首页 > 最新文献

Day 2 Tue, February 22, 2022最新文献

英文 中文
Next Level of Complex Reservoir Geosteering: The New Generation of Ultra-High-Definition Directional Resistivity Propagation Method 复杂储层地质导向的新阶段:新一代超高清定向电阻率传播方法
Pub Date : 2022-02-21 DOI: 10.2523/iptc-22208-ea
Guoquan Zhao, Baoqiang Jin, Liuhe Yang, Wei Li, Junliang Zhou, Lili Zhang, Fei Wang, Haifeng Wang, Shuzhong Li, Zhongtiang Hu, Tianyun Xu, J. Dolan
For most offshore and tidal zolone oil development in North China, one of the major challenges of the industry is high drilling uncertainty and low reservoir encountered rate at the braided river delta and fluvial deposition environment with the common characters of thin sand channels, severe lateral change, unstable sand structure and low sand connectivity. Optimizing the wellbore placement inside the complex reservoir and depicting the sand with detailed information are gradually being critical to real time geosteering in these areas. Over the last decades, the continuous improvement of distance-to-boundary logging while drilling workflows has dramatically enhance the drilling efficiency of horizontal well. However, relatively short depth of detection (DOD) and low sensitivity to multi-layer environment still cannot meet the requirement of drilling under these complicated geologies. To reduce the geosteering uncertainty and enhance formation evaluation in complex environment, a new advancement in mapping-while-drilling electromagnetic propagation resistivity method, with the industry's first combination of axial, tilted and transverse antennas and significant software enhancements, made a momentous progress for complex reservoir geosteering and characterization. Compared to the previous generation, this service could provide: Larger depth of detection which doubled the previous generation. For one hand, larger DOD means earlier proactive strategy for the well position optimization; For the other one, enlarged vision also helps achieve whole delineation of the target sand channel and thus much better geological understanding for the reservoir.More sensitivity for anisotropy and local sedimentary character. Improved measurements set and enhanced software algorithm can visualize the detailed characteristics inside the sand channel. With its up-to-eight-layer resistivity reconstruction, the refined inversion exceeds the existing propagation resistivity answer product. Outstanding performance was observed during the implementation. The target sand channel of 6-7m thickness could be delineated clearly by the refined inversion. It not only depicted the whole picture the sand body, but also provided an earlier sign of structural fluctuation, which ensured the success and high oil recovery rate of the horizontal section. For the well with higher anisotropy or more local sedimentary features, comparing to the blur reflection of the previous method, this ultra-high-definition technology could provide a sophisticated vision of the shape, thickness, direction and resistivity property of the local thin layers and shaly block. Reliable evidence of both outline and inside characteristics of the sand channels improved the further well path design and geological understanding. The ultra-high-definition mapping-while-drilling technology opened the market of complex deposition environment drilling. It remarkably increased the reservoir encountered rate and
辫状河三角洲及河流沉积环境具有砂道薄、横向变化剧烈、砂体结构不稳定、砂体连通性低等特点,对于华北大部分海上及潮汐左龙油田开发而言,其主要挑战之一是钻井不确定性高、遇储率低。在这些地区,优化复杂油藏内的井眼位置和详细描述砂体信息逐渐成为实时地质导向的关键。近几十年来,随钻距界测井工作流程的不断改进,极大地提高了水平井的钻井效率。然而,相对较短的探测深度和较低的多层环境敏感性仍然不能满足这些复杂地质条件下的钻井要求。为了减少地质导向的不确定性,提高复杂环境下的地层评价,随钻电磁传播电阻率法取得了新的进展,业内首次将轴向、倾斜和横向天线结合起来,并对软件进行了重大改进,在复杂储层地质导向和表征方面取得了重大进展。与上一代相比,该服务可以提供:更大的检测深度,是上一代的两倍。一方面,更大的DOD意味着更早地采取主动策略进行井位优化;另一方面,视野的扩大也有助于实现目标砂道的整体圈定,从而更好地了解储层的地质情况。对各向异性和局部沉积特征更敏感。改进的测量集和改进的软件算法可以可视化砂道内部的详细特征。精细化反演的电阻率重构达到八层,超过了现有的传播电阻率反演结果。在实施过程中观察到出色的性能。精细化反演可清晰圈定厚度为6 ~ 7m的目标砂道。它不仅能描绘出砂体的全貌,而且能提供构造波动的早期信号,保证了水平段的成功开采和高采收率。对于各向异性较高或局部沉积特征较多的井,相对于以往方法的模糊反射,该超高清技术可以提供对局部薄层和泥质块体的形状、厚度、方向和电阻率特性的精细视觉。砂道的轮廓和内部特征的可靠证据有助于进一步的井眼设计和地质认识。超高清随钻成图技术开辟了复杂沉积环境钻井市场。它显著提高了储层遇到率和环境的可预测性,有助于减少预算,提高钻井效率。超高清定向电阻率传播方法必将引领行业向复杂油藏开发的新台阶迈进。
{"title":"Next Level of Complex Reservoir Geosteering: The New Generation of Ultra-High-Definition Directional Resistivity Propagation Method","authors":"Guoquan Zhao, Baoqiang Jin, Liuhe Yang, Wei Li, Junliang Zhou, Lili Zhang, Fei Wang, Haifeng Wang, Shuzhong Li, Zhongtiang Hu, Tianyun Xu, J. Dolan","doi":"10.2523/iptc-22208-ea","DOIUrl":"https://doi.org/10.2523/iptc-22208-ea","url":null,"abstract":"\u0000 For most offshore and tidal zolone oil development in North China, one of the major challenges of the industry is high drilling uncertainty and low reservoir encountered rate at the braided river delta and fluvial deposition environment with the common characters of thin sand channels, severe lateral change, unstable sand structure and low sand connectivity. Optimizing the wellbore placement inside the complex reservoir and depicting the sand with detailed information are gradually being critical to real time geosteering in these areas.\u0000 Over the last decades, the continuous improvement of distance-to-boundary logging while drilling workflows has dramatically enhance the drilling efficiency of horizontal well. However, relatively short depth of detection (DOD) and low sensitivity to multi-layer environment still cannot meet the requirement of drilling under these complicated geologies.\u0000 To reduce the geosteering uncertainty and enhance formation evaluation in complex environment, a new advancement in mapping-while-drilling electromagnetic propagation resistivity method, with the industry's first combination of axial, tilted and transverse antennas and significant software enhancements, made a momentous progress for complex reservoir geosteering and characterization.\u0000 Compared to the previous generation, this service could provide: Larger depth of detection which doubled the previous generation. For one hand, larger DOD means earlier proactive strategy for the well position optimization; For the other one, enlarged vision also helps achieve whole delineation of the target sand channel and thus much better geological understanding for the reservoir.More sensitivity for anisotropy and local sedimentary character. Improved measurements set and enhanced software algorithm can visualize the detailed characteristics inside the sand channel. With its up-to-eight-layer resistivity reconstruction, the refined inversion exceeds the existing propagation resistivity answer product.