Danny Hidayat, R. Marindha, Triantoro Ade Nugroho, R. Hidayat, R. K. Rusdi
Peciko Field currently produces gas from multilayer sand-prone shallow reservoirs. Therefore, it needs sand control method to unlock these marginal reservoirs through low-cost intervention. Hanging screen has been reviewed as an alternative solution to minimize sand control cost while maintaining its robustness to maximize the recovery. This paper will present and evaluate the hanging screen installation and performance from subsurface to surface elements in Peciko field. Hanging screen implementation in Peciko will be evaluated in terms of ease of installation to its performance during production phase. Peciko wells are equipped with real-time monitoring system including Acoustic Sand Detector. Therefore, sand problems could be easily identified. Any indication of screen failure will be confirmed by checking the surface equipment like chokes and intrusive probes. Further intervention to retrieve the screen and perform visual check at surface can be executed to extend the verification. Filter size, placement method, clean-up, and sand sieve result will be gathered to identify the root cause and determine the best method to apply hanging screen as reliable sand control method. Nine installations in 2019 conclude that screen plugging, liquid loading, and combination of both are main issues in production phase. With three plugging cases from well Fx and E2x, it was found that excessive drawdown pressure triggers high gas velocity in perforation tunnel and causing excessive sand production that plugged the screen. These cases also prove that self-unloading by choke movement can lead to plugging if the drawdown pressure and gas rate are not monitored carefully. Commingle production in Ax becomes an issue in lifting performance when reservoir pressure declines and liquid was produced from several reservoirs. Limiting drawdown pressure gives smaller gas rate to lift the liquid and make the well died from liquid loading easily. Massive sand production in well E2x and E2y cause an increase in Top of Sediment (TOS) and lead to inaccessible screen even with multiple bailing attempts. A series of screen design, choke configuration, proper clean-up and continuous monitoring are critical steps to be performed prior and after screen installation to maintain production lifetime. With average stakes of 0.2 Bcf per well, hanging screen has proven to produce 67% of the well reserves in shallow reservoirs. This value creation led to the conclusion that hanging screen is an economically-feasible-sand control method to be implemented in Peciko.
{"title":"Hanging Screen Evaluation to Unlock Marginal Sandy Reservoir: Case Study of Peciko Gas Field, Indonesia","authors":"Danny Hidayat, R. Marindha, Triantoro Ade Nugroho, R. Hidayat, R. K. Rusdi","doi":"10.2118/205790-ms","DOIUrl":"https://doi.org/10.2118/205790-ms","url":null,"abstract":"\u0000 Peciko Field currently produces gas from multilayer sand-prone shallow reservoirs. Therefore, it needs sand control method to unlock these marginal reservoirs through low-cost intervention. Hanging screen has been reviewed as an alternative solution to minimize sand control cost while maintaining its robustness to maximize the recovery. This paper will present and evaluate the hanging screen installation and performance from subsurface to surface elements in Peciko field.\u0000 Hanging screen implementation in Peciko will be evaluated in terms of ease of installation to its performance during production phase. Peciko wells are equipped with real-time monitoring system including Acoustic Sand Detector. Therefore, sand problems could be easily identified. Any indication of screen failure will be confirmed by checking the surface equipment like chokes and intrusive probes. Further intervention to retrieve the screen and perform visual check at surface can be executed to extend the verification. Filter size, placement method, clean-up, and sand sieve result will be gathered to identify the root cause and determine the best method to apply hanging screen as reliable sand control method.