首页 > 最新文献

Cytogenetics and cell genetics最新文献

英文 中文
Assignment of E-cadherin (CDH1) and KSP-cadherin (CDH16) to chromosome 16q22.1 by radiation hybrid mapping. E-cadherin (CDH1)和KSP-cadherin (CDH16)在16q22.1染色体上的定位
Pub Date : 2000-01-01 DOI: 10.1159/000015531
D Baudry, C Jeanpierre
Cadherins are cellular adhesion molecules. Since disturbance of intracellular adhesion is important for invasion and metastasis of tumor cells, cadherins are considered prime candidates for tumor suppressor genes. A variety of solid tumors show loss of heterozygosity for the long arm of chromosome 16 (Austruy et al., 1995; Driouch et al., 1997), which is indicative of the potential localization of tumor suppressor genes. The homophilic cell adhesion molecule E-cadherin (CDH1) has been involved in gastric (Becker et al., 1994), breast (Berx et al., 1995) and gynecologic carcinomas (Risinger et al., 1994). This report refined localization of: (1) E-cadherin (CDH1), previously mapped to 16q22.1 on a panel of somatic cell hybrids (Callen et al., 1995) and between WI-9392 and D16S496 on the Genebridge 4 radiation hybrid panel (Hunstman et al., 1998); (2) KSP-cadherin (CDH16), previously mapped to chromosome 16q21-proximal 16q22 by in situ hybridization (Thomson et al., 1998). A more precise localization of these two genes in a publicly available radiation hybrid map will facilitate marker selection for linkage and loss of heterozygosity analyses. Materials and methods
{"title":"Assignment of E-cadherin (CDH1) and KSP-cadherin (CDH16) to chromosome 16q22.1 by radiation hybrid mapping.","authors":"D Baudry, C Jeanpierre","doi":"10.1159/000015531","DOIUrl":"https://doi.org/10.1159/000015531","url":null,"abstract":"Cadherins are cellular adhesion molecules. Since disturbance of intracellular adhesion is important for invasion and metastasis of tumor cells, cadherins are considered prime candidates for tumor suppressor genes. A variety of solid tumors show loss of heterozygosity for the long arm of chromosome 16 (Austruy et al., 1995; Driouch et al., 1997), which is indicative of the potential localization of tumor suppressor genes. The homophilic cell adhesion molecule E-cadherin (CDH1) has been involved in gastric (Becker et al., 1994), breast (Berx et al., 1995) and gynecologic carcinomas (Risinger et al., 1994). This report refined localization of: (1) E-cadherin (CDH1), previously mapped to 16q22.1 on a panel of somatic cell hybrids (Callen et al., 1995) and between WI-9392 and D16S496 on the Genebridge 4 radiation hybrid panel (Hunstman et al., 1998); (2) KSP-cadherin (CDH16), previously mapped to chromosome 16q21-proximal 16q22 by in situ hybridization (Thomson et al., 1998). A more precise localization of these two genes in a publicly available radiation hybrid map will facilitate marker selection for linkage and loss of heterozygosity analyses. Materials and methods","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":"88 3-4","pages":"253-4"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015531","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21673211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Identification and characterization of mouse orthologs of the AMMECR1 and FACL4 genes deleted in AMME syndrome: orthology of Xq22.3 and MmuXF1-F3. AMME综合征中缺失的AMMECR1和FACL4基因小鼠同源基因的鉴定和表征:Xq22.3和MmuXF1-F3的同源基因。
Pub Date : 2000-01-01 DOI: 10.1159/000015533
F Vitelli, I Meloni, S Fineschi, F Favara, C Tiziana Storlazzi, M Rocchi, A Renieri

The contiguous gene deletion syndrome AMME is characterized by Alport syndrome, midface hypoplasia, mental retardation and elliptocytosis and is caused by a deletion in Xq22.3, comprising several genes including COL4A5, FACL4 and AMMECR1. We have now cloned the murine Facl4 and Ammecr1 genes and have mapped both novel murine genes to mouse chromosome X band F1-F3. The murine and human orthologs show 96.5% (FACL4) and 95.2% (AMMECR1) identity at the amino acid level, with conservation of the respective putative subcellular localization signals. Our results show that Facl4 and Ammecr1 are the true murine orthologs of the human genes. Furthermore, the mapping of Facl4 and Ammecr1 to MmuXF1-F3 suggests that this subinterval is orthologous, at least for a portion of Xq22. 3.