\u0000 Outstanding performance was observed during the implementation. The target sand channel of 6-7m thickness could be delineated clearly by the refined inversion. It not only depicted the whole picture the sand body, but also provided an earlier sign of structural fluctuation, which ensured the success and high oil recovery rate of the horizontal section.\u0000 For the well with higher anisotropy or more local sedimentary features, comparing to the blur reflection of the previous method, this ultra-high-definition technology could provide a sophisticated vision of the shape, thickness, direction and resistivity property of the local thin layers and shaly block. Reliable evidence of both outline and inside characteristics of the sand channels improved the further well path design and geological understanding.\u0000 The ultra-high-definition mapping-while-drilling technology opened the market of complex deposition environment drilling. It remarkably increased the reservoir encountered rate and","PeriodicalId":10974,"journal":{"name":"Day 2 Tue, February 22, 2022","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76507841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1-Click Automatic Well Design Using Integrated Cloud Software 使用集成云软件一键自动井设计
Pub Date : 2022-02-21 DOI: 10.2523/iptc-22018-ms
M. A. Hassan, Jim Strand, A. Strømhaug, Lene Lykke Erichsen
Well Construction Automation is gradually becoming more prominent in oil & gas industry. It encompasses the application of digital technology in all aspects of well drilling and completion (i.e., automatic well design, digi-talization of downhole tools & surface equipment, remote monitoring, real time data transmission, and robotic rig systems). This paper presents a new workflow of Automatic Well Design, at a mere click of a computer mouse, using integrated cloud software. A software tool, named WellDesign, is used to demonstrate Automatic Well Design workflow. It utilizes net-works and cloud computers for data storage and collaboration and offers a set of Application Programming In-terfaces (APIs), enabling full automation, where whole or parts of the software can be operated by other com-puters. The software GUI can be accessed via any modern web browser across all kinds of computers (Win-dows, Macs) and any other smart devices (tablets, phones). Two automatic design workflows shall be illustrated in detail: Automatic Well Trajectories Automatic Casing Design
建井自动化在油气行业的应用日益突出。它涵盖了数字技术在钻井和完井各个方面的应用(即自动井设计、井下工具和地面设备的数字化、远程监控、实时数据传输和机器人钻机系统)。本文提出了一种利用集成云软件,只需点击鼠标即可实现自动油井设计的新工作流程。一个名为WellDesign的软件工具用于演示自动井设计工作流程。它利用网络和云计算机进行数据存储和协作,并提供一套应用程序编程接口(api),实现完全自动化,其中整个或部分软件可以由其他计算机操作。软件GUI可以通过任何现代网络浏览器在所有类型的计算机(windows, mac)和任何其他智能设备(平板电脑,手机)访问。下面将详细说明两种自动设计工作流程:自动井眼轨迹和自动套管设计
{"title":"1-Click Automatic Well Design Using Integrated Cloud Software","authors":"M. A. Hassan, Jim Strand, A. Strømhaug, Lene Lykke Erichsen","doi":"10.2523/iptc-22018-ms","DOIUrl":"https://doi.org/10.2523/iptc-22018-ms","url":null,"abstract":"\u0000 Well Construction Automation is gradually becoming more prominent in oil & gas industry. It encompasses the application of digital technology in all aspects of well drilling and completion (i.e., automatic well design, digi-talization of downhole tools & surface equipment, remote monitoring, real time data transmission, and robotic rig systems). This paper presents a new workflow of Automatic Well Design, at a mere click of a computer mouse, using integrated cloud software.\u0000 A software tool, named WellDesign, is used to demonstrate Automatic Well Design workflow. It utilizes net-works and cloud computers for data storage and collaboration and offers a set of Application Programming In-terfaces (APIs), enabling full automation, where whole or parts of the software can be operated by other com-puters. The software GUI can be accessed via any modern web browser across all kinds of computers (Win-dows, Macs) and any other smart devices (tablets, phones).\u0000 Two automatic design workflows shall be illustrated in detail:\u0000 Automatic Well Trajectories Automatic Casing Design","PeriodicalId":10974,"journal":{"name":"Day 2 Tue, February 22, 2022","volume":"790 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89829759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Toolkit for Offshore Carbon Capture and Storage CCS 海上碳捕集与封存技术工具箱
Pub Date : 2022-02-21 DOI: 10.2523/iptc-22307-ms
R. Tewari, C. Tan, M. Sedaralit
Carbon dioxide (CO2) capture, utilization, and storage is the best option for mitigating atmospheric emissions of CO2 and thereby controlling the greenhouse gas concentrations in the atmosphere. Despite the benefits, there have been a limited number of projects solely for CO2 sequestration being implemented. The industry is well-versed in gas injection in reservoir formation for pressure maintenance and improving oil recovery. However, there are striking differences between the injection of CO2 into depleted hydrocarbon reservoirs and the engineered storage of CO2. The differences and challenges are compounded when the storage site is karstified carbonate in offshore and bulk storage volume. It is paramount to know upfront that CO2 can be stored at a potential storage site and demonstrate that the site can meet required storage performance safety criteria. Comprehensive screening for site selection has been carried out for suitable CO2 storage sites in offshore Sarawak, Malaysia using geographical, geological, geophysical, geomechanical and reservoir engineering data and techniques for evaluating storage volume, container architecture, pressure, and temperature conditions. The site-specific input data are integrated into static and dynamic models for characterization and generating performance scenarios of the site. In addition, the geochemical interaction of CO2 with reservoir rock has been studied to understand possible changes that may occur during/after injection and their impact on injection processes/mechanisms. Novel 3-way coupled modelling of dynamic-geochemistry-geomechanics processes were carried out to study long-term dynamic behaviour and fate of CO2 in the formation. The 3-way coupled modelling helped to understand the likely state of injectant in future and the storage mechanism, i.e., structural, solubility, residual, and mineralized trapping. It also provided realistic storage capacity estimation, incorporating reservoir compaction and porosity/permeability changes. The study indicates deficient localized plastic shear strain in overburden flank fault whilst all the other flaws remained stable. The potential threat of leakage is minimal as target injection pressure is set at initial reservoir pressure, which is much lower than caprock breaching pressure during injection. Furthermore, it was found that the geochemical reaction impact is shallow and localized at the top of the reservoir, making the storage safe in the long term. The integrity of existing wells was evaluated for potential leakage and planned for a proper mitigation plan. Comprehensive measurement, monitoring, and verification (MMV) were also designed using state-of-art tools and dynamic simulation results. The understanding gaps are closed with additional technical work to improve technologies application and decrease the uncertainties. A comprehensive study for offshore CO2 storage projects identifying critical impacting elements is crucial for estimation, inje