\u0000 Nine installations in 2019 conclude that screen plugging, liquid loading, and combination of both are main issues in production phase. With three plugging cases from well Fx and E2x, it was found that excessive drawdown pressure triggers high gas velocity in perforation tunnel and causing excessive sand production that plugged the screen. These cases also prove that self-unloading by choke movement can lead to plugging if the drawdown pressure and gas rate are not monitored carefully. Commingle production in Ax becomes an issue in lifting performance when reservoir pressure declines and liquid was produced from several reservoirs. Limiting drawdown pressure gives smaller gas rate to lift the liquid and make the well died from liquid loading easily. Massive sand production in well E2x and E2y cause an increase in Top of Sediment (TOS) and lead to inaccessible screen even with multiple bailing attempts. A series of screen design, choke configuration, proper clean-up and continuous monitoring are critical steps to be performed prior and after screen installation to maintain production lifetime. With average stakes of 0.2 Bcf per well, hanging screen has proven to produce 67% of the well reserves in shallow reservoirs. This value creation led to the conclusion that hanging screen is an economically-feasible-sand control method to be implemented in Peciko.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":"33 5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77226715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. A. Patil, P. Chidambaram, M. Amir, P. Tiwari, Mahesh S. Picha, H. A. Hakim, Dr. Rabindra Das, Khaidhir B A Hamid, R. Tewari
Ensuring long-term integrity of existing plugged and abandoned (P&A) and active wells that penetrated the selected CO2 storage reservoir is the key to reduce leakage risks along the wellpath for long-term containment sustainability. Restoring the well integrity, when required, will safeguard CO2 containment for decades. Well integrity is often defined as the ability to contain fluids with minimum to nil leakage throughout the project lifecycle. With a view to develop depleted gas fields as CO2 storage sites in offshore Sarawak, it is vital to determine the complexity involved in restoring the integrity of these P&A wells as well as the development wells. Leakage Rate Modeling (LRM) was performed to identify and evaluate the associated risks for designing the remedial action plan to safeguard CO2 storage site. The P&A wells in the identified depleted gas fields were drilled 35–45 years ago and were not designed to withstand high CO2 concentration downhole conditions. Corrosive-Resistant Alloy (CRA) tubulars and CO2 resistant cement were not used during well construction and downhole pressure and temperature conditions may have further degraded the material strength and elevated the corrosion susceptibility. As a proof of concept, single well was selected to assess the loss of containment along the wellbore and to determine the complexity in resorting the well integrity, multiple scenarios were considered in LRM and composite structure and barrier parameters were assigned to estimate possible leakage pathways. Detailed numerical models were simulated for estimating leakage from reservoir to the surface through possible leakage pathways. Risks were identified and remedial action plan was designed for restoring well integrity. Post remedial plan covers Marine CO2 dispersion modeling to design comprehensive monitoring and mitigation plan for potential CO2 leakage in the marine environment. This study summarizes the unique challenge associated with estimating well integrity and re-entering existing P&A wells. Leakage rate modeling along these wells involves uncertainties but when carried out with realistic parameters, it can be used as a predicting tool to determine the nature and complexity of leakage. Integrating with site survey results for any indication of gas bubbling, decision can be made to restoring the well integrity. The paper outlines the detail strategic options to safeguard CO2 storage by restoring well integrity using LRM and integrating with marine CO2 dispersion modeling. Assessing well integrity of P&A wells on individual basis, risk is assessed and identified. Proper remedial actions are proposed accordingly. Quantification of all the uncertainties involved needs to be conducted that may affect long-term security of CO2 storage site.
