Blockchain offers a cutting-edge solution for storing medical data, carrying out medical transactions, and establishing trust for medical data integration and exchange in a decentralized open healthcare network setting. While blockchain in healthcare has garnered considerable attention, privacy and security concerns remain at the center of the debate when adopting blockchain for information exchange in healthcare. This paper presents research on the subject of blockchain’s privacy and security in healthcare from 2017 to 2022. In light of the existing literature, this critical evaluation assesses the current state of affairs, with a particular emphasis on papers that deal with practical applications and difficulties. By providing a critical evaluation, this review provides insight into prospective future study directions and advances.
{"title":"Privacy and Security of Blockchain in Healthcare: Applications, Challenges, and Future Perspectives","authors":"Hamed Taherdoost","doi":"10.3390/sci5040041","DOIUrl":"https://doi.org/10.3390/sci5040041","url":null,"abstract":"Blockchain offers a cutting-edge solution for storing medical data, carrying out medical transactions, and establishing trust for medical data integration and exchange in a decentralized open healthcare network setting. While blockchain in healthcare has garnered considerable attention, privacy and security concerns remain at the center of the debate when adopting blockchain for information exchange in healthcare. This paper presents research on the subject of blockchain’s privacy and security in healthcare from 2017 to 2022. In light of the existing literature, this critical evaluation assesses the current state of affairs, with a particular emphasis on papers that deal with practical applications and difficulties. By providing a critical evaluation, this review provides insight into prospective future study directions and advances.","PeriodicalId":10987,"journal":{"name":"Decis. Sci.","volume":"107 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136102526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Lindner, Lukas Bank, Johannes Schilp, Matthias Weigold
Digital twins are among the technologies that are considered to have high potential. At the same time, there is no uniform understanding of what this technology means. Definitions are used across disciplinary boundaries, resulting in a multitude of different interpretations. The concepts behind the terms should be clearly named to transfer knowledge and bundle developments in digitalization. In particular, the Reference Architectural Model for Industry (RAMI) 4.0, as the guiding concept of digitalization, should be in harmony with the terms to be able to establish a contradiction-free relationship. This paper therefore summarizes the most important definitions and descriptions from the scientific community. By evaluating the relevant literature, a concept is derived. The concept presented in this work concretizes the requirements and understanding of digital twins in the frame of RAMI 4.0 with a focus on manufacturing. It thus contributes to the understanding of the technology. In this way, the concept is intended to contribute to the implementation of digital twins in this context.
{"title":"Digital Twins in Manufacturing: A RAMI 4.0 Compliant Concept","authors":"Martin Lindner, Lukas Bank, Johannes Schilp, Matthias Weigold","doi":"10.3390/sci5040040","DOIUrl":"https://doi.org/10.3390/sci5040040","url":null,"abstract":"Digital twins are among the technologies that are considered to have high potential. At the same time, there is no uniform understanding of what this technology means. Definitions are used across disciplinary boundaries, resulting in a multitude of different interpretations. The concepts behind the terms should be clearly named to transfer knowledge and bundle developments in digitalization. In particular, the Reference Architectural Model for Industry (RAMI) 4.0, as the guiding concept of digitalization, should be in harmony with the terms to be able to establish a contradiction-free relationship. This paper therefore summarizes the most important definitions and descriptions from the scientific community. By evaluating the relevant literature, a concept is derived. The concept presented in this work concretizes the requirements and understanding of digital twins in the frame of RAMI 4.0 with a focus on manufacturing. It thus contributes to the understanding of the technology. In this way, the concept is intended to contribute to the implementation of digital twins in this context.","PeriodicalId":10987,"journal":{"name":"Decis. Sci.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136295285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jerica Wilson, Katerina Evangelou, Youhai H. Chen, Hai-Feng Ji
Context: Chronic inflammation has been linked to cancer since the 19th century. Tumor growth is supported by the proangiogenic factors that chronic inflammation requires. Polarized leukocytes initiate these angiogenic and tumorigenic factors. TIPE2, a transport protein, manages the cytoskeletal rearrangement that gives a polarized leukocyte its motility. Inhibition of this protein could lead to a therapeutic option for solid tumor cancers; however, no such inhibitors have been developed so far due to the large cavity size of the TIPE2 protein. Here we have examined possible small molecule inhibitors by combining structure-based and fragment-based drug design approaches. The highest binding ligands were complexed with the protein, and fragment libraries were docked with the complex with the intention of linking the hit compounds and fragments to design a more potent ligand. Three hit compounds were identified by in silico structure-based screening and a linked compound, C2–F14, of excellent binding affinity, was identified by linking fragments to the hit compounds. C2–F14 demonstrates good binding stability in molecular dynamic simulations and great predicted ADME properties. Methods: High throughput molecular docking calculations of mass libraries were performed using AutoDock Vina 1.1.2. Molecular docking of individual ligands was performed using AutoDock Vina with PyRx. Ligand libraries were prepared using OpenBabel, linked ligands were prepared using Avogadro. The protein was prepared using AutoDockTools-1.5.6. Protein-ligand complexes were visualized with PyMOL. Two- and three-dimensional representations of protein–ligand interactions were plotted with BIOVIA Discovery Studio Visualizer. In silico absorption, distribution, metabolism, and excretion (ADME) properties were calculated using SwissADME. Molecular dynamics simulations were conducted with GROMACS.
背景:自19世纪以来,慢性炎症就与癌症有关。肿瘤生长是由慢性炎症所需的促血管生成因子支持的。极化的白细胞启动这些血管生成和肿瘤发生的因素。TIPE2是一种转运蛋白,负责细胞骨架重排,使极化的白细胞具有运动性。抑制这种蛋白可能会导致实体肿瘤癌症的治疗选择;然而,由于TIPE2蛋白的空腔较大,迄今为止还没有开发出这样的抑制剂。在这里,我们通过结合基于结构和基于片段的药物设计方法研究了可能的小分子抑制剂。最高结合配体与蛋白质络合,片段库与配合物对接,目的是连接被击中的化合物和片段,以设计更有效的配体。通过硅基结构筛选鉴定了三个命中化合物,并通过将片段连接到命中化合物上鉴定了一个具有良好结合亲和力的连接化合物C2-F14。C2-F14在分子动力学模拟中表现出良好的结合稳定性和良好的ADME预测性能。方法:采用AutoDock Vina 1.1.2软件进行高通量分子对接计算。使用AutoDock Vina与PyRx进行单个配体的分子对接。配体文库采用OpenBabel法制备,连接配体采用阿伏伽德罗法制备。使用AutoDockTools-1.5.6制备蛋白。用PyMOL可视化蛋白质配体复合物。用BIOVIA Discovery Studio Visualizer绘制了蛋白质与配体相互作用的二维和三维表示。使用SwissADME计算硅的吸收、分布、代谢和排泄(ADME)特性。用GROMACS进行分子动力学模拟。
{"title":"In Silico Study of Potential Small Molecule TIPE2 Inhibitors for the Treatment of Cancer","authors":"Jerica Wilson, Katerina Evangelou, Youhai H. Chen, Hai-Feng Ji","doi":"10.3390/sci5040039","DOIUrl":"https://doi.org/10.3390/sci5040039","url":null,"abstract":"Context: Chronic inflammation has been linked to cancer since the 19th century. Tumor growth is supported by the proangiogenic factors that chronic inflammation requires. Polarized leukocytes initiate these angiogenic and tumorigenic factors. TIPE2, a transport protein, manages the cytoskeletal rearrangement that gives a polarized leukocyte its motility. Inhibition of this protein could lead to a therapeutic option for solid tumor cancers; however, no such inhibitors have been developed so far due to the large cavity size of the TIPE2 protein. Here we have examined possible small molecule inhibitors by combining structure-based and fragment-based drug design approaches. The highest binding ligands were complexed with the protein, and fragment libraries were docked with the complex with the intention of linking the hit compounds and fragments to design a more potent ligand. Three hit compounds were identified by in silico structure-based screening and a linked compound, C2–F14, of excellent binding affinity, was identified by linking fragments to the hit compounds. C2–F14 demonstrates good binding stability in molecular dynamic simulations and great predicted ADME properties. Methods: High throughput molecular docking calculations of mass libraries were performed using AutoDock Vina 1.1.2. Molecular docking of individual ligands was performed using AutoDock Vina with PyRx. Ligand libraries were prepared using OpenBabel, linked ligands were prepared using Avogadro. The protein was prepared using AutoDockTools-1.5.6. Protein-ligand complexes were visualized with PyMOL. Two- and three-dimensional representations of protein–ligand interactions were plotted with BIOVIA Discovery Studio Visualizer. In silico absorption, distribution, metabolism, and excretion (ADME) properties were calculated using SwissADME. Molecular dynamics simulations were conducted with GROMACS.","PeriodicalId":10987,"journal":{"name":"Decis. Sci.","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135301738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of this research is to present the effects of acupuncture treatment on morning blood glucose level (BGL) in type 2 diabetes mellitus (T2DM) patients, and to describe them by a predictive model. The morning BGL is measured after overnight fasting during a three-month long acupuncture treatment for two persons diagnosed with T2DM and is compared with the BGL of two persons in similar health conditions taking only metformin-based drugs. It is shown that the morning BGL is highly affected by each single acupuncture treatment and by the number of the already applied treatments. Significant lowering of BGL after each treatment is observed, as well as an overall BGL lowering effect, which is the result of the repeated acupuncture. The observed BGL reduction was found to be maintained during a follow-up performed a year after the acupuncture. The measured BGL dynamics curves are analyzed and described by a model. This model describes well all of the key features of the measured BGL dynamics and provides personal parameters that describe the BGL regulation. The model is used to simulate BGL regulation by acupuncture performed with different frequencies. It can be used generally to predict the effects of acupuncture on BGL and to optimize the time between two treatments. The results will enable a better understanding of acupuncture application in diabetes, and a prediction of its effects in diabetes treatment.
{"title":"Treatment of Diabetes Mellitus by Acupuncture: Dynamics of Blood Glucose Level and Its Mathematical Modelling","authors":"Marija Šimat, Mateja Janković Makek, Maja Mičetić","doi":"10.3390/sci5040038","DOIUrl":"https://doi.org/10.3390/sci5040038","url":null,"abstract":"The aim of this research is to present the effects of acupuncture treatment on morning blood glucose level (BGL) in type 2 diabetes mellitus (T2DM) patients, and to describe them by a predictive model. The morning BGL is measured after overnight fasting during a three-month long acupuncture treatment for two persons diagnosed with T2DM and is compared with the BGL of two persons in similar health conditions taking only metformin-based drugs. It is shown that the morning BGL is highly affected by each single acupuncture treatment and by the number of the already applied treatments. Significant lowering of BGL after each treatment is observed, as well as an overall BGL lowering effect, which is the result of the repeated acupuncture. The observed BGL reduction was found to be maintained during a follow-up performed a year after the acupuncture. The measured BGL dynamics curves are analyzed and described by a model. This model describes well all of the key features of the measured BGL dynamics and provides personal parameters that describe the BGL regulation. The model is used to simulate BGL regulation by acupuncture performed with different frequencies. It can be used generally to predict the effects of acupuncture on BGL and to optimize the time between two treatments. The results will enable a better understanding of acupuncture application in diabetes, and a prediction of its effects in diabetes treatment.","PeriodicalId":10987,"journal":{"name":"Decis. Sci.","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134959994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tosin Adewumi, Sana Sabah Sabry, Nosheen Abid, Foteini Liwicki, Marcus Liwicki
We conduct relatively extensive investigations of automatic hate speech (HS) detection using different State-of-The-Art (SoTA) baselines across 11 subtasks spanning six different datasets. Our motivation is to determine which of the recent SoTA models is best for automatic hate speech detection and what advantage methods, such as data augmentation and ensemble, may have on the best model, if any. We carry out six cross-task investigations. We achieve new SoTA results on two subtasks—macro F1 scores of 91.73% and 53.21% for subtasks A and B of the HASOC 2020 dataset, surpassing previous SoTA scores of 51.52% and 26.52%, respectively. We achieve near-SoTA results on two others—macro F1 scores of 81.66% for subtask A of the OLID 2019 and 82.54% for subtask A of the HASOC 2021, in comparison to SoTA results of 82.9% and 83.05%, respectively. We perform error analysis and use two eXplainable Artificial Intelligence (XAI) algorithms (Integrated Gradient (IG) and SHapley Additive exPlanations (SHAP)) to reveal how two of the models (Bi-Directional Long Short-Term Memory Network (Bi-LSTM) and Text-to-Text-Transfer Transformer (T5)) make the predictions they do by using examples. Other contributions of this work are: (1) the introduction of a simple, novel mechanism for correcting Out-of-Class (OoC) predictions in T5, (2) a detailed description of the data augmentation methods, and (3) the revelation of the poor data annotations in the HASOC 2021 dataset by using several examples and XAI (buttressing the need for better quality control). We publicly release our model checkpoints and codes to foster transparency.
{"title":"T5 for Hate Speech, Augmented Data, and Ensemble","authors":"Tosin Adewumi, Sana Sabah Sabry, Nosheen Abid, Foteini Liwicki, Marcus Liwicki","doi":"10.3390/sci5040037","DOIUrl":"https://doi.org/10.3390/sci5040037","url":null,"abstract":"We conduct relatively extensive investigations of automatic hate speech (HS) detection using different State-of-The-Art (SoTA) baselines across 11 subtasks spanning six different datasets. Our motivation is to determine which of the recent SoTA models is best for automatic hate speech detection and what advantage methods, such as data augmentation and ensemble, may have on the best model, if any. We carry out six cross-task investigations. We achieve new SoTA results on two subtasks—macro F1 scores of 91.73% and 53.21% for subtasks A and B of the HASOC 2020 dataset, surpassing previous SoTA scores of 51.52% and 26.52%, respectively. We achieve near-SoTA results on two others—macro F1 scores of 81.66% for subtask A of the OLID 2019 and 82.54% for subtask A of the HASOC 2021, in comparison to SoTA results of 82.9% and 83.05%, respectively. We perform error analysis and use two eXplainable Artificial Intelligence (XAI) algorithms (Integrated Gradient (IG) and SHapley Additive exPlanations (SHAP)) to reveal how two of the models (Bi-Directional Long Short-Term Memory Network (Bi-LSTM) and Text-to-Text-Transfer Transformer (T5)) make the predictions they do by using examples. Other contributions of this work are: (1) the introduction of a simple, novel mechanism for correcting Out-of-Class (OoC) predictions in T5, (2) a detailed description of the data augmentation methods, and (3) the revelation of the poor data annotations in the HASOC 2021 dataset by using several examples and XAI (buttressing the need for better quality control). We publicly release our model checkpoints and codes to foster transparency.","PeriodicalId":10987,"journal":{"name":"Decis. Sci.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136060027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Strain sensors play a pivotal role in quantifying stress and strain across diverse domains, encompassing engineering, industry, and medicine. Their applicability has recently extended into the realm of wearable electronics, enabling real-time monitoring of body movements. However, conventional strain sensors, while extensively employed, grapple with limitations such as diminished sensitivity, suboptimal tensile strength, and susceptibility to environmental factors. In contrast, polymer-based composite strain sensors have gained prominence for their capability to surmount these challenges. The integration of carbon nanotubes (CNTs) as reinforcing agents within the polymer matrix ushers in a transformative era, bolstering mechanical strength, electrical conductivity, and thermal stability. This study comprises three primary components: simulation, synthesis of nanocomposites for strain sensor fabrication, and preparation of a comprehensive measurement set for testing purposes. The fabricated strain sensors, incorporating a robust polymer matrix of polyaniline known for its exceptional conductivity and reinforced with carbon nanotubes as strengthening agents, demonstrate good characteristics, including a high gauge factor, stability, and low hysteresis. Moreover, they exhibit high strain sensitivity and show linearity in resistance changes concerning applied strain. Comparative analysis reveals that the resulting gauge factors for composite strain sensors consisting of carbon nanotubes/polyaniline and carbon nanotubes/polyaniline/silicone rubber are 144.5 and 167.94, respectively.
{"title":"A Sensitive Strain Sensor Based on Multi-Walled Carbon Nanotubes/Polyaniline/Silicone Rubber Nanocomposite for Human Motion Detection","authors":"Seyedmajid Hosseini, Mohsen Norouzi, Jian Xu","doi":"10.3390/sci5030036","DOIUrl":"https://doi.org/10.3390/sci5030036","url":null,"abstract":"Strain sensors play a pivotal role in quantifying stress and strain across diverse domains, encompassing engineering, industry, and medicine. Their applicability has recently extended into the realm of wearable electronics, enabling real-time monitoring of body movements. However, conventional strain sensors, while extensively employed, grapple with limitations such as diminished sensitivity, suboptimal tensile strength, and susceptibility to environmental factors. In contrast, polymer-based composite strain sensors have gained prominence for their capability to surmount these challenges. The integration of carbon nanotubes (CNTs) as reinforcing agents within the polymer matrix ushers in a transformative era, bolstering mechanical strength, electrical conductivity, and thermal stability. This study comprises three primary components: simulation, synthesis of nanocomposites for strain sensor fabrication, and preparation of a comprehensive measurement set for testing purposes. The fabricated strain sensors, incorporating a robust polymer matrix of polyaniline known for its exceptional conductivity and reinforced with carbon nanotubes as strengthening agents, demonstrate good characteristics, including a high gauge factor, stability, and low hysteresis. Moreover, they exhibit high strain sensitivity and show linearity in resistance changes concerning applied strain. Comparative analysis reveals that the resulting gauge factors for composite strain sensors consisting of carbon nanotubes/polyaniline and carbon nanotubes/polyaniline/silicone rubber are 144.5 and 167.94, respectively.","PeriodicalId":10987,"journal":{"name":"Decis. Sci.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136313109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Demetris Koutsoyiannis, Christian Onof, Zbigniew W. Kundzewicz, Antonis Christofides
The scientific and wider interest in the relationship between atmospheric temperature (T) and concentration of carbon dioxide ([CO2]) has been enormous. According to the commonly assumed causality link, increased [CO2] causes a rise in T. However, recent developments cast doubts on this assumption by showing that this relationship is of the hen-or-egg type, or even unidirectional but opposite in direction to the commonly assumed one. These developments include an advanced theoretical framework for testing causality based on the stochastic evaluation of a potentially causal link between two processes via the notion of the impulse response function. Using, on the one hand, this framework and further expanding it and, on the other hand, the longest available modern time series of globally averaged T and [CO2], we shed light on the potential causality between these two processes. All evidence resulting from the analyses suggests a unidirectional, potentially causal link with T as the cause and [CO2] as the effect. That link is not represented in climate models, whose outputs are also examined using the same framework, resulting in a link opposite the one found when the real measurements are used.
{"title":"On Hens, Eggs, Temperatures and CO2: Causal Links in Earth’s Atmosphere","authors":"Demetris Koutsoyiannis, Christian Onof, Zbigniew W. Kundzewicz, Antonis Christofides","doi":"10.3390/sci5030035","DOIUrl":"https://doi.org/10.3390/sci5030035","url":null,"abstract":"The scientific and wider interest in the relationship between atmospheric temperature (T) and concentration of carbon dioxide ([CO2]) has been enormous. According to the commonly assumed causality link, increased [CO2] causes a rise in T. However, recent developments cast doubts on this assumption by showing that this relationship is of the hen-or-egg type, or even unidirectional but opposite in direction to the commonly assumed one. These developments include an advanced theoretical framework for testing causality based on the stochastic evaluation of a potentially causal link between two processes via the notion of the impulse response function. Using, on the one hand, this framework and further expanding it and, on the other hand, the longest available modern time series of globally averaged T and [CO2], we shed light on the potential causality between these two processes. All evidence resulting from the analyses suggests a unidirectional, potentially causal link with T as the cause and [CO2] as the effect. That link is not represented in climate models, whose outputs are also examined using the same framework, resulting in a link opposite the one found when the real measurements are used.","PeriodicalId":10987,"journal":{"name":"Decis. Sci.","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135781757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Stefani, Goffredo Orlandi, M. Corsi, Edoardo Falconi, Roberto Palazzo, A. Pellegrino, P. Modesti
Background: Transplanted patients are frail individuals who may be affected by diastolic dysfunction, leading to a decrease in exercise tolerance. Previous studies have reported that certain ECG and echocardiographic parameters (such as the P-wave interval, PQ interval, P-wave dispersion, Tend-P interval, QTc interval, and strain) can support the diagnosis of diastolic dysfunction when the ejection fraction is preserved. This study aimed to examine the potential diagnostic contribution of specific ECG and deformation parameters in transplanted recipients, who are at a high risk of heart failure. Materials and Methods: A group of 33 transplanted subjects (17 renal and 16 liver) were categorized using two scores for heart failure with preserved ejection fraction (HFpEF). Additionally, they underwent evaluation based on ECG parameters (P-wave interval, PQ interval, Pwave dispersion, and Tend-P QTc) and echocardiographic deformation parameters (strain and twist). The Student’s t-test was used for statistical analysis. Results: The two scores identified different numbers of excludable and not excludable subjects potentially affected by HFpEF. The not excludable group presented ECG parameters with significantly higher values (P-wave, PQ interval, posterior wall diastole, and Tend-P, all with p ≤ 0.05) and significantly lower 4D strain and twist values (p < 0.05) Conclusions: There is evidence for a significant diagnostic contribution of additional ECG and echo strain parameters in an early phase of diastolic dysfunction in subjects potentially affected by HFpEF.
{"title":"The Additional Diagnostic Value of Electrocardiogram and Strain Patterns in Transplanted Patients","authors":"L. Stefani, Goffredo Orlandi, M. Corsi, Edoardo Falconi, Roberto Palazzo, A. Pellegrino, P. Modesti","doi":"10.3390/sci5030034","DOIUrl":"https://doi.org/10.3390/sci5030034","url":null,"abstract":"Background: Transplanted patients are frail individuals who may be affected by diastolic dysfunction, leading to a decrease in exercise tolerance. Previous studies have reported that certain ECG and echocardiographic parameters (such as the P-wave interval, PQ interval, P-wave dispersion, Tend-P interval, QTc interval, and strain) can support the diagnosis of diastolic dysfunction when the ejection fraction is preserved. This study aimed to examine the potential diagnostic contribution of specific ECG and deformation parameters in transplanted recipients, who are at a high risk of heart failure. Materials and Methods: A group of 33 transplanted subjects (17 renal and 16 liver) were categorized using two scores for heart failure with preserved ejection fraction (HFpEF). Additionally, they underwent evaluation based on ECG parameters (P-wave interval, PQ interval, Pwave dispersion, and Tend-P QTc) and echocardiographic deformation parameters (strain and twist). The Student’s t-test was used for statistical analysis. Results: The two scores identified different numbers of excludable and not excludable subjects potentially affected by HFpEF. The not excludable group presented ECG parameters with significantly higher values (P-wave, PQ interval, posterior wall diastole, and Tend-P, all with p ≤ 0.05) and significantly lower 4D strain and twist values (p < 0.05) Conclusions: There is evidence for a significant diagnostic contribution of additional ECG and echo strain parameters in an early phase of diastolic dysfunction in subjects potentially affected by HFpEF.","PeriodicalId":10987,"journal":{"name":"Decis. Sci.","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90158184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Power plants constitute the main sources of electricity production, and the calculation of their efficiency is a critical factor that is needed in energy studies. The efficiency improvement of power plants through the optimization of the cycle is a critical means of reducing fuel consumption and leading to more sustainable designs. The goal of the present work is the development of semi-empirical models for estimating the thermodynamic efficiency of power cycles. The developed model uses only the lower and the high operating temperature levels, which makes it flexible and easily applicable. The final expression is found by using the literature data for different power cycles, named as: organic Rankine cycles, water-steam Rankine cycles, gas turbines, combined cycles and Stirling engines. According to the results, the real operation of the different cases was found to be a bit lower compared to the respective endoreversible cycle. Specifically, the present global model indicates that the thermodynamic efficiency is a function of the temperature ratio (low cycle temperature to high cycle temperature). The suggested equation can be exploited as a quick and accurate tool for calculating the thermodynamic efficiency of power plants by using the operating temperature levels. Moreover, separate equations are provided for all of the examined thermodynamic cycles.
{"title":"Development of a Semi-Empirical Model for Estimating the Efficiency of Thermodynamic Power Cycles","authors":"Evangelos Bellos","doi":"10.3390/sci5030033","DOIUrl":"https://doi.org/10.3390/sci5030033","url":null,"abstract":"Power plants constitute the main sources of electricity production, and the calculation of their efficiency is a critical factor that is needed in energy studies. The efficiency improvement of power plants through the optimization of the cycle is a critical means of reducing fuel consumption and leading to more sustainable designs. The goal of the present work is the development of semi-empirical models for estimating the thermodynamic efficiency of power cycles. The developed model uses only the lower and the high operating temperature levels, which makes it flexible and easily applicable. The final expression is found by using the literature data for different power cycles, named as: organic Rankine cycles, water-steam Rankine cycles, gas turbines, combined cycles and Stirling engines. According to the results, the real operation of the different cases was found to be a bit lower compared to the respective endoreversible cycle. Specifically, the present global model indicates that the thermodynamic efficiency is a function of the temperature ratio (low cycle temperature to high cycle temperature). The suggested equation can be exploited as a quick and accurate tool for calculating the thermodynamic efficiency of power plants by using the operating temperature levels. Moreover, separate equations are provided for all of the examined thermodynamic cycles.","PeriodicalId":10987,"journal":{"name":"Decis. Sci.","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88701720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we analyze the convergence problems of function g of Fourier series in Besov and generalized Zygmund norms using generalized Nörlund-Matrix (Np,qA) means of Fourier series. Convergence results are also compared by means of applications.
{"title":"An Analysis of the Convergence Problem of a Function in Functional Norms by Applying the Generalized Nörlund-Matrix Product Operator","authors":"H. M. Srivastava, H. K. Nigam, Swagata Nandy","doi":"10.3390/sci5030032","DOIUrl":"https://doi.org/10.3390/sci5030032","url":null,"abstract":"In this paper, we analyze the convergence problems of function g of Fourier series in Besov and generalized Zygmund norms using generalized Nörlund-Matrix (Np,qA) means of Fourier series. Convergence results are also compared by means of applications.","PeriodicalId":10987,"journal":{"name":"Decis. Sci.","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73046007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}