二氧化碳的捕获、利用和储存是减少大气中二氧化碳排放从而控制大气中温室气体浓度的最佳选择。尽管有这些好处,但仅为二氧化碳封存而实施的项目数量有限。油气行业在储层注气以维持压力和提高采收率方面非常精通。然而,向枯竭油气藏注入二氧化碳与工程封存二氧化碳之间存在显著差异。当储存地点是海上的碳酸盐岩和大容量储存时,差异和挑战变得更加复杂。最重要的是要事先知道二氧化碳可以储存在一个潜在的储存地点,并证明该地点可以满足所需的储存性能安全标准。利用地理、地质、地球物理、地质力学和油藏工程数据和技术,对马来西亚沙捞越海上合适的二氧化碳储存地点进行了全面筛选,以评估储存量、容器结构、压力和温度条件。特定于场地的输入数据被集成到静态和动态模型中,用于表征和生成场地的性能场景。此外,还研究了CO2与储层岩石的地球化学相互作用,以了解注入期间/之后可能发生的变化及其对注入过程/机制的影响。采用动态-地球化学-地质力学过程的三维耦合模型,研究了地层中CO2的长期动态行为和命运。3-way耦合建模有助于了解注入物未来可能的状态和储存机制,即结构、溶解度、残留和矿化圈闭。它还提供了真实的存储容量估计,包括储层压实和孔隙度/渗透率的变化。研究表明,覆岩翼面断层局部塑性剪切应变不足,而其他断层均保持稳定。由于目标注入压力设定为初始油藏压力,远低于注入过程中盖层破裂压力,因此潜在的泄漏威胁很小。此外,发现地球化学反应影响较浅且局限于储层顶部,保证了长期安全储存。对现有油井的完整性进行了潜在泄漏评估,并制定了适当的缓解计划。综合测量、监测和验证(MMV)也使用最先进的工具和动态仿真结果进行了设计。通过额外的技术工作来改善技术应用并减少不确定性,可以缩小理解差距。对海上CO2封存项目进行全面研究,确定关键影响因素,对于估算、注入、遏制和监测CO2羽流至关重要。这些信息和工作流程可用于评估全球范围内碳酸盐和碎屑储层的其他CO2项目,以实现温室气体的长期无问题储存。
{"title":"A Toolkit for Offshore Carbon Capture and Storage CCS","authors":"R. Tewari, C. Tan, M. Sedaralit","doi":"10.2523/iptc-22307-ms","DOIUrl":"https://doi.org/10.2523/iptc-22307-ms","url":null,"abstract":"\u0000 Carbon dioxide (CO2) capture, utilization, and storage is the best option for mitigating atmospheric emissions of CO2 and thereby controlling the greenhouse gas concentrations in the atmosphere. Despite the benefits, there have been a limited number of projects solely for CO2 sequestration being implemented. The industry is well-versed in gas injection in reservoir formation for pressure maintenance and improving oil recovery. However, there are striking differences between the injection of CO2 into depleted hydrocarbon reservoirs and the engineered storage of CO2. The differences and challenges are compounded when the storage site is karstified carbonate in offshore and bulk storage volume.\u0000 It is paramount to know upfront that CO2 can be stored at a potential storage site and demonstrate that the site can meet required storage performance safety criteria. Comprehensive screening for site selection has been carried out for suitable CO2 storage sites in offshore Sarawak, Malaysia using geographical, geological, geophysical, geomechanical and reservoir engineering data and techniques for evaluating storage volume, container architecture, pressure, and temperature conditions. The site-specific input data are integrated into static and dynamic models for characterization and generating performance scenarios of the site. In addition, the geochemical interaction of CO2 with reservoir rock has been studied to understand possible changes that may occur during/after injection and their impact on injection processes/mechanisms. Novel 3-way coupled modelling of dynamic-geochemistry-geomechanics processes were carried out to study long-term dynamic behaviour and fate of CO2 in the formation.\u0000 The 3-way coupled modelling helped to understand the likely state of injectant in future and the storage mechanism, i.e., structural, solubility, residual, and mineralized trapping. It also provided realistic storage capacity estimation, incorporating reservoir compaction and porosity/permeability changes. The study indicates deficient localized plastic shear strain in overburden flank fault whilst all the other flaws remained stable. The potential threat of leakage is minimal as target injection pressure is set at initial reservoir pressure, which is much lower than caprock breaching pressure during injection. Furthermore, it was found that the geochemical reaction impact is shallow and localized at the top of the reservoir, making the storage safe in the long term. The integrity of existing wells was evaluated for potential leakage and planned for a proper mitigation plan. Comprehensive measurement, monitoring, and verification (MMV) were also designed using state-of-art tools and dynamic simulation results. The understanding gaps are closed with additional technical work to improve technologies application and decrease the uncertainties.\u0000 A comprehensive study for offshore CO2 storage projects identifying critical impacting elements is crucial for estimation, inje","PeriodicalId":10974,"journal":{"name":"Day 2 Tue, February 22, 2022","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82227730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
First Ever Deployment of Production System Optimization Tool in Giant Carbonate Offshore Field in UAE - Laying the Foundation for Digital Oil Field 首次在阿联酋巨型碳酸盐岩海上油田部署生产系统优化工具,为数字化油田奠定基础
Pub Date : 2022-02-21 DOI: 10.2523/iptc-22040-ms
Mikhail Tcibulskii, Ivan Trofimenko, Marat Yagudin, A. Lodin, Vladimir Khohryakov
Lost circulation (LC) is commonly encountered in drilling and cementing operations and can significantly contribute to non-productive time (NPT). An operator in the Kyumbinskoe Field faced this challenge in a fractured production section of the formation, and conventional LC solutions had been ineffective at achieving strict regulatory top of cement (TOC) requirements and satisfactory cement bonding. This paper describes the experience of utilizing foam cementing technology as a primary solution to solve a lost circulation issue on the project. For this project a foam cementing solution was designed to meet operational parameters for cementing a production casing in one stage (multi-stage tool was eliminated). Use of foam cementing technology helped to minimize losses experienced in all cementing operations previously on this project. CBL results were also improved. All Customer requirements were met: Planned Top Of Cement (TOC)Minimum losses during cementing operationsRig time savingImproving CBL results.