{"title":"Safeguarding CO2 Storage by Restoring Well Integrity Using Leakage Rate Modeling LRM along Wellbore in Depleted Gas Fields Offshore Sarawak","authors":"P. A. Patil, P. Chidambaram, M. Amir, P. Tiwari, Mahesh S. Picha, H. A. Hakim, Dr. Rabindra Das, Khaidhir B A Hamid, R. Tewari","doi":"10.2118/205537-ms","DOIUrl":"https://doi.org/10.2118/205537-ms","url":null,"abstract":"\u0000 Ensuring long-term integrity of existing plugged and abandoned (P&A) and active wells that penetrated the selected CO2 storage reservoir is the key to reduce leakage risks along the wellpath for long-term containment sustainability. Restoring the well integrity, when required, will safeguard CO2 containment for decades. Well integrity is often defined as the ability to contain fluids with minimum to nil leakage throughout the project lifecycle. With a view to develop depleted gas fields as CO2 storage sites in offshore Sarawak, it is vital to determine the complexity involved in restoring the integrity of these P&A wells as well as the development wells. Leakage Rate Modeling (LRM) was performed to identify and evaluate the associated risks for designing the remedial action plan to safeguard CO2 storage site.\u0000 The P&A wells in the identified depleted gas fields were drilled 35–45 years ago and were not designed to withstand high CO2 concentration downhole conditions. Corrosive-Resistant Alloy (CRA) tubulars and CO2 resistant cement were not used during well construction and downhole pressure and temperature conditions may have further degraded the material strength and elevated the corrosion susceptibility. As a proof of concept, single well was selected to assess the loss of containment along the wellbore and to determine the complexity in resorting the well integrity, multiple scenarios were considered in LRM and composite structure and barrier parameters were assigned to estimate possible leakage pathways. Detailed numerical models were simulated for estimating leakage from reservoir to the surface through possible leakage pathways. Risks were identified and remedial action plan was designed for restoring well integrity. Post remedial plan covers Marine CO2 dispersion modeling to design comprehensive monitoring and mitigation plan for potential CO2 leakage in the marine environment.\u0000 This study summarizes the unique challenge associated with estimating well integrity and re-entering existing P&A wells. Leakage rate modeling along these wells involves uncertainties but when carried out with realistic parameters, it can be used as a predicting tool to determine the nature and complexity of leakage. Integrating with site survey results for any indication of gas bubbling, decision can be made to restoring the well integrity. The paper outlines the detail strategic options to safeguard CO2 storage by restoring well integrity using LRM and integrating with marine CO2 dispersion modeling. Assessing well integrity of P&A wells on individual basis, risk is assessed and identified. Proper remedial actions are proposed accordingly. Quantification of all the uncertainties involved needs to be conducted that may affect long-term security of CO2 storage site.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73518396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongbin Zhang, Xiongwei Sun, Xiaojia Bai, Wei Jia, Bo Zhu, Haibo Wang
Majority of gas fields in Tarim Basin are HPHT (high-pressure/high temperature) reservoirs with buried depth more than 5000m. The special geological conditions made it a challenge for underground well testing due to safety issues. Additionally, wellhead pressure fluctuation is widely existed both from geological and engineering factors, including sand production, well casing integrity problems, contamination of downhole fracturing fluid and wax deposition in wellbore etc. Traditional deliverability evaluation method which relies on underground well testing is greatly limited as it is not capable of reflecting the dynamic change of gas well deliverability due to abnormal wellhead pressure fluctuation. In this study, a new approach is proposed to evaluate the deliverability of these kind of wells using dynamic data from wellheads. An apparent and a potential deliverability curves are based on binomial deliverability equation are established individually according to whether the additional skin caused by wellbore blockage is taken into consideration. The variation characteristic of gas well deliverability is obtained by comparison of potential and apparent absolute open flow. Finally, field studies of Dina abnormal wells are performed to verify the accuracy of the method. Deliverability analysis show that the new approach has a great advantage in evaluating the production potential of wells with pressure fluctuation, and furtherly provides the criteria for wellbore management.