连续基因缺失综合征AMME以Alport综合征、中脸发育不全、智力低下和椭圆细胞增多症为特征,由Xq22.3基因缺失引起,包括COL4A5、FACL4和AMMECR1等多个基因。我们现在已经克隆了小鼠Facl4和Ammecr1基因,并将这两个新的小鼠基因定位到小鼠染色体X带F1-F3。小鼠和人类同源基因在氨基酸水平上的同源性分别为96.5% (FACL4)和95.2% (AMMECR1),并保留了各自的亚细胞定位信号。我们的结果表明Facl4和Ammecr1是人类基因的真正的鼠同源物。此外,Facl4和Ammecr1到MmuXF1-F3的映射表明,这个子区间是同源的,至少对于Xq22的一部分来说是同源的。3.
{"title":"Identification and characterization of mouse orthologs of the AMMECR1 and FACL4 genes deleted in AMME syndrome: orthology of Xq22.3 and MmuXF1-F3.","authors":"F Vitelli, I Meloni, S Fineschi, F Favara, C Tiziana Storlazzi, M Rocchi, A Renieri","doi":"10.1159/000015533","DOIUrl":"10.1159/000015533","url":null,"abstract":"<p><p>The contiguous gene deletion syndrome AMME is characterized by Alport syndrome, midface hypoplasia, mental retardation and elliptocytosis and is caused by a deletion in Xq22.3, comprising several genes including COL4A5, FACL4 and AMMECR1. We have now cloned the murine Facl4 and Ammecr1 genes and have mapped both novel murine genes to mouse chromosome X band F1-F3. The murine and human orthologs show 96.5% (FACL4) and 95.2% (AMMECR1) identity at the amino acid level, with conservation of the respective putative subcellular localization signals. Our results show that Facl4 and Ammecr1 are the true murine orthologs of the human genes. Furthermore, the mapping of Facl4 and Ammecr1 to MmuXF1-F3 suggests that this subinterval is orthologous, at least for a portion of Xq22. 3.</p>","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":"88 3-4","pages":"259-63"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21673213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosomal localization of the genes encoding ALDH, BMP-2, R-FABP, IFN-gamma, RXR-gamma, and VIM in chicken by fluorescence in situ hybridization. 荧光原位杂交技术在鸡染色体上定位ALDH、BMP-2、R-FABP、ifn - γ、rxr - γ和VIM基因。
Pub Date : 2000-01-01 DOI: 10.1159/000015535
M Guttenbach, I Nanda, P M Brickell, R Godbout, P Staeheli, Z E Zehner, M Schmid

Six structural genes encoding ALDH, BMP-2, R-FABP, IFN-gamma, RXR-gamma and VIM were mapped in the chicken by fluorescence in situ hybridization (FISH) using genomic and cDNA clones as probes. The genes were found to be located on four different macrochromosomes: chromosome 1 (IFNG and FABP), chromosome 2 (VIM and ALDH), chromosome 3 (BMP2) and a smaller macrochromosome, most probably chromosome 7 (RXRG). With the exception of IFNG none of the newly mapped sites corresponds to known orthologous regions between chicken and human chromosomes.

以基因组克隆和cDNA克隆为探针,采用荧光原位杂交技术(FISH)在鸡中定位了编码ALDH、BMP-2、R-FABP、ifn - γ、rxr - γ和VIM的6个结构基因。这些基因被发现位于4条不同的大染色体上:1号染色体(IFNG和FABP)、2号染色体(VIM和ALDH)、3号染色体(BMP2)和一条较小的大染色体,最有可能是7号染色体(RXRG)。除了IFNG外,所有新定位的位点都不对应于鸡和人类染色体之间已知的同源区域。
{"title":"Chromosomal localization of the genes encoding ALDH, BMP-2, R-FABP, IFN-gamma, RXR-gamma, and VIM in chicken by fluorescence in situ hybridization.","authors":"M Guttenbach,&nbsp;I Nanda,&nbsp;P M Brickell,&nbsp;R Godbout,&nbsp;P Staeheli,&nbsp;Z E Zehner,&nbsp;M Schmid","doi":"10.1159/000015535","DOIUrl":"https://doi.org/10.1159/000015535","url":null,"abstract":"<p><p>Six structural genes encoding ALDH, BMP-2, R-FABP, IFN-gamma, RXR-gamma and VIM were mapped in the chicken by fluorescence in situ hybridization (FISH) using genomic and cDNA clones as probes. The genes were found to be located on four different macrochromosomes: chromosome 1 (IFNG and FABP), chromosome 2 (VIM and ALDH), chromosome 3 (BMP2) and a smaller macrochromosome, most probably chromosome 7 (RXRG). With the exception of IFNG none of the newly mapped sites corresponds to known orthologous regions between chicken and human chromosomes.</p>","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":"88 3-4","pages":"266-71"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015535","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21673215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Assignment of type I phosphatidylinositol-4-phosphate 5-kinase (PIP5K1A) to human chromosome bands 1q22--> q24 by in situ hybridization. I型磷脂酰肌醇-4-磷酸5激酶(PIP5K1A)在人类染色体带1q22- > q24上的原位杂交。
Pub Date : 2000-01-01 DOI: 10.1159/000015545
Y Xie, L Zhu, G Zhao
{"title":"Assignment of type I phosphatidylinositol-4-phosphate 5-kinase (PIP5K1A) to human chromosome bands 1q22--> q24 by in situ hybridization.","authors":"Y Xie,&nbsp;L Zhu,&nbsp;G Zhao","doi":"10.1159/000015545","DOIUrl":"https://doi.org/10.1159/000015545","url":null,"abstract":"","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":"88 3-4","pages":"197-9"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015545","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21673934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
cDNA cloning and genomic structure of a novel gene (C11orf9) localized to chromosome 11q12-->q13.1 which encodes a highly conserved, potential membrane-associated protein. 定位于染色体11q12- >q13.1的新基因C11orf9的cDNA克隆和基因组结构,该基因编码高度保守的潜在膜相关蛋白。
Pub Date : 2000-01-01 DOI: 10.1159/000015552
H Stöhr, A Marquardt, K White, B H Weber

We have cloned and characterized a novel gene (C11orf9) mapping to chromosome 11q12-->q13.1. The transcript was initially identified as a partial cDNA sequence in the course of constructing a transcript map of the region between markers D11S1765 and uteroglobin known to encompass the gene causing Best disease. Using a combination of EST mapping, computational exon prediction, RT-PCR, and 5'-RACE its 5. 7-kb full-length cDNA sequence was subsequently obtained. The C11orf9 gene consists of 26 exons spanning 33.1 kb of genomic DNA and is located about 4.3 kb centromeric to FEN1. Biocomputational analysis predicts that its conceptual translation product of 1,111 amino acids contains two transmembrane helices as well as two proline-rich regions. Alignment reveals significant homology to hypothetical peptides from several other species including C. elegans and D. melanogaster, indicating a high degree of conservation throughout evolution. Northern Blot and RT-PCR analyses demonstrate widespread expression of a single transcript but varying degrees of abundance among the individual tissues tested. Mutation analysis of the entire coding sequence excluded C11orf9 as the Best disease gene.

我们克隆并鉴定了一个定位于染色体11q12- >q13.1的新基因(C11orf9)。在构建标记D11S1765和子宫红蛋白之间区域的转录图谱过程中,转录本最初被鉴定为部分cDNA序列,该区域已知包含导致Best疾病的基因。结合EST定位、计算外显子预测、RT-PCR和5'-RACE its 5。获得全长7kb的cDNA序列。C11orf9基因由26个外显子组成,横跨33.1 kb的基因组DNA,位于FEN1约4.3 kb的着丝粒上。生物计算分析预测其1111个氨基酸的概念翻译产物包含两个跨膜螺旋和两个富含脯氨酸的区域。比对结果显示,该序列与其他几个物种(包括秀丽隐杆线虫和黑腹线虫)的假设肽具有显著的同源性,表明其在整个进化过程中具有高度的保守性。Northern Blot和RT-PCR分析表明,单个转录本广泛表达,但在测试的单个组织中丰度不同。整个编码序列的突变分析排除C11orf9为最佳致病基因。
{"title":"cDNA cloning and genomic structure of a novel gene (C11orf9) localized to chromosome 11q12-->q13.1 which encodes a highly conserved, potential membrane-associated protein.","authors":"H Stöhr,&nbsp;A Marquardt,&nbsp;K White,&nbsp;B H Weber","doi":"10.1159/000015552","DOIUrl":"https://doi.org/10.1159/000015552","url":null,"abstract":"<p><p>We have cloned and characterized a novel gene (C11orf9) mapping to chromosome 11q12-->q13.1. The transcript was initially identified as a partial cDNA sequence in the course of constructing a transcript map of the region between markers D11S1765 and uteroglobin known to encompass the gene causing Best disease. Using a combination of EST mapping, computational exon prediction, RT-PCR, and 5'-RACE its 5. 7-kb full-length cDNA sequence was subsequently obtained. The C11orf9 gene consists of 26 exons spanning 33.1 kb of genomic DNA and is located about 4.3 kb centromeric to FEN1. Biocomputational analysis predicts that its conceptual translation product of 1,111 amino acids contains two transmembrane helices as well as two proline-rich regions. Alignment reveals significant homology to hypothetical peptides from several other species including C. elegans and D. melanogaster, indicating a high degree of conservation throughout evolution. Northern Blot and RT-PCR analyses demonstrate widespread expression of a single transcript but varying degrees of abundance among the individual tissues tested. Mutation analysis of the entire coding sequence excluded C11orf9 as the Best disease gene.</p>","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":"88 3-4","pages":"211-6"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015552","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21673941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Assignment of the kinesin family member 4 genes (KIF4A and KIF4B) to human chromosome bands Xq13.1 and 5q33.1 by in situ hybridization. 通过原位杂交将激酶家族成员4基因(KIF4A和KIF4B)定位到人类染色体Xq13.1和5q33.1条带上。
Pub Date : 2000-01-01 DOI: 10.1159/000015482
M J Ha, J Yoon, E Moon, Y M Lee, H J Kim, W Kim
The murine KIF4 gene, a member of the kinesin superfamily, is an anterograde microtubule-based motor protein for transporting membranous organelles (Sekine et al., 1994). The recent finding that it binds to murine retroviral gag polyproteins implies that the binding might play an important role in virus assembly (Kim et al., 1998). A combination of RT-PCR with cDNA library screening led to identification of human KIF4 (Genbank accession number AF071592). The nucleotide sequence comprised part of the 5) untranslated region (UTR), an open reading frame (ORF) encoding 1232 amino acids, and the entire 3) UTR. Homologies with the mouse KIF4 were 82 % and 85 % for nucleic acids and amino acids, respectively. Although it was found that human KIF4 associates with HIV gag proteins (Tang et al., in press), the function of human KIF4 is yet to be determined. Here we report the mapping of the KIF4 genes to human chromosomes Xq13.1 and 5q33.1.
{"title":"Assignment of the kinesin family member 4 genes (KIF4A and KIF4B) to human chromosome bands Xq13.1 and 5q33.1 by in situ hybridization.","authors":"M J Ha,&nbsp;J Yoon,&nbsp;E Moon,&nbsp;Y M Lee,&nbsp;H J Kim,&nbsp;W Kim","doi":"10.1159/000015482","DOIUrl":"https://doi.org/10.1159/000015482","url":null,"abstract":"The murine KIF4 gene, a member of the kinesin superfamily, is an anterograde microtubule-based motor protein for transporting membranous organelles (Sekine et al., 1994). The recent finding that it binds to murine retroviral gag polyproteins implies that the binding might play an important role in virus assembly (Kim et al., 1998). A combination of RT-PCR with cDNA library screening led to identification of human KIF4 (Genbank accession number AF071592). The nucleotide sequence comprised part of the 5) untranslated region (UTR), an open reading frame (ORF) encoding 1232 amino acids, and the entire 3) UTR. Homologies with the mouse KIF4 were 82 % and 85 % for nucleic acids and amino acids, respectively. Although it was found that human KIF4 associates with HIV gag proteins (Tang et al., in press), the function of human KIF4 is yet to be determined. Here we report the mapping of the KIF4 genes to human chromosomes Xq13.1 and 5q33.1.","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":"88 1-2","pages":"41-2"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015482","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21623120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Assignment of NUFIP1 (nuclear FMRP interacting protein 1) gene to chromosome 13q14 and assignment of a pseudogene to chromosome 6q12. NUFIP1(核FMRP相互作用蛋白1)基因在染色体13q14和假基因在染色体6q12上的分配。
Pub Date : 2000-01-01 DOI: 10.1159/000015580
B Bardoni, S Giglio, A Schenck, M Rocchi, J L Mandel
{"title":"Assignment of NUFIP1 (nuclear FMRP interacting protein 1) gene to chromosome 13q14 and assignment of a pseudogene to chromosome 6q12.","authors":"B Bardoni, S Giglio, A Schenck, M Rocchi, J L Mandel","doi":"10.1159/000015580","DOIUrl":"10.1159/000015580","url":null,"abstract":"","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":"89 1-2","pages":"11-3"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21735840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The p53-inducible gene EI24/PIG8 localizes to human chromosome 11q23 and the proximal region of mouse chromosome 9. p53诱导基因EI24/PIG8定位于人类染色体11q23和小鼠染色体9的近端区域。
Pub Date : 2000-01-01 DOI: 10.1159/000015620
Z Gu, D J Gilbert, V A Valentine, N A Jenkins, N G Copeland, G P Zambetti

Activation of the p53 tumor suppressor leads to either a cell cycle arrest or to apoptosis and the factors that influence these responses are poorly understood. It is clear, however, that p53 regulates these processes by inducing a series of downstream target genes. One recently identified p53-target gene, EI24 (alias PIG8), induces apoptosis when ectopically expressed. To better understand the biological properties of EI24 and its potential relevance to disease, in particular cancer, we determined the chromosomal location and pattern of gene expression of EI24. EI24 is widely expressed in adult tissues and throughout mouse embryogenesis. The genomic locus of EI24 was mapped to the proximal region of mouse chromosome 9 and human chromosome 11q23-->q24, a region frequently altered in human cancers. These results suggest that EI24 may play an important role in the p53 tumor suppressor pathway.

p53肿瘤抑制因子的激活导致细胞周期阻滞或细胞凋亡,而影响这些反应的因素尚不清楚。然而,很明显,p53通过诱导一系列下游靶基因来调节这些过程。最近发现的p53靶基因EI24(别名PIG8)在异位表达时可诱导细胞凋亡。为了更好地了解EI24的生物学特性及其与疾病,特别是癌症的潜在相关性,我们确定了EI24的染色体位置和基因表达模式。EI24在成年组织和整个小鼠胚胎发生过程中广泛表达。e24的基因组位点定位于小鼠9号染色体和人类11q23- >q24染色体的近端区域,该区域在人类癌症中经常发生改变。这些结果提示EI24可能在p53肿瘤抑制通路中发挥重要作用。
{"title":"The p53-inducible gene EI24/PIG8 localizes to human chromosome 11q23 and the proximal region of mouse chromosome 9.","authors":"Z Gu,&nbsp;D J Gilbert,&nbsp;V A Valentine,&nbsp;N A Jenkins,&nbsp;N G Copeland,&nbsp;G P Zambetti","doi":"10.1159/000015620","DOIUrl":"https://doi.org/10.1159/000015620","url":null,"abstract":"<p><p>Activation of the p53 tumor suppressor leads to either a cell cycle arrest or to apoptosis and the factors that influence these responses are poorly understood. It is clear, however, that p53 regulates these processes by inducing a series of downstream target genes. One recently identified p53-target gene, EI24 (alias PIG8), induces apoptosis when ectopically expressed. To better understand the biological properties of EI24 and its potential relevance to disease, in particular cancer, we determined the chromosomal location and pattern of gene expression of EI24. EI24 is widely expressed in adult tissues and throughout mouse embryogenesis. The genomic locus of EI24 was mapped to the proximal region of mouse chromosome 9 and human chromosome 11q23-->q24, a region frequently altered in human cancers. These results suggest that EI24 may play an important role in the p53 tumor suppressor pathway.</p>","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":"89 3-4","pages":"230-3"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015620","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21800827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Clustering of two fragile sites and seven homeobox genes in human chromosome region 2q31-->q32.1. 人类染色体2q31- >q32.1区域2个脆弱位点和7个同源盒基因的聚类。
Pub Date : 2000-01-01 DOI: 10.1159/000015651
M Z Limongi, F Pelliccia, L Gaddini, A Rocchi

In this study we have used FISH to examine the relationship between a group of homeobox genes, namely DLX1/DLX2, EVX2 and four HOXD genes (10, 11, 12, 13), that map to region q31 on chromosome 2, and the FRA2G and FRA2H fragile sites located at 2q31 and 2q32.1 respectively. Our results indicate that these homeobox genes lie between the two fragile regions.

在本研究中,我们使用FISH检测了位于2号染色体q31区域的一组同源盒基因,即DLX1/DLX2、EVX2和4个HOXD基因(10,11,12,13)与位于2q31和2q32.1的FRA2G和FRA2H脆弱位点之间的关系。我们的研究结果表明,这些同源盒基因位于两个脆弱区域之间。
{"title":"Clustering of two fragile sites and seven homeobox genes in human chromosome region 2q31-->q32.1.","authors":"M Z Limongi,&nbsp;F Pelliccia,&nbsp;L Gaddini,&nbsp;A Rocchi","doi":"10.1159/000015651","DOIUrl":"https://doi.org/10.1159/000015651","url":null,"abstract":"<p><p>In this study we have used FISH to examine the relationship between a group of homeobox genes, namely DLX1/DLX2, EVX2 and four HOXD genes (10, 11, 12, 13), that map to region q31 on chromosome 2, and the FRA2G and FRA2H fragile sites located at 2q31 and 2q32.1 respectively. Our results indicate that these homeobox genes lie between the two fragile regions.</p>","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":"90 1-2","pages":"151-3"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015651","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21886957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Human secretin (SCT): gene structure, chromosome location, and distribution of mRNA. 人分泌素(SCT):基因结构、染色体位置和mRNA的分布。
Pub Date : 2000-01-01 DOI: 10.1159/000015658
T E Whitmore, J L Holloway, C E Lofton-Day, M F Maurer, L Chen, T J Quinton, J B Vincent, S W Scherer, S Lok

Secretin is an endocrine hormone that stimulates the secretion of bicarbonate-rich pancreatic fluids. Recently, it has been discussed that secretin deficiency may be implicated in autistic syndrome, suggesting that the hormone could have a neuroendocrine function in addition to its role in digestion. In the present study, the human secretin gene (SCT) was isolated from a bacterial artificial chromosome genomic library. SCT contains four exons, with the protein coding regions spanning 713 bp of genomic DNA. Human SCT is similar structurally to the secretin genes of other species. Amino acid conservation, however, is most pronounced within the exon encoding the biologically active mature peptide. Northern blot analysis shows that human SCT transcripts are located in the spleen, intestinal tract, and brain. Radiation hybrid mapping places the SCT locus on chromosome 11p15.5.

分泌素是一种内分泌激素,能刺激富含碳酸氢盐的胰液分泌。最近,有人讨论分泌素缺乏可能与自闭症综合症有关,这表明这种激素除了在消化中起作用外,还可能具有神经内分泌功能。本研究从细菌人工染色体基因组文库中分离出人分泌素基因(SCT)。SCT包含4个外显子,蛋白质编码区跨越基因组DNA的713 bp。人类SCT在结构上与其他物种的分泌素基因相似。然而,氨基酸保护在编码具有生物活性的成熟肽的外显子中最为明显。Northern blot分析显示,人类SCT转录本位于脾脏、肠道和大脑。辐射杂交定位将SCT位点定位在11p15.5染色体上。
{"title":"Human secretin (SCT): gene structure, chromosome location, and distribution of mRNA.","authors":"T E Whitmore,&nbsp;J L Holloway,&nbsp;C E Lofton-Day,&nbsp;M F Maurer,&nbsp;L Chen,&nbsp;T J Quinton,&nbsp;J B Vincent,&nbsp;S W Scherer,&nbsp;S Lok","doi":"10.1159/000015658","DOIUrl":"https://doi.org/10.1159/000015658","url":null,"abstract":"<p><p>Secretin is an endocrine hormone that stimulates the secretion of bicarbonate-rich pancreatic fluids. Recently, it has been discussed that secretin deficiency may be implicated in autistic syndrome, suggesting that the hormone could have a neuroendocrine function in addition to its role in digestion. In the present study, the human secretin gene (SCT) was isolated from a bacterial artificial chromosome genomic library. SCT contains four exons, with the protein coding regions spanning 713 bp of genomic DNA. Human SCT is similar structurally to the secretin genes of other species. Amino acid conservation, however, is most pronounced within the exon encoding the biologically active mature peptide. Northern blot analysis shows that human SCT transcripts are located in the spleen, intestinal tract, and brain. Radiation hybrid mapping places the SCT locus on chromosome 11p15.5.</p>","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":"90 1-2","pages":"47-52"},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015658","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21889082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 38
期刊
Cytogenetics and cell genetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1