井漏(LC)在钻井和固井作业中经常遇到,并且会严重影响非生产时间(NPT)。Kyumbinskoe油田的一家作业公司在地层的裂缝生产段遇到了这一挑战,传统的LC解决方案在达到严格的水泥顶(TOC)要求和令人满意的水泥粘合方面是无效的。本文介绍了利用泡沫固井技术作为解决该工程漏失问题的主要解决方案的经验。对于该项目,设计了一种泡沫固井解决方案,以满足一次固井生产套管的操作参数(取消了多级工具)。泡沫固井技术的使用有助于将该项目之前所有固井作业的损失降至最低。CBL结果也有所改善。满足了客户的所有要求:计划的水泥顶(TOC)固井作业期间的损失最小,节省了钻机时间,提高了CBL效果。
{"title":"First Ever Deployment of Production System Optimization Tool in Giant Carbonate Offshore Field in UAE - Laying the Foundation for Digital Oil Field","authors":"Mikhail Tcibulskii, Ivan Trofimenko, Marat Yagudin, A. Lodin, Vladimir Khohryakov","doi":"10.2523/iptc-22040-ms","DOIUrl":"https://doi.org/10.2523/iptc-22040-ms","url":null,"abstract":"\u0000 Lost circulation (LC) is commonly encountered in drilling and cementing operations and can significantly contribute to non-productive time (NPT). An operator in the Kyumbinskoe Field faced this challenge in a fractured production section of the formation, and conventional LC solutions had been ineffective at achieving strict regulatory top of cement (TOC) requirements and satisfactory cement bonding. This paper describes the experience of utilizing foam cementing technology as a primary solution to solve a lost circulation issue on the project. For this project a foam cementing solution was designed to meet operational parameters for cementing a production casing in one stage (multi-stage tool was eliminated).\u0000 Use of foam cementing technology helped to minimize losses experienced in all cementing operations previously on this project. CBL results were also improved. All Customer requirements were met: Planned Top Of Cement (TOC)Minimum losses during cementing operationsRig time savingImproving CBL results.","PeriodicalId":10974,"journal":{"name":"Day 2 Tue, February 22, 2022","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83548646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiphase Pumping with Progressive Cavity Pumps 多相泵与渐进式腔泵
Pub Date : 2022-02-21 DOI: 10.2523/iptc-22277-ea
M. Hester
Multiphase fluids are mixtures of oil, water, and gas. Roughly six out of every ten wells contain multiphase fluids with variations in the fluid makeup, rheology, and viscosity. They may also include small amounts of sand, paraffin, hydrates, and drilling cuttings. This necessitates local separation at the well site, which can require a significant footprint of process equipment infrastructure at or near each well site. Ever since oil production began, produced fluids have been transferred from the well to the storage or processing facility using reservoir pressures. This means the bottom hole pressures needed to be sufficient to not only get the fluid to the surface but also move it some distance on the surface through flow lines. In cases where reservoirs are either low energy or are characterized by rapid pressure depletion curves as is common in a number of unconventional plays, this can be problematic. In wells that are artificially produced with a down hole pump or other artificial lift equipment the pump must have sufficient pressure capability to bring the fluids to the surface and then move them some distance on the surface through a flow line. Additional pressure may also be required for the separation equipment at the end of the flow line.
多相流体是油、水和气的混合物。大约每10口井中就有6口含有多相流体,这些多相流体在组成、流变性和粘度方面都有变化。它们也可能包括少量的沙子、石蜡、水合物和钻井岩屑。这就需要在井场进行局部分离,这可能需要在每个井场或附近占用大量的工艺设备基础设施。自石油生产开始以来,采出的流体就利用储层压力从油井转移到储存或处理设施。这意味着井底压力不仅要足够将流体输送到地面,还要使其通过流线在地面上移动一段距离。当储层能量较低或具有快速压力耗尽曲线的特征(在许多非常规油气藏中很常见)时,这可能会产生问题。在使用井下泵或其他人工举升设备进行人工采出的井中,泵必须具有足够的压力能力,将流体带到地面,然后通过流线在地面上移动一段距离。在流动管线末端的分离设备也可能需要额外的压力。
{"title":"Multiphase Pumping with Progressive Cavity Pumps","authors":"M. Hester","doi":"10.2523/iptc-22277-ea","DOIUrl":"https://doi.org/10.2523/iptc-22277-ea","url":null,"abstract":"\u0000 Multiphase fluids are mixtures of oil, water, and gas. Roughly six out of every ten wells contain multiphase fluids with variations in the fluid makeup, rheology, and viscosity. They may also include small amounts of sand, paraffin, hydrates, and drilling cuttings. This necessitates local separation at the well site, which can require a significant footprint of process equipment infrastructure at or near each well site.\u0000 Ever since oil production began, produced fluids have been transferred from the well to the storage or processing facility using reservoir pressures. This means the bottom hole pressures needed to be sufficient to not only get the fluid to the surface but also move it some distance on the surface through flow lines. In cases where reservoirs are either low energy or are characterized by rapid pressure depletion curves as is common in a number of unconventional plays, this can be problematic.\u0000 In wells that are artificially produced with a down hole pump or other artificial lift equipment the pump must have sufficient pressure capability to bring the fluids to the surface and then move them some distance on the surface through a flow line. Additional pressure may also be required for the separation equipment at the end of the flow line.","PeriodicalId":10974,"journal":{"name":"Day 2 Tue, February 22, 2022","volume":"62 3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86423030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling CO2 Sequestration in Deep Saline Aquifers – Best Practices 模拟深层盐水含水层的二氧化碳封存-最佳实践
Pub Date : 2022-02-21 DOI: 10.2523/iptc-22423-ea
Hassan Alzayer, Tareq Zahrani, A. Shubbar
Managing carbon emissions has become a major responsibility for the oil and gas industry in a drive to ensure sustainable energy and create a clean environment. Therefore, governments, research centers, IOC’s and NOC’s are actively adopting new guidelines and inventing new technologies to safely circulate carbons. In this paper, the process of modeling CO2 sequestration in a deep saline aquifer will be discussed. Carbon dioxide can be safely stored indefinitely in subsurface geological formations by four trapping mechanisms; structural, residual, soluble, and mineral trapping. These four trapping mechanisms can take hundreds or thousands of years to happen. Furthermore, the oil and gas industry standard recommend that any technology used to store CO2 needs to demonstrate a storage capacity of 1000 years with less than 0.1 per-cent leakage potential per year. Therefore, modelling such process should capture any existing trapping mechanism, even if it happens after several hundreds of years, to ensure long-term secure storage of the CO2. Using our in-house simulator "GigaPOWERS", many sequestration scenarios were conducted to come up with a recommended guideline to maximize the volume of CO2 trapped in deep saline aquifers. This study used a giant synthetic anticline model with a variation in geological properties. The residual and soluble trapping mechanisms were captured through relative permeability hysteresis and extended water PVT tables respectively. Injecting CO2 into water aquifers is a dynamic process where drainage and imbibition cycles are likely to happen. Such processes cause the CO2 to be trapped in the middle of the pores as an immobile phase, which can be a favorable phenomenon maximizing the security of CO2 sequestration. Since CO2 is soluble in water, when it contacts the water phase it will form a carbonated water that is denser than water itself and migrates downward in a phenomenon known as "CO2 fingering". The CO2 solubility in water depends mainly on the salinity and temperature which both need to be accurately captured in the simulation model. Depending on the long-term objective of the sequestration project, the development strategy can be altered to maximize the outcome using the detailed simulation model. In this paper, the simulation best practices for modeling CO2 sequestration for maximum secure long-term storage (1000+ years) are suggested. Carbon dioxide, CO2, sequestration in deep saline aquifers is a well-known method to reduce carbon emissions. However, there is very little published literature on the simulation best practices for modeling the CO2 sequestration process. Therefore, this paper will be a pioneer to guide the industry for accurate simulation of such process.
在确保能源可持续发展和创造清洁环境的过程中,管理碳排放已成为油气行业的一项主要责任。因此,各国政府、研究中心、国际奥委会和国家石油公司都在积极采用新的指导方针和发明新的技术来安全循环碳。本文将讨论深层含盐含水层中CO2封存的模拟过程。通过四种捕集机制,二氧化碳可以安全地无限期地储存在地下地质构造中;结构、残留、可溶性和矿物捕获。这四种捕获机制可能需要数百年或数千年才能发生。此外,石油和天然气行业标准建议,任何用于储存二氧化碳的技术都需要证明其储存能力为1000年,每年泄漏的可能性低于0.1%。因此,模拟这一过程应该捕捉到任何现有的捕获机制,即使它发生在几百年后,以确保二氧化碳的长期安全储存。使用我们的内部模拟器“GigaPOWERS”,进行了许多封存方案,以提出建议的指导方针,以最大限度地提高深盐水含水层中捕获的二氧化碳量。本研究使用了一个地质性质变化的巨型合成背斜模型。通过相对渗透率滞后和扩展水PVT表分别捕获了残余和可溶性捕获机制。向含水层注入二氧化碳是一个动态过程,可能发生排水和吸胀循环。这些过程使CO2作为不流动相被困在孔隙中间,这是一个有利的现象,最大限度地提高了CO2封存的安全性。由于二氧化碳可溶于水,当它与水相接触时,会形成比水本身密度大的碳酸水,并向下迁移,这种现象被称为“二氧化碳指动”。CO2在水中的溶解度主要取决于盐度和温度,这两者都需要在模拟模型中准确捕获。根据封存项目的长期目标,可以改变开发策略,以使用详细的模拟模型使结果最大化。在本文中,提出了模拟二氧化碳最大安全长期储存(1000年以上)的最佳实践。在深层咸水层中封存二氧化碳是一种众所周知的减少碳排放的方法。然而,关于模拟CO2封存过程的最佳实践的已发表文献很少。因此,本文将成为指导行业对这一过程进行精确模拟的先驱。
{"title":"Modeling CO2 Sequestration in Deep Saline Aquifers – Best Practices","authors":"Hassan Alzayer, Tareq Zahrani, A. Shubbar","doi":"10.2523/iptc-22423-ea","DOIUrl":"https://doi.org/10.2523/iptc-22423-ea","url":null,"abstract":"\u0000 Managing carbon emissions has become a major responsibility for the oil and gas industry in a drive to ensure sustainable energy and create a clean environment. Therefore, governments, research centers, IOC’s and NOC’s are actively adopting new guidelines and inventing new technologies to safely circulate carbons. In this paper, the process of modeling CO2 sequestration in a deep saline aquifer will be discussed.\u0000 Carbon dioxide can be safely stored indefinitely in subsurface geological formations by four trapping mechanisms; structural, residual, soluble, and mineral trapping. These four trapping mechanisms can take hundreds or thousands of years to happen. Furthermore, the oil and gas industry standard recommend that any technology used to store CO2 needs to demonstrate a storage capacity of 1000 years with less than 0.1 per-cent leakage potential per year. Therefore, modelling such process should capture any existing trapping mechanism, even if it happens after several hundreds of years, to ensure long-term secure storage of the CO2. Using our in-house simulator \"GigaPOWERS\", many sequestration scenarios were conducted to come up with a recommended guideline to maximize the volume of CO2 trapped in deep saline aquifers.\u0000 This study used a giant synthetic anticline model with a variation in geological properties. The residual and soluble trapping mechanisms were captured through relative permeability hysteresis and extended water PVT tables respectively. Injecting CO2 into water aquifers is a dynamic process where drainage and imbibition cycles are likely to happen. Such processes cause the CO2 to be trapped in the middle of the pores as an immobile phase, which can be a favorable phenomenon maximizing the security of CO2 sequestration. Since CO2 is soluble in water, when it contacts the water phase it will form a carbonated water that is denser than water itself and migrates downward in a phenomenon known as \"CO2 fingering\". The CO2 solubility in water depends mainly on the salinity and temperature which both need to be accurately captured in the simulation model. Depending on the long-term objective of the sequestration project, the development strategy can be altered to maximize the outcome using the detailed simulation model. In this paper, the simulation best practices for modeling CO2 sequestration for maximum secure long-term storage (1000+ years) are suggested.\u0000 Carbon dioxide, CO2, sequestration in deep saline aquifers is a well-known method to reduce carbon emissions. However, there is very little published literature on the simulation best practices for modeling the CO2 sequestration process. Therefore, this paper will be a pioneer to guide the industry for accurate simulation of such process.","PeriodicalId":10974,"journal":{"name":"Day 2 Tue, February 22, 2022","volume":"2013 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86200415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Low Viscosity Polymer Free Acid Retarded System, a Novel Alternative to Emulsified Acid: Successful Application in West Kuwait Field 低粘度无聚合物缓酸体系——一种新型乳化酸替代品——在西科威特油田的成功应用
Pub Date : 2022-02-21 DOI: 10.2523/iptc-22665-ms
S. Al-Sabea, A. Abu-Eida, M. Patra, M. AlEidi, G. Ambrosi, Nakul Khandelwal, Rishi Gaur, Khaled M. Matar, Abdulatif Al wazzan, J. Vasquez
Acid systems are widely recognized by the oil and gas industry as an attractive class of fluids for the efficient stimulation of carbonate reservoirs. One of the major challenges in carbonate acidizing treatments is adjusting the convective transport of acid deep into the reservoir while achieving a minimum rock face dissolution. Conventional emulsified acids are hindered by several limitations; low stability at high temperatures, a high viscosity that limits pumping rate due to frictional losses, the potential of formation damage, and the difficulty to achieve homogenous field-scale mixing. This paper highlights the successful application of an engineered low-viscosity retarded acid system without the need for gelation by a polymer or surfactant or emulsification by diesel. An acid stimulation job using a new innovative retarded acid system has been performed in a West Kuwait field well. The proposed acid system combines the use of a strong mineral acid (i.e. hydrochloric acid "HCl") with a non-damaging retarding agent that allows deeper penetration of the live HCl acid into the formation, resulting in a more effective stimulation treatment. The retardation behavior testing includes dissolution experiments, compatibility testing, coreflood study, and corrosion rate testing (conducted at 200°F). The on-job implementation included the use of a packer to pinpoint fluid pumping (pre-flush) at the point of interest, followed by the customized novel retarded acid system for improving conductivity at perforations and effective reservoir stimulation. This acid system is characterized by having a low-viscosity and high thermal stability system that can be mixed on the fly. This approach addresses the main challenges of emulsified acid systems and offers a cost-effective solution to cover a wide range of applications in matrix acid stimulation and high-temperature conditions that require a chemically retarded acid system. The application of this novel acid retarded system is a fit-for-purpose solution to optimize the return on investment by maximizing the well production and extending the lifetime of the treatment effect. This new system also offers excellent scale inhibition and iron control properties which eliminates the need for any acid remedial work, making it an economical approach over other conventional acid systems. The paper presents results obtained after stimulating the carbonate reservoir and describes the lessons learned from the job planning and execution phases, which can be considered as a best practice for application in similar challenges in other fields. Proper candidate selection, best available placement technique, and lab-tested formulation of novel retarded acid system resulted in achieving 1700 BOPD of oil production (27% higher than expected).
酸体系被油气行业广泛认为是一种有效增产碳酸盐岩储层的有吸引力的流体。碳酸盐岩酸化处理的主要挑战之一是在实现最小岩面溶蚀的同时,调节酸对储层深处的对流输送。传统的乳化酸受到几个限制的阻碍;高温稳定性低,由于摩擦损失,高粘度限制了泵送速率,潜在的地层损害,以及难以实现均匀的油田规模混合。本文重点介绍了一种不需要聚合物或表面活性剂凝胶化或柴油乳化的工程低粘度缓速酸体系的成功应用。在西科威特油田的一口井中,采用了一种新型的缓速酸系统进行了酸增产作业。该酸体系结合了强矿物酸(即盐酸“HCl”)和非破坏性缓凝剂的使用,可以使活性HCl酸深入地层,从而实现更有效的增产处理。缓凝行为测试包括溶解实验、相容性测试、岩心驱油研究和腐蚀速率测试(在200°F下进行)。作业实施包括使用封隔器在感兴趣的位置精确泵送流体(预冲洗),然后使用定制的新型缓速酸系统来提高射孔处的导流能力和有效的储层增产。该酸体系的特点是具有低粘度和高热稳定性系统,可以在飞行中混合。该方法解决了乳化酸体系的主要挑战,并提供了一种经济高效的解决方案,可广泛应用于需要化学缓速酸体系的基质酸增产和高温条件下。这种新型缓酸系统的应用是一种合适的解决方案,可以通过最大限度地提高油井产量和延长处理效果的寿命来优化投资回报。该新体系还具有优异的阻垢和铁控制性能,无需任何酸补救工作,与其他常规酸体系相比,这是一种经济的方法。本文介绍了碳酸盐岩储层增产后获得的结果,并描述了从作业规划和执行阶段获得的经验教训,可作为其他领域类似挑战的最佳实践。通过正确的候选物选择、最佳放置技术和实验室测试的新型缓速酸体系配方,最终实现了1700桶/天的产油量(比预期高出27%)。
{"title":"Low Viscosity Polymer Free Acid Retarded System, a Novel Alternative to Emulsified Acid: Successful Application in West Kuwait Field","authors":"S. Al-Sabea, A. Abu-Eida, M. Patra, M. AlEidi, G. Ambrosi, Nakul Khandelwal, Rishi Gaur, Khaled M. Matar, Abdulatif Al wazzan, J. Vasquez","doi":"10.2523/iptc-22665-ms","DOIUrl":"https://doi.org/10.2523/iptc-22665-ms","url":null,"abstract":"\u0000 Acid systems are widely recognized by the oil and gas industry as an attractive class of fluids for the efficient stimulation of carbonate reservoirs. One of the major challenges in carbonate acidizing treatments is adjusting the convective transport of acid deep into the reservoir while achieving a minimum rock face dissolution. Conventional emulsified acids are hindered by several limitations; low stability at high temperatures, a high viscosity that limits pumping rate due to frictional losses, the potential of formation damage, and the difficulty to achieve homogenous field-scale mixing. This paper highlights the successful application of an engineered low-viscosity retarded acid system without the need for gelation by a polymer or surfactant or emulsification by diesel.\u0000 An acid stimulation job using a new innovative retarded acid system has been performed in a West Kuwait field well. The proposed acid system combines the use of a strong mineral acid (i.e. hydrochloric acid \"HCl\") with a non-damaging retarding agent that allows deeper penetration of the live HCl acid into the formation, resulting in a more effective stimulation treatment. The retardation behavior testing includes dissolution experiments, compatibility testing, coreflood study, and corrosion rate testing (conducted at 200°F).\u0000 The on-job implementation included the use of a packer to pinpoint fluid pumping (pre-flush) at the point of interest, followed by the customized novel retarded acid system for improving conductivity at perforations and effective reservoir stimulation. This acid system is characterized by having a low-viscosity and high thermal stability system that can be mixed on the fly. This approach addresses the main challenges of emulsified acid systems and offers a cost-effective solution to cover a wide range of applications in matrix acid stimulation and high-temperature conditions that require a chemically retarded acid system.\u0000 The application of this novel acid retarded system is a fit-for-purpose solution to optimize the return on investment by maximizing the well production and extending the lifetime of the treatment effect. This new system also offers excellent scale inhibition and iron control properties which eliminates the need for any acid remedial work, making it an economical approach over other conventional acid systems.\u0000 The paper presents results obtained after stimulating the carbonate reservoir and describes the lessons learned from the job planning and execution phases, which can be considered as a best practice for application in similar challenges in other fields. Proper candidate selection, best available placement technique, and lab-tested formulation of novel retarded acid system resulted in achieving 1700 BOPD of oil production (27% higher than expected).","PeriodicalId":10974,"journal":{"name":"Day 2 Tue, February 22, 2022","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86458150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Drilling Offshore Wells with HP WBM in Extreme HP HT Conditions 在极端高温高压条件下,使用高压水轮机钻井海上油井
Pub Date : 2022-02-21 DOI: 10.2523/iptc-21965-ms
L. Affede, R. Lorefice, Larissa Pinto Vieira, M. Giubertoni, Lorenzo Buzzi, G. Carpineta
During drilling of three exploration wells challenging conditions encountered, such as temperatures up to 180°C, interbedded highly reactive shales/silts, formation pressures which required mud weights up to 2.35 sg and narrow margin between pore and fracture gradients, posed a host of technical, logistical and cost challenges to Eni activities. These conditions required an accurate drilling fluids design to maximize operational efficiency and to minimize the risks related to such an extreme environment. Technical demands were particularly critical since the reactive shale formations had historically proved to be difficult to inhibit when drilled with Water Based Mud and might have caused swelling, tight hole, sticky wireline runs, bit-balling and accretion that could have resulted, among other issues, in low penetration rates (ROP). The formation nature coupled with ECD (Equivalent Circulation Density) constraints due to the high mud weight required to cope with high pore pressure, which also caused high mud rheology readings, were therefore the main limits to be overcome to achieve the well objectives. A tailored drilling fluid program was thus proposed which consisted of an inhibitive HPWBM (High Performance Water Based Mud) that could be converted to an HT-HPWBM, (High Temperature-High Performances Water Based Mud) while drilling, to cross the deeper and hotter sections of the well. This fluid was specifically engineered and optimized after each well in order to contain high concentration of a combination of monovalent salts to guarantee inhibition and reduce solids loading, dedicated polyamine shale inhibitor and fluid loss additives to minimize API/HPHT filtrate and filter cake thickness with the aim to reduce shale water invasion throughout the drilling campaign, graphite to minimizes fluid invasion and fracture propagation and ROP (Rate Of Penetration) enhancer continuously injected using dedicated pump to act as anti-balling and anti-accretion additive. The achieved results were drilling targets delivered safely, on time and with good overall fluid performances which either reduced or eliminated many of the challenges seen in offset wells, including: no barite sag, rheology stability, and stable long-term mud properties and wellbore conditions even during extended formation logs acquisitions. This paper covers the design, execution and accomplishments of the water-based drilling fluids employed on three HP/HT wells drilled, together with all of the lessons learned captured, highlighting the evolution of these systems to reach a step-change in terms of performances in such a harsh environment.
在三口勘探井的钻井过程中,遇到了一些具有挑战性的条件,例如温度高达180°C,层间存在高反应性的页岩/淤泥,地层压力要求泥浆重量高达2.35 sg,孔隙和裂缝梯度之间的边界很窄,这些都给埃尼公司的活动带来了一系列技术、后勤和成本方面的挑战。这些条件需要精确的钻井液设计,以最大限度地提高作业效率,并最大限度地降低与这种极端环境相关的风险。技术要求尤其关键,因为在使用水基泥浆钻井时,反应性页岩地层很难抑制,并且可能会导致膨胀、井眼紧致、电缆粘连、钻头滚球和膨胀等问题,这些问题可能导致低钻速(ROP)。因此,地层性质和ECD(等效循环密度)的限制(由于应对高孔隙压力需要高泥浆比重,这也会导致高泥浆流变性读数)是实现井目标需要克服的主要限制。因此,提出了一种定制的钻井液方案,其中包括一种抑制性HPWBM(高性能水基泥浆),可以在钻井时转化为高温-高性能水基泥浆),以穿过井的更深和更热的部分。该钻井液在每口井后经过专门设计和优化,以含有高浓度的一价盐组合,以保证抑制作用和减少固体载荷,专用的多胺页岩抑制剂和滤失剂添加剂,以最大限度地减少API/HPHT滤液和滤饼厚度,旨在减少整个钻井过程中页岩水的侵入。石墨可以最大限度地减少流体侵入和裂缝扩展,并使用专用泵连续注入ROP(钻速)增强剂,作为防球和防吸积添加剂。取得的成果是安全、及时地完成钻井目标,并具有良好的整体流体性能,减少或消除了邻井中的许多挑战,包括:无重晶石凹陷,流变性稳定,即使在长时间的地层测井采集期间,长期稳定的泥浆性质和井眼条件。本文介绍了在三口高温高压井中使用水基钻井液的设计、实施和成果,以及所获得的经验教训,重点介绍了这些系统在如此恶劣环境下的性能变化。
{"title":"Drilling Offshore Wells with HP WBM in Extreme HP HT Conditions","authors":"L. Affede, R. Lorefice, Larissa Pinto Vieira, M. Giubertoni, Lorenzo Buzzi, G. Carpineta","doi":"10.2523/iptc-21965-ms","DOIUrl":"https://doi.org/10.2523/iptc-21965-ms","url":null,"abstract":"\u0000 During drilling of three exploration wells challenging conditions encountered, such as temperatures up to 180°C, interbedded highly reactive shales/silts, formation pressures which required mud weights up to 2.35 sg and narrow margin between pore and fracture gradients, posed a host of technical, logistical and cost challenges to Eni activities. These conditions required an accurate drilling fluids design to maximize operational efficiency and to minimize the risks related to such an extreme environment.\u0000 Technical demands were particularly critical since the reactive shale formations had historically proved to be difficult to inhibit when drilled with Water Based Mud and might have caused swelling, tight hole, sticky wireline runs, bit-balling and accretion that could have resulted, among other issues, in low penetration rates (ROP). The formation nature coupled with ECD (Equivalent Circulation Density) constraints due to the high mud weight required to cope with high pore pressure, which also caused high mud rheology readings, were therefore the main limits to be overcome to achieve the well objectives.\u0000 A tailored drilling fluid program was thus proposed which consisted of an inhibitive HPWBM (High Performance Water Based Mud) that could be converted to an HT-HPWBM, (High Temperature-High Performances Water Based Mud) while drilling, to cross the deeper and hotter sections of the well. This fluid was specifically engineered and optimized after each well in order to contain high concentration of a combination of monovalent salts to guarantee inhibition and reduce solids loading, dedicated polyamine shale inhibitor and fluid loss additives to minimize API/HPHT filtrate and filter cake thickness with the aim to reduce shale water invasion throughout the drilling campaign, graphite to minimizes fluid invasion and fracture propagation and ROP (Rate Of Penetration) enhancer continuously injected using dedicated pump to act as anti-balling and anti-accretion additive.\u0000 The achieved results were drilling targets delivered safely, on time and with good overall fluid performances which either reduced or eliminated many of the challenges seen in offset wells, including: no barite sag, rheology stability, and stable long-term mud properties and wellbore conditions even during extended formation logs acquisitions.\u0000 This paper covers the design, execution and accomplishments of the water-based drilling fluids employed on three HP/HT wells drilled, together with all of the lessons learned captured, highlighting the evolution of these systems to reach a step-change in terms of performances in such a harsh environment.","PeriodicalId":10974,"journal":{"name":"Day 2 Tue, February 22, 2022","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81759873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Study on Increasing the Number of Stages in the Acid Fracturing Stimulation Technique in Horizontal Wells for a Tight Fractured Carbonate Reservoir in the Bahrain Field 巴林油田致密裂缝性碳酸盐岩储层水平井酸压增产技术增产级数研究
Pub Date : 2022-02-21 DOI: 10.2523/iptc-22586-ea
A. Aljawder, Yusuf Engineer, Bader Alhammadi, A.Wahab Buarki
The Ahmadi formation of Bahrain field is of Middle Cretaceous age. It is predominantly a shale lying immediately below the Magwa member of the Rumaila formation and contains two limestone units in the Bahrain field, which are referred to as Aa and Ab members. Limestone Aa and Ab are present with practically uniform thickness over the entire Bahrain field area, as a blanket like deposition. The Ahmadi Reservoir in the Bahrain Field has been producing since 1933. Ahmadi consists of two main limestone units, AA and AB, separated by a 40-45 ft shale member. The AA reservoir is typically 3 to 4 feet thick, while the AB is divided into three separate units: AB1, AB2, and AB3. AB1 and AB3 are fairly clean limestone units, with a cumulative net reservoir of 12 to 14 ft. AB2 is about 4 to 5 feet thick, and characterized as a non-reservoir. The matrix permeability ranges from 1 to 2 mD. The main focus of the primary development plan was established by infill horizontal open hole lateral section, targeting the AB3 zone. However, poor matrix permeability and the irregularly spaced natural fracture network of the AB3 zone can hinder the primary development strategy and well production. Therefore, acid fracturing with 8 stages (60 ft each) in the open hole lateral section was implemented to improve well performance. A study was initiated in 2019 to improve the acid fracturing technique in the AB3 open hole lateral section (horizontal wells) by increasing the number of stages from 8 stages (60 ft each) to 18 stages (60 ft each). The wells targeted were located in areas with low reservoir quality and low fracture networks in order to induce artificial fractures, thereby improving well performance.
巴林油田的Ahmadi组为中白垩世。它主要是位于Rumaila地层的Magwa成员下方的页岩,在巴林油田包含两个石灰岩单元,分别被称为Aa和Ab成员。石灰石Aa和Ab的厚度几乎均匀分布在整个巴林油田区域,呈毯状沉积。自1933年以来,巴林油田的Ahmadi油藏一直在生产。Ahmadi由两个主要的石灰岩单元AA和AB组成,由40-45英尺的页岩段隔开。AA储层通常为3至4英尺厚,而AB储层分为三个独立单元:AB1、AB2和AB3。AB1和AB3是相当干净的石灰岩单元,累计净储层厚度为12至14英尺。AB2厚度约为4至5英尺,属于非储层。基质渗透率范围为1 ~ 2 mD。首次开发计划的主要重点是通过水平井裸眼水平井段进行充填,以AB3层为目标。然而,AB3区的基质渗透率较差,天然裂缝网络间距不规则,可能会阻碍初级开发策略和油井生产。因此,在裸眼水平井段进行了8段(每段60英尺)的酸压裂,以提高井的性能。2019年启动了一项研究,旨在通过将8级(每级60英尺)增加到18级(每级60英尺)来改进AB3裸眼水平井段(水平井)的酸压裂技术。目标井位于储层质量较差、裂缝网络较少的地区,以诱导人工裂缝,从而提高井的性能。
{"title":"A Study on Increasing the Number of Stages in the Acid Fracturing Stimulation Technique in Horizontal Wells for a Tight Fractured Carbonate Reservoir in the Bahrain Field","authors":"A. Aljawder, Yusuf Engineer, Bader Alhammadi, A.Wahab Buarki","doi":"10.2523/iptc-22586-ea","DOIUrl":"https://doi.org/10.2523/iptc-22586-ea","url":null,"abstract":"\u0000 The Ahmadi formation of Bahrain field is of Middle Cretaceous age. It is predominantly a shale lying immediately below the Magwa member of the Rumaila formation and contains two limestone units in the Bahrain field, which are referred to as Aa and Ab members. Limestone Aa and Ab are present with practically uniform thickness over the entire Bahrain field area, as a blanket like deposition.\u0000 The Ahmadi Reservoir in the Bahrain Field has been producing since 1933. Ahmadi consists of two main limestone units, AA and AB, separated by a 40-45 ft shale member. The AA reservoir is typically 3 to 4 feet thick, while the AB is divided into three separate units: AB1, AB2, and AB3. AB1 and AB3 are fairly clean limestone units, with a cumulative net reservoir of 12 to 14 ft. AB2 is about 4 to 5 feet thick, and characterized as a non-reservoir. The matrix permeability ranges from 1 to 2 mD.\u0000 The main focus of the primary development plan was established by infill horizontal open hole lateral section, targeting the AB3 zone. However, poor matrix permeability and the irregularly spaced natural fracture network of the AB3 zone can hinder the primary development strategy and well production. Therefore, acid fracturing with 8 stages (60 ft each) in the open hole lateral section was implemented to improve well performance.\u0000 A study was initiated in 2019 to improve the acid fracturing technique in the AB3 open hole lateral section (horizontal wells) by increasing the number of stages from 8 stages (60 ft each) to 18 stages (60 ft each). The wells targeted were located in areas with low reservoir quality and low fracture networks in order to induce artificial fractures, thereby improving well performance.","PeriodicalId":10974,"journal":{"name":"Day 2 Tue, February 22, 2022","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80863568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First Metal to Metal Dual Auto Switch ESP 第一金属对金属双自动开关ESP
Pub Date : 2022-02-21 DOI: 10.2523/iptc-22426-ms
Ali AlOlaywat
Electrical submersible pump providers are always collaborating with client to overcome the challenges of costly ESP change out by offshore workover rigs and the conventional well intervention by offshore barges, in addition to the harsh reservoir environments due to high H2S and high temperature. Accordingly, operating companies are keen to minimize the number of ESP failures and avoid costly offshore workovers especially in high producers and when the demand of production is high. In effort to improve the ESP reliability and ensure continuous production, several recent technologies were combined to boost the run life of the overall completion. The combination of these technologies improved the run life and the reliability of the system and resulted in massive financial impact as it saves rig cost, Barge cost, wireline cost, operations cost and more importantly the deferred production. This paper will elaborate in details about the technologies utilized in this completion and how it caused considerable financial impact on both vendor and client.
电潜泵供应商一直在与客户合作,以克服海上修井机更换昂贵的电潜泵和海上驳船进行常规井干预的挑战,以及由于高硫化氢和高温造成的恶劣储层环境。因此,作业公司希望尽量减少ESP故障的数量,避免昂贵的海上修井作业,特别是在高产量和高产量需求的情况下。为了提高ESP的可靠性并确保连续生产,我们结合了几种最新技术来延长整个完井的运行寿命。这些技术的结合提高了系统的运行寿命和可靠性,并产生了巨大的财务影响,因为它节省了钻机成本、驳船成本、电缆成本、操作成本,更重要的是延迟生产。本文将详细阐述在此完成中使用的技术,以及它如何对供应商和客户造成相当大的财务影响。
{"title":"First Metal to Metal Dual Auto Switch ESP","authors":"Ali AlOlaywat","doi":"10.2523/iptc-22426-ms","DOIUrl":"https://doi.org/10.2523/iptc-22426-ms","url":null,"abstract":"\u0000 Electrical submersible pump providers are always collaborating with client to overcome the challenges of costly ESP change out by offshore workover rigs and the conventional well intervention by offshore barges, in addition to the harsh reservoir environments due to high H2S and high temperature. Accordingly, operating companies are keen to minimize the number of ESP failures and avoid costly offshore workovers especially in high producers and when the demand of production is high. In effort to improve the ESP reliability and ensure continuous production, several recent technologies were combined to boost the run life of the overall completion.\u0000 The combination of these technologies improved the run life and the reliability of the system and resulted in massive financial impact as it saves rig cost, Barge cost, wireline cost, operations cost and more importantly the deferred production.\u0000 This paper will elaborate in details about the technologies utilized in this completion and how it caused considerable financial impact on both vendor and client.","PeriodicalId":10974,"journal":{"name":"Day 2 Tue, February 22, 2022","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78257610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Day 2 Tue, February 22, 2022
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1