{"title":"A Novel Approach to Evaluate Deliverability of Gas Wells with Pressure Fluctuation","authors":"Yongbin Zhang, Xiongwei Sun, Xiaojia Bai, Wei Jia, Bo Zhu, Haibo Wang","doi":"10.2118/205711-ms","DOIUrl":"https://doi.org/10.2118/205711-ms","url":null,"abstract":"\u0000 Majority of gas fields in Tarim Basin are HPHT (high-pressure/high temperature) reservoirs with buried depth more than 5000m. The special geological conditions made it a challenge for underground well testing due to safety issues. Additionally, wellhead pressure fluctuation is widely existed both from geological and engineering factors, including sand production, well casing integrity problems, contamination of downhole fracturing fluid and wax deposition in wellbore etc. Traditional deliverability evaluation method which relies on underground well testing is greatly limited as it is not capable of reflecting the dynamic change of gas well deliverability due to abnormal wellhead pressure fluctuation.\u0000 In this study, a new approach is proposed to evaluate the deliverability of these kind of wells using dynamic data from wellheads. An apparent and a potential deliverability curves are based on binomial deliverability equation are established individually according to whether the additional skin caused by wellbore blockage is taken into consideration. The variation characteristic of gas well deliverability is obtained by comparison of potential and apparent absolute open flow. Finally, field studies of Dina abnormal wells are performed to verify the accuracy of the method. Deliverability analysis show that the new approach has a great advantage in evaluating the production potential of wells with pressure fluctuation, and furtherly provides the criteria for wellbore management.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77022931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Alabdrabalnabi, Ayman Almohsin, Jin Huang, M. Sherief
Nanotechnology is the design and application of engineered nanoparticles with one minimum dimension in the range of 1 to 100 nanometers. To achieve a specific target, innovative methods are highly required to overcome the challenges in the oil and gas industry, such as undesired water production. Herein, we present an advanced nanosilica, a new eco-friendly, cost-effective, and promising approach to control undesirable water production. The objective of this work is to evaluate our nanofluid system that can be used for water management in different water production mechanisms, including: high permeability streak, wormhole, and fractured reservoirs. A systematic evaluation of novel nanosilica/activator for water shut-off application requires an examination of the chemical properties before, during, and after gelation at given reservoir conditions. The placement of this water shut-off system is highly dependent on gelation time and viscosity. Therefore, we emphasized in this study on investigating these gelation kinetics by conducting extensive rheology experiments at varied temperatures and activator concentrations. We have looked into evaluating the optimum breaker for the gel as a contingency plan for improper placement. Measurements of the nanosilica fluid’s initial viscosity exhibited a low viscosity, less than 10 cP at normal temperature and pressure (NTP) conditions; this provides significant benefit for mixing at surface and pumping requirements for pilot testing. The nanosilica gelation time can be tailored by adjusting activator concentration to match field job design at a given temperature, which is more than 200°F. The gelation time revealed an exponential relationship with temperature and reversible proportionality. The nanosilica gel proved to be a thermally stable fluid system along with different activation ratios. For breaker tests, the gellant fluid showed complete breakdown at altered temperatures to mimic downhole conditions. Our lab observations conclude that nanosilica fluid is verified to be acceptable as a water shut-off system for field applications. This novel nanofluid system is a promising technology to control water production from oil wells. The system has low initial viscosity that can be injected in porous media without hindering the injectivity and getting at risk of fracking the sand. In case of inappropriate placement, the fluid can break down entirely using a non-damaging chemical breaker instead of using mechanical approaches that might damage the completion.
{"title":"Experimental Investigation of a Novel Nanosilica for Blocking Unwanted Water Production","authors":"M. Alabdrabalnabi, Ayman Almohsin, Jin Huang, M. Sherief","doi":"10.2118/205820-ms","DOIUrl":"https://doi.org/10.2118/205820-ms","url":null,"abstract":"\u0000 Nanotechnology is the design and application of engineered nanoparticles with one minimum dimension in the range of 1 to 100 nanometers. To achieve a specific target, innovative methods are highly required to overcome the challenges in the oil and gas industry, such as undesired water production. Herein, we present an advanced nanosilica, a new eco-friendly, cost-effective, and promising approach to control undesirable water production.\u0000 The objective of this work is to evaluate our nanofluid system that can be used for water management in different water production mechanisms, including: high permeability streak, wormhole, and fractured reservoirs. A systematic evaluation of novel nanosilica/activator for water shut-off application requires an examination of the chemical properties before, during, and after gelation at given reservoir conditions. The placement of this water shut-off system is highly dependent on gelation time and viscosity. Therefore, we emphasized in this study on investigating these gelation kinetics by conducting extensive rheology experiments at varied temperatures and activator concentrations. We have looked into evaluating the optimum breaker for the gel as a contingency plan for improper placement.\u0000 Measurements of the nanosilica fluid’s initial viscosity exhibited a low viscosity, less than 10 cP at normal temperature and pressure (NTP) conditions; this provides significant benefit for mixing at surface and pumping requirements for pilot testing. The nanosilica gelation time can be tailored by adjusting activator concentration to match field job design at a given temperature, which is more than 200°F. The gelation time revealed an exponential relationship with temperature and reversible proportionality. The nanosilica gel proved to be a thermally stable fluid system along with different activation ratios. For breaker tests, the gellant fluid showed complete breakdown at altered temperatures to mimic downhole conditions. Our lab observations conclude that nanosilica fluid is verified to be acceptable as a water shut-off system for field applications.\u0000 This novel nanofluid system is a promising technology to control water production from oil wells. The system has low initial viscosity that can be injected in porous media without hindering the injectivity and getting at risk of fracking the sand. In case of inappropriate placement, the fluid can break down entirely using a non-damaging chemical breaker instead of using mechanical approaches that might damage the completion.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77109573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Argentina is ranked second globally in terms of technically recoverable shale gas, and fourth in shale oil (EIA 2015). The most prolific shale is the Vaca Muerta formation. The objective of this paper is to present geological and reservoir characterization, drilling and production strategies, as well as historical performance and economics of Vaca Muerta. The word petroleum as used in this paper includes oil, natural gas, and natural gas liquids. This paper describes natural fractures and their impact on hydrocarbon productivity. The successful commercial production from this unconventional resource has been driven by many factors, including regional geology, availability of advanced technology such as horizontal drilling and multi-stage hydraulic fracturing, as well as domestic and regional hydrocarbon demand (Sierra 2016). Vaca Muerta itself is very unique with multiple hydrocarbon windows from east to west, ranging from dry gas to wet gas, to light oil and black oil. The productivity of Vaca Muerta is benchmarked to some of the best US shale plays such as the Eagle Ford and the Marcellus. Vaca Muerta contains 1202 Tcf of risked gas in-place and 270 billion barrels of risked oil in-place. It is estimated that 308 Tcf and 16 billion barrels of these resources are technically recoverable (EIA 2015). To date, the total number of horizontal wells exceeds 600, mostly drilled in the black oil window (Secretaria de Energia de Argentina 2020; Wood Mackenzie 2020b). Dubbed the ‘golden goose’ of Argentina, the last decade has seen rapid exploration and development activities. The Argentina state oil company (YPF) leads the development in this region together with its partners. In 2019, production from Vaca Muerta reached 90,000 bbl/d of oil and 1180 MMcf/d of gas, contributing 21% of Argentina's total production (Secretaria de Energia de Argentina 2020; Wood Mackenzie 2020b). YPF predicted these rates would increase by 150% in 2022 (Rassenfoss 2018). Part of this increase will be contributed by La Amarga Chica block, where YPF and its partner, PETRONAS approved their 30-year master development plan in late 2018 to deliver 54,000 boe/d by 2022 (Zborowski 2019). This production increase has obviously been delayed due to the COVID-19 pandemic. The novelty of this paper is integration of geological and reservoir characterization, drilling and production strategies, as well as historical performance and economics of Vaca Muerta. It is concluded that oil and gas potential in the Vaca Muerta shale is significant and rivals the potential of some of the shales widely developed in the Unites States and Canada.
{"title":"Vaca Muerta: An Emerging Shale Petroleum Reservoir","authors":"R. A. Karim, R. Aguilera","doi":"10.2118/205573-ms","DOIUrl":"https://doi.org/10.2118/205573-ms","url":null,"abstract":"\u0000 Argentina is ranked second globally in terms of technically recoverable shale gas, and fourth in shale oil (EIA 2015). The most prolific shale is the Vaca Muerta formation. The objective of this paper is to present geological and reservoir characterization, drilling and production strategies, as well as historical performance and economics of Vaca Muerta. The word petroleum as used in this paper includes oil, natural gas, and natural gas liquids.\u0000 This paper describes natural fractures and their impact on hydrocarbon productivity. The successful commercial production from this unconventional resource has been driven by many factors, including regional geology, availability of advanced technology such as horizontal drilling and multi-stage hydraulic fracturing, as well as domestic and regional hydrocarbon demand (Sierra 2016). Vaca Muerta itself is very unique with multiple hydrