Pub Date : 2025-01-06DOI: 10.2174/0109298673342364241119114722
Manije Darooghegi Mofrad, Seoeun Ahn, Ock K Chun
Introduction/objective: The responsiveness to dietary interventions is influenced by complex, multifactorial interactions among genetics, diet, lifestyle, gut microbiome, environmental factors, and clinical characteristics, such as the metabolic phenotype. Detailed metabolic and microbial phenotyping using large human datasets is essential for better understanding the link between diet, the gut microbiome, and host metabolism in cardiovascular diseases (CVD). This review provides an overview of the interplay between diet, genome, metabolome, and gut microbiome in CVD.
Methods: A literature review was conducted using PubMed and Scopus databases to identify pertinent cohort studies published between January 2022 and May 2024. This review focused on English articles that assessed the interplay of diet, genome, metabolome, and gut microbiome in relation to CVD in humans.
Results: This narrative review explored the role of single-omics technologies-genomics, metabolomics, and the gut microbiome-and multi-omics approaches to understand the molecular basis of the relationship between diet and CVD. Omics technologies enabled the identification of new genes, metabolites, and molecular mechanisms related to the association of diet and CVD. The integration of multiple omics approaches allows for more detailed phenotyping, offering a broader perspective on how dietary factors influence CVD.
Conclusion: Omics approaches hold great potential for deciphering the intricate crosstalk between diet, genome, gut microbiome, and metabolome, as well as their roles in CVD. Although large-scale studies integrating multiple omics in CVD research are still limited, notable progress has been made in uncovering molecular mechanisms. These findings could guide the development of targeted dietary strategies and guidelines to prevent CVD.
{"title":"The Interplay of Diet, Genome, Metabolome, and Gut Microbiome in Cardiovascular Disease: A Narrative Review.","authors":"Manije Darooghegi Mofrad, Seoeun Ahn, Ock K Chun","doi":"10.2174/0109298673342364241119114722","DOIUrl":"https://doi.org/10.2174/0109298673342364241119114722","url":null,"abstract":"<p><strong>Introduction/objective: </strong>The responsiveness to dietary interventions is influenced by complex, multifactorial interactions among genetics, diet, lifestyle, gut microbiome, environmental factors, and clinical characteristics, such as the metabolic phenotype. Detailed metabolic and microbial phenotyping using large human datasets is essential for better understanding the link between diet, the gut microbiome, and host metabolism in cardiovascular diseases (CVD). This review provides an overview of the interplay between diet, genome, metabolome, and gut microbiome in CVD.</p><p><strong>Methods: </strong>A literature review was conducted using PubMed and Scopus databases to identify pertinent cohort studies published between January 2022 and May 2024. This review focused on English articles that assessed the interplay of diet, genome, metabolome, and gut microbiome in relation to CVD in humans.</p><p><strong>Results: </strong>This narrative review explored the role of single-omics technologies-genomics, metabolomics, and the gut microbiome-and multi-omics approaches to understand the molecular basis of the relationship between diet and CVD. Omics technologies enabled the identification of new genes, metabolites, and molecular mechanisms related to the association of diet and CVD. The integration of multiple omics approaches allows for more detailed phenotyping, offering a broader perspective on how dietary factors influence CVD.</p><p><strong>Conclusion: </strong>Omics approaches hold great potential for deciphering the intricate crosstalk between diet, genome, gut microbiome, and metabolome, as well as their roles in CVD. Although large-scale studies integrating multiple omics in CVD research are still limited, notable progress has been made in uncovering molecular mechanisms. These findings could guide the development of targeted dietary strategies and guidelines to prevent CVD.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chronic pain lasting more than three months or persisting after normal healing is a significant global health issue. In a healthcare system, it is crucial to ensure proper chronic pain management. Traditional pharmacological and non-pharmacological pain management techniques may not fully meet the requirements of physicians regarding effectiveness and safety. Therefore, researchers are exploring natural analgesics. Plant-based phytoconstituents show promise in relieving chronic pain associated with various diseases. This study aims to review the latest advances in discovering natural bioactive compounds that can help alleviate chronic pain. It discusses the pathways of chronic pain and a multifactorial treatment strategy. It also organizes data on using plant- derived substances, such as cannabinoids, terpenoids, phenolics, and crude extracts. Additionally, it delves into the pharmacodynamics of cannabinoids, including their route of administration and elimination. The review presents the results of 22 clinical trials on various cannabinoids for pain relief. It is important to note that opioids and other alkaloids from plants are not covered in this article due to their primary use in controlling acute rather than chronic pain.
{"title":"Exploring Natural Analgesics for Chronic Pain Management: Cannabinoids and Other Phytoconstituents.","authors":"Geir Bjørklund, Oleksandra Oleshchuk, Tetiana Gontova, Mykola Klantsa, Mariana Lukanyuk, Olha Denefil, Оleh Koshovyi, Volodymyr Shanaida, Mariia Shanaida","doi":"10.2174/0109298673330732241017135054","DOIUrl":"https://doi.org/10.2174/0109298673330732241017135054","url":null,"abstract":"<p><p>Chronic pain lasting more than three months or persisting after normal healing is a significant global health issue. In a healthcare system, it is crucial to ensure proper chronic pain management. Traditional pharmacological and non-pharmacological pain management techniques may not fully meet the requirements of physicians regarding effectiveness and safety. Therefore, researchers are exploring natural analgesics. Plant-based phytoconstituents show promise in relieving chronic pain associated with various diseases. This study aims to review the latest advances in discovering natural bioactive compounds that can help alleviate chronic pain. It discusses the pathways of chronic pain and a multifactorial treatment strategy. It also organizes data on using plant- derived substances, such as cannabinoids, terpenoids, phenolics, and crude extracts. Additionally, it delves into the pharmacodynamics of cannabinoids, including their route of administration and elimination. The review presents the results of 22 clinical trials on various cannabinoids for pain relief. It is important to note that opioids and other alkaloids from plants are not covered in this article due to their primary use in controlling acute rather than chronic pain.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.2174/0109298673356682241205044326
Reetuparna Acharya, Pran Kishore Deb, Shakti Prasad Pattanayak
<p><strong>Aims: </strong>The aim of this study is the evaluation of an Azomethine derivative, BCS2, for its antioxidant and anti-tumor activities against mammary carcinoma through the Nrf2- Keap1-HO-1 pathway.</p><p><strong>Background: </strong>The global prevalence of breast cancer is rising at an alarming rate. The facilitation of abnormal cell proliferation in mammary carcinoma occurs due to the disruption of signaling pathways that balance pro- and antioxidant status, thereby producing oxidative stress that disrupts genomic stability. Therefore, introducing a potent antioxidant molecule with antitumor activity is of paramount importance for treating breast cancer.</p><p><strong>Objective: </strong>Synthesis, characterization, and in-vitro, in-vivo, and in-silico evaluation of an Azomethine derivative, BCS2, for its antioxidant and anti-tumor activities against chemical carcinogen- induced mammary carcinogenesis in Sprague-Dawley rats.</p><p><strong>Methods: </strong>An azomethine derivative, 1-(4-nitrophenyl)-N-phenylmethanimine (BCS2), was synthesized and characterized based on its spectral data. The cytotoxic potential was observed on breast cancer cells, MCF-7, MDA-MB-231, and MDA-MB-468. The in vivo chemotherapeutic potential of BCS2 was established on 7,12-dimethylbenz(a)anthracene (DMBA) induced breast cancer in Sprague-Dawley (SD) rats. The effect of BCS2 on kelch-like ECH-associated protein- 1 (Keap1), Nrf2, heme oxygenase-1 (HO-1), mitogen-activated protein kinase (MAPK), and nuclear factor kappa-light-chain-enhancer of activated-B (NF-κB) was evaluated through ELISA and qPCR techniques. Furthermore, the binding potential and stability of BCS2 with Keap-1, HO-1, and MAPK were predicted using in silico molecular docking and dynamics studies. Additionally, drug-likeness properties of BCS2 were evaluated using in silico ADMET tools.</p><p><strong>Results: </strong>BCS2 showed remarkable cytotoxic activity on MCF-7 cells followed by MDA-MB- 231 and MDA-MB-468 cells having an IC50 of 2.368μM, 4.843μM and 6.472μM respectively, without affecting normal breast cells, MCF-10A. In the DMBA-induced animal model, BCS2 showed potent antitumor potential and showed protective action on endogenous-enzymatic and non-enzymatic antioxidants in cancer-bearing animals. Marked improvement in cellular architecture and ultrastructure of breast/tumor tissues excised from experimental animals was noted through histopathological and field emission scanning electron microscopy (FESEM) analyses. Significant upregulation of antioxidant proteins, Keap1 and HO-1, and downregulation of inflammatory proteins, MAPK, and NF-κB was observed after BCS2 treatment. The in silico computational studies predicted the potent binding of BCS2 with the active pockets of Keap1, HO-1, and MAPK proteins that validated the biological findings.</p><p><strong>Conclusion: </strong>The study revealed BCS2's potent antioxidant and antitumor potential against mammary carcinoma through the
{"title":"An Azomethine Derivative, 1-(4-nitrophenyl)-N-phenylmethanimine (BCS2) Ameliorated 7,12-dimethylbenz(a)anthracene-induced Mammary Carcinoma through Nrf2-Keap1-HO-1 Pathway.","authors":"Reetuparna Acharya, Pran Kishore Deb, Shakti Prasad Pattanayak","doi":"10.2174/0109298673356682241205044326","DOIUrl":"https://doi.org/10.2174/0109298673356682241205044326","url":null,"abstract":"<p><strong>Aims: </strong>The aim of this study is the evaluation of an Azomethine derivative, BCS2, for its antioxidant and anti-tumor activities against mammary carcinoma through the Nrf2- Keap1-HO-1 pathway.</p><p><strong>Background: </strong>The global prevalence of breast cancer is rising at an alarming rate. The facilitation of abnormal cell proliferation in mammary carcinoma occurs due to the disruption of signaling pathways that balance pro- and antioxidant status, thereby producing oxidative stress that disrupts genomic stability. Therefore, introducing a potent antioxidant molecule with antitumor activity is of paramount importance for treating breast cancer.</p><p><strong>Objective: </strong>Synthesis, characterization, and in-vitro, in-vivo, and in-silico evaluation of an Azomethine derivative, BCS2, for its antioxidant and anti-tumor activities against chemical carcinogen- induced mammary carcinogenesis in Sprague-Dawley rats.</p><p><strong>Methods: </strong>An azomethine derivative, 1-(4-nitrophenyl)-N-phenylmethanimine (BCS2), was synthesized and characterized based on its spectral data. The cytotoxic potential was observed on breast cancer cells, MCF-7, MDA-MB-231, and MDA-MB-468. The in vivo chemotherapeutic potential of BCS2 was established on 7,12-dimethylbenz(a)anthracene (DMBA) induced breast cancer in Sprague-Dawley (SD) rats. The effect of BCS2 on kelch-like ECH-associated protein- 1 (Keap1), Nrf2, heme oxygenase-1 (HO-1), mitogen-activated protein kinase (MAPK), and nuclear factor kappa-light-chain-enhancer of activated-B (NF-κB) was evaluated through ELISA and qPCR techniques. Furthermore, the binding potential and stability of BCS2 with Keap-1, HO-1, and MAPK were predicted using in silico molecular docking and dynamics studies. Additionally, drug-likeness properties of BCS2 were evaluated using in silico ADMET tools.</p><p><strong>Results: </strong>BCS2 showed remarkable cytotoxic activity on MCF-7 cells followed by MDA-MB- 231 and MDA-MB-468 cells having an IC50 of 2.368μM, 4.843μM and 6.472μM respectively, without affecting normal breast cells, MCF-10A. In the DMBA-induced animal model, BCS2 showed potent antitumor potential and showed protective action on endogenous-enzymatic and non-enzymatic antioxidants in cancer-bearing animals. Marked improvement in cellular architecture and ultrastructure of breast/tumor tissues excised from experimental animals was noted through histopathological and field emission scanning electron microscopy (FESEM) analyses. Significant upregulation of antioxidant proteins, Keap1 and HO-1, and downregulation of inflammatory proteins, MAPK, and NF-κB was observed after BCS2 treatment. The in silico computational studies predicted the potent binding of BCS2 with the active pockets of Keap1, HO-1, and MAPK proteins that validated the biological findings.</p><p><strong>Conclusion: </strong>The study revealed BCS2's potent antioxidant and antitumor potential against mammary carcinoma through the","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.2174/0109298673343892241207034138
Ozal Beylerli, Elmar Musaev, Gervith Reyes Soto, Carlos Castillo Rangel, Manuel De Jesus Encarnacion Ramirez, Tatiana Ilyasova
Glioblastoma (GBM) characterized byits rapid progression and challenging prognosis, often featuring mutations in the Kirsten rat sarcoma virus (KRAS) gene, which is crucial for numerous cellular signaling mechanisms. Emerging research underscores a significant interaction between KRAS and microRNAs (miRNAs) in these cancers, with miRNAs playing key roles as both regulators and mediators within the KRAS signaling framework. The concept of oncogene-induced senescence (OIS) is explored as a protective mechanism against tumor development, examining how K-RAS signaling is meticulously adjusted to bypass senescence, thereby enhancing cell growth and survival. In this study, we identify certain miRNAs that directly impact KRAS through mRNA targeting or by influencing its downstream signaling cascades. In turn, pathways activated by KRAS can modify the levels of specific miRNAs, establishing a feedback loop that balances cell regulation and tumor progression. We propose a theoretical framework where these interactions are crucial for deciphering the molecular underpinnings of GBM, potentially paving the way for innovative treatment approaches that focus on the miRNA-KRAS connection.
{"title":"Interaction between microRNA and KRAS in Glioblastoma.","authors":"Ozal Beylerli, Elmar Musaev, Gervith Reyes Soto, Carlos Castillo Rangel, Manuel De Jesus Encarnacion Ramirez, Tatiana Ilyasova","doi":"10.2174/0109298673343892241207034138","DOIUrl":"https://doi.org/10.2174/0109298673343892241207034138","url":null,"abstract":"<p><p>Glioblastoma (GBM) characterized byits rapid progression and challenging prognosis, often featuring mutations in the Kirsten rat sarcoma virus (KRAS) gene, which is crucial for numerous cellular signaling mechanisms. Emerging research underscores a significant interaction between KRAS and microRNAs (miRNAs) in these cancers, with miRNAs playing key roles as both regulators and mediators within the KRAS signaling framework. The concept of oncogene-induced senescence (OIS) is explored as a protective mechanism against tumor development, examining how K-RAS signaling is meticulously adjusted to bypass senescence, thereby enhancing cell growth and survival. In this study, we identify certain miRNAs that directly impact KRAS through mRNA targeting or by influencing its downstream signaling cascades. In turn, pathways activated by KRAS can modify the levels of specific miRNAs, establishing a feedback loop that balances cell regulation and tumor progression. We propose a theoretical framework where these interactions are crucial for deciphering the molecular underpinnings of GBM, potentially paving the way for innovative treatment approaches that focus on the miRNA-KRAS connection.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.2174/0109298673348217241119063941
Mohammed A Akram, Abdelhamid Khodja, Sarah Dalibalta, Amin F Majdalawieh
Atherosclerosis is a complex vascular disease characterized by the buildup of lipids, inflammatory cells and fibrous components in arterial walls leading to plaque formation and potential thrombotic events like myocardial infarction and strokes. Recently, there has been research on the roles of various types of lipids such as low-density lipoprotein (LDL) cholesterol, oxidized LDL (oxLDL) cholesterol and small dense LDL (sdLDL) in the onset and progression of atherosclerosis. These lipoproteins contribute to dysfunction and inflammation processes that play a role in the development and instability of plaques. Moreover, certain enzymes and proteins linked to lipids have been associated with atherosclerosis highlighting the complex interplay between lipid metabolism and inflammation in this disease. This review delves into the mechanisms behind atherosclerosis focusing on the involvement of lipids, enzymes and regulatory proteins. Additionally, it will also discuss present treatments as well as new therapeutic approaches that target these molecular mechanisms with the goal of advancing our knowledge about atherosclerosis and guiding future treatment strategies.
{"title":"The Role of Lipids in Atherosclerosis: Focus on Molecular Biology Mechanisms and Therapeutic Approaches.","authors":"Mohammed A Akram, Abdelhamid Khodja, Sarah Dalibalta, Amin F Majdalawieh","doi":"10.2174/0109298673348217241119063941","DOIUrl":"https://doi.org/10.2174/0109298673348217241119063941","url":null,"abstract":"<p><p>Atherosclerosis is a complex vascular disease characterized by the buildup of lipids, inflammatory cells and fibrous components in arterial walls leading to plaque formation and potential thrombotic events like myocardial infarction and strokes. Recently, there has been research on the roles of various types of lipids such as low-density lipoprotein (LDL) cholesterol, oxidized LDL (oxLDL) cholesterol and small dense LDL (sdLDL) in the onset and progression of atherosclerosis. These lipoproteins contribute to dysfunction and inflammation processes that play a role in the development and instability of plaques. Moreover, certain enzymes and proteins linked to lipids have been associated with atherosclerosis highlighting the complex interplay between lipid metabolism and inflammation in this disease. This review delves into the mechanisms behind atherosclerosis focusing on the involvement of lipids, enzymes and regulatory proteins. Additionally, it will also discuss present treatments as well as new therapeutic approaches that target these molecular mechanisms with the goal of advancing our knowledge about atherosclerosis and guiding future treatment strategies.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.2174/0109298673344310241216042749
Ping Chen, Jingbo Li, JiFan Wen, Dongbing Li, Yingjie Li
Background: The role of solute carrier family 6 member 17 (SLC6A17) in lung adenocarcinoma (LUAD) is unclear.
Objectives: To address this gap in knowledge, we employed bioinformatics analysis and experimental validation.
Methods: This research aimed to scrutinize the expression patterns of the SLC6A17 gene across a spectrum of cancers and specifically within LUAD, utilizing data extracted from The Cancer Genome Atlas (TCGA). The correlation between SLC6A17 expression and LUAD prognosis was investigated to assess its diagnostic relevance. The study delved into the possible regulatory mechanisms of SLC6A17, focusing on its links to immune cell infiltration and drug response in LUAD. The examination of SLC6A17 expression was extended to single-cell sequencing data in LUAD, alongside an evaluation of the gene's genomic alterations and clinical implications within this disease context. Validation of SLC6A17 expression levels was conducted using datasets from GSE87340 and various cell lines, employing quantitative real-time polymerase chain reaction (qRTPCR) techniques.
Results: SLC6A17 exhibited aberrant expression in both pan-cancer and LUAD. Increased expression of SLC6A17 in LUAD patients was significantly associated with poorer overall survival (p = 0.008), progress-free survival (p = 0.019), and disease specific survival (p = 0.030). In LUAD patients, the levels of SLC6A17 expression were found to be a significant standalone indicator of prognosis, with a p-value of 0.031. SLC6A17 exhibited associations with various pathways, including focal adhesion, ECM receptor interaction, cell cycle, linoleic acid metabolism, pathways in cancer, and more. SLC6A17 expression demonstrated correlations with immune infiltration in LUAD. SLC6A17 expression revealed a notably inverse relationship with several substances, including AR-42, T0901317, tubastatin A, SB52334, and amuvatinib, within the context of LUAD. SLC6A17 was found to be significantly positively regulated in LUAD cell lines.
Conclusions: These findings suggest that SLC6A17 indicates the potential of a potential prognostic biomarker and immunotherapeutic target for patients with LUAD.
{"title":"Unveiling the Role of SLC6A17 in Lung Adenocarcinoma: Prognosis, Pathways, and Therapeutic Implications.","authors":"Ping Chen, Jingbo Li, JiFan Wen, Dongbing Li, Yingjie Li","doi":"10.2174/0109298673344310241216042749","DOIUrl":"https://doi.org/10.2174/0109298673344310241216042749","url":null,"abstract":"<p><strong>Background: </strong>The role of solute carrier family 6 member 17 (SLC6A17) in lung adenocarcinoma (LUAD) is unclear.</p><p><strong>Objectives: </strong>To address this gap in knowledge, we employed bioinformatics analysis and experimental validation.</p><p><strong>Methods: </strong>This research aimed to scrutinize the expression patterns of the SLC6A17 gene across a spectrum of cancers and specifically within LUAD, utilizing data extracted from The Cancer Genome Atlas (TCGA). The correlation between SLC6A17 expression and LUAD prognosis was investigated to assess its diagnostic relevance. The study delved into the possible regulatory mechanisms of SLC6A17, focusing on its links to immune cell infiltration and drug response in LUAD. The examination of SLC6A17 expression was extended to single-cell sequencing data in LUAD, alongside an evaluation of the gene's genomic alterations and clinical implications within this disease context. Validation of SLC6A17 expression levels was conducted using datasets from GSE87340 and various cell lines, employing quantitative real-time polymerase chain reaction (qRTPCR) techniques.</p><p><strong>Results: </strong>SLC6A17 exhibited aberrant expression in both pan-cancer and LUAD. Increased expression of SLC6A17 in LUAD patients was significantly associated with poorer overall survival (p = 0.008), progress-free survival (p = 0.019), and disease specific survival (p = 0.030). In LUAD patients, the levels of SLC6A17 expression were found to be a significant standalone indicator of prognosis, with a p-value of 0.031. SLC6A17 exhibited associations with various pathways, including focal adhesion, ECM receptor interaction, cell cycle, linoleic acid metabolism, pathways in cancer, and more. SLC6A17 expression demonstrated correlations with immune infiltration in LUAD. SLC6A17 expression revealed a notably inverse relationship with several substances, including AR-42, T0901317, tubastatin A, SB52334, and amuvatinib, within the context of LUAD. SLC6A17 was found to be significantly positively regulated in LUAD cell lines.</p><p><strong>Conclusions: </strong>These findings suggest that SLC6A17 indicates the potential of a potential prognostic biomarker and immunotherapeutic target for patients with LUAD.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.2174/0109298673323348241208080419
Israr Fatima, Fahad M Alshabrmi, Faris F Aba Alkhayl, Muhammad Qasim, Almera Shafqat, Sara Batool, Muhammad Jawad, Muhammad Tahir Ul Qamar, Abdur Rehman
Covalent inhibitors play a pivotal role in the development of pharmaceutical therapies, as they form stable, irreversible bonds with target biomolecules, leading to prolonged therapeutic effects and enhanced efficacy. Since covalent inhibitors first appeared in the late 1800s, the field has become innovative rapidly, and covalent inhibitors now account for around 30% of all marketed therapeutics. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the pandemic of Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 needs to be cured with a medicine that is beneficial and with the least side effects. It is necessary to formulate drug candidates to treat this pathogen. The predominance of covalent medications will be briefly discussed in this review, followed by an introduction to their methods of action, as well as more thorough discussions of the safe and effective covalent enzyme inhibitors against SARS-CoV-2. Our main concern is to study covalent inhibitors which are mainly involved in blocking the viral entry of the virus SARS-CoV-2 into the host cell along with its replication and translation process. In the development of anti-SARS-CoV-2 medicines researchers can use those reported drugs as prospective candidates.
{"title":"Advancements in Structural Basis of Covalent Inhibitors Targeting SARS-CoV-2 Essential Proteins.","authors":"Israr Fatima, Fahad M Alshabrmi, Faris F Aba Alkhayl, Muhammad Qasim, Almera Shafqat, Sara Batool, Muhammad Jawad, Muhammad Tahir Ul Qamar, Abdur Rehman","doi":"10.2174/0109298673323348241208080419","DOIUrl":"https://doi.org/10.2174/0109298673323348241208080419","url":null,"abstract":"<p><p>Covalent inhibitors play a pivotal role in the development of pharmaceutical therapies, as they form stable, irreversible bonds with target biomolecules, leading to prolonged therapeutic effects and enhanced efficacy. Since covalent inhibitors first appeared in the late 1800s, the field has become innovative rapidly, and covalent inhibitors now account for around 30% of all marketed therapeutics. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the pandemic of Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 needs to be cured with a medicine that is beneficial and with the least side effects. It is necessary to formulate drug candidates to treat this pathogen. The predominance of covalent medications will be briefly discussed in this review, followed by an introduction to their methods of action, as well as more thorough discussions of the safe and effective covalent enzyme inhibitors against SARS-CoV-2. Our main concern is to study covalent inhibitors which are mainly involved in blocking the viral entry of the virus SARS-CoV-2 into the host cell along with its replication and translation process. In the development of anti-SARS-CoV-2 medicines researchers can use those reported drugs as prospective candidates.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Obesity is a global public health problem that can lead to many health complications or comorbidities. Medication alone or in combination with lifestyle changes or surgery is the main way to combat obesity and its complications. Most anti-obesity drugs are limited by their bioavailability, target-specific, and potentially toxic effects, so there is an urgent need for alternative treatments. Based on the new revelation of the pathogenesis of obesity, as well as the efforts of multidisciplinary integration of materials, some emerging obesity treatment strategies are gradually entering the field of preclinical and clinical research. By analyzing the current status and challenges of natural compounds in obesity treatment, this review systematically summarizes the advanced functions and prospects of carrier delivery of natural ingredients in targeted delivery of obesity, as well as their application in obesity treatment. Finally, on the basis of systematic analysis of anti-obesity, the future prospects and challenges in this field are put forward.
{"title":"Enhance Anti-obesity Effect of Natural Compounds through Carrier Mediation.","authors":"Mingyue Peng, Hao Wang, Zhenjing Liu, Shaoqian Wang, Haoqiang Qin, Ziyang Wang, Mingxiao Cui, Kehai Liu, Pingping Liu","doi":"10.2174/0109298673324660241205114930","DOIUrl":"https://doi.org/10.2174/0109298673324660241205114930","url":null,"abstract":"<p><p>Obesity is a global public health problem that can lead to many health complications or comorbidities. Medication alone or in combination with lifestyle changes or surgery is the main way to combat obesity and its complications. Most anti-obesity drugs are limited by their bioavailability, target-specific, and potentially toxic effects, so there is an urgent need for alternative treatments. Based on the new revelation of the pathogenesis of obesity, as well as the efforts of multidisciplinary integration of materials, some emerging obesity treatment strategies are gradually entering the field of preclinical and clinical research. By analyzing the current status and challenges of natural compounds in obesity treatment, this review systematically summarizes the advanced functions and prospects of carrier delivery of natural ingredients in targeted delivery of obesity, as well as their application in obesity treatment. Finally, on the basis of systematic analysis of anti-obesity, the future prospects and challenges in this field are put forward.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.2174/0109298673327352240930040103
Rafaela Molina de Angelo, Lucas Alex Nascimento, João Pedro Portilho Encide, Henrique Barbosa, João Henrique Ghilardi Lago, Flávio da Silva Emery, Kathia Maria Honorio
The discovery of new drugs for neglected tropical diseases (NTDs) is challenging due to the complexity of parasite-host interactions, causing resistance and the scarcity of financial resources. However, computational techniques, particularly molecular docking, have made significant advancements. This approach allows for the virtual screening of large compound libraries against specific molecular targets in parasites, efficiently cost-effectively identifying potential drug candidates. On the other hand, reverse docking seeks biological targets that can interact with specific substances of interest, integrating structural data from parasitic proteins with chemical information. Integrating computational approaches with experimental data drives the discovery of new therapeutic targets and the optimization of candidate compounds. In addition, artificial intelligence and molecular docking offer an innovative approach, enhancing prediction accuracy and driving advancements in discovering new treatments for NTDs. Thus, the primary focus of this review is to present the relevance, evolution, and prospects of the use of molecular docking techniques in the discovery and design of drug candidates for neglected diseases, despite advancements, challenges persist, including the need for increased investment in research and development, validation of predictive results, and collaboration among institutions. In this study, we aim to address the significant advancements in molecular docking and how this technique, along with modern medicinal chemistry tools, has been relevant in discovering and designing drug candidates for neglected diseases.
{"title":"Advances and Challenges in Molecular Docking Applied to Neglected Tropical Diseases.","authors":"Rafaela Molina de Angelo, Lucas Alex Nascimento, João Pedro Portilho Encide, Henrique Barbosa, João Henrique Ghilardi Lago, Flávio da Silva Emery, Kathia Maria Honorio","doi":"10.2174/0109298673327352240930040103","DOIUrl":"https://doi.org/10.2174/0109298673327352240930040103","url":null,"abstract":"<p><p>The discovery of new drugs for neglected tropical diseases (NTDs) is challenging due to the complexity of parasite-host interactions, causing resistance and the scarcity of financial resources. However, computational techniques, particularly molecular docking, have made significant advancements. This approach allows for the virtual screening of large compound libraries against specific molecular targets in parasites, efficiently cost-effectively identifying potential drug candidates. On the other hand, reverse docking seeks biological targets that can interact with specific substances of interest, integrating structural data from parasitic proteins with chemical information. Integrating computational approaches with experimental data drives the discovery of new therapeutic targets and the optimization of candidate compounds. In addition, artificial intelligence and molecular docking offer an innovative approach, enhancing prediction accuracy and driving advancements in discovering new treatments for NTDs. Thus, the primary focus of this review is to present the relevance, evolution, and prospects of the use of molecular docking techniques in the discovery and design of drug candidates for neglected diseases, despite advancements, challenges persist, including the need for increased investment in research and development, validation of predictive results, and collaboration among institutions. In this study, we aim to address the significant advancements in molecular docking and how this technique, along with modern medicinal chemistry tools, has been relevant in discovering and designing drug candidates for neglected diseases.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-02DOI: 10.2174/0109298673339634241210151734
Ahmed M Metwaly, Esmail M El-Fakharany, Aisha A Alsfouk, Ibrahim M Ibrahim, Eslam B Elkaeed, Ibrahim H Eissa
Introduction: In our quest to identify potent inhibitors against SARS-CoV-2, an extensive investigation was conducted for the binding and inhibitory efficacy of Rutin against nine SARS-CoV-2 proteins.
Method: The first step of our analysis involved a comprehensive examination of structural similarity among the co-crystallized ligands associated with those proteins. A substantial structural similarity was observed between Rutin and Remdesivir, the ligand of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). This similarity was validated through a flexible alignment study. Molecular docking studies, involving superimposition, revealed a notable resemblance in the mode of binding between Rutin and Remdesivir inside the active site of the RdRp. A 200 ns molecular dynamics (MD) simulation confirmed that the RdRp-Rutin complex is more stable than the RdRp-Remdesivir complex.
Result: The MM-GBSA studies showed that Rutin had much more favorable binding energies, with a significantly lower value of -7.76 kcal/mol compared to Remdesivir's -2.15 kcal/mol. This indicates that the RdRp-Rutin binding is more robust and stable PLIP and ProLIF studies helped clarify the 3D binding interactions and confirmed the stable binding seen in MD simulations. PCAT gave more insights into the dynamic behavior of the RdRp-Rutin complex. in vitro tests showed that Rutin has a strong inhibitory effect on RdRp with an IC50 of 60.09 nM, significantly outperforming Remdesivir, which has an IC50 of 24.56 µM. Remarkably, against SARS-CoV-2, Rutin showed a superior in vitro IC50 of 0.598 µg/ml compared to Remdesivir (12.47 µg/ml).
Conclusion: The values of the selectivity index underscored the exceptional margin of safety of Rutin (SI: 1078) compared to Remdesivir (SI: 5.8). In conclusion, our comprehensive analysis indicates Rutin's promising potential as a potent SARS-CoV-2 RdRp inhibitor, providing a valuable insight for developing an effective COVID-19 treatment.
{"title":"Integrated in Silico and in Vitro Studies of Rutin's Potential against SARS-CoV-2 through the Inhibition of the RNA-dependent RNA Polymerase.","authors":"Ahmed M Metwaly, Esmail M El-Fakharany, Aisha A Alsfouk, Ibrahim M Ibrahim, Eslam B Elkaeed, Ibrahim H Eissa","doi":"10.2174/0109298673339634241210151734","DOIUrl":"https://doi.org/10.2174/0109298673339634241210151734","url":null,"abstract":"<p><strong>Introduction: </strong>In our quest to identify potent inhibitors against SARS-CoV-2, an extensive investigation was conducted for the binding and inhibitory efficacy of Rutin against nine SARS-CoV-2 proteins.</p><p><strong>Method: </strong>The first step of our analysis involved a comprehensive examination of structural similarity among the co-crystallized ligands associated with those proteins. A substantial structural similarity was observed between Rutin and Remdesivir, the ligand of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). This similarity was validated through a flexible alignment study. Molecular docking studies, involving superimposition, revealed a notable resemblance in the mode of binding between Rutin and Remdesivir inside the active site of the RdRp. A 200 ns molecular dynamics (MD) simulation confirmed that the RdRp-Rutin complex is more stable than the RdRp-Remdesivir complex.</p><p><strong>Result: </strong>The MM-GBSA studies showed that Rutin had much more favorable binding energies, with a significantly lower value of -7.76 kcal/mol compared to Remdesivir's -2.15 kcal/mol. This indicates that the RdRp-Rutin binding is more robust and stable PLIP and ProLIF studies helped clarify the 3D binding interactions and confirmed the stable binding seen in MD simulations. PCAT gave more insights into the dynamic behavior of the RdRp-Rutin complex. in vitro tests showed that Rutin has a strong inhibitory effect on RdRp with an IC50 of 60.09 nM, significantly outperforming Remdesivir, which has an IC50 of 24.56 µM. Remarkably, against SARS-CoV-2, Rutin showed a superior in vitro IC50 of 0.598 µg/ml compared to Remdesivir (12.47 µg/ml).</p><p><strong>Conclusion: </strong>The values of the selectivity index underscored the exceptional margin of safety of Rutin (SI: 1078) compared to Remdesivir (SI: 5.8). In conclusion, our comprehensive analysis indicates Rutin's promising potential as a potent SARS-CoV-2 RdRp inhibitor, providing a valuable insight for developing an effective COVID-19 treatment.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}