirable to pump such slurry. For both 124°C and Bottom Hole Pressure of 7700psi the amount of fluid loss increases as the percentage of RHA added increases but it is below 50cp which is acceptable.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82393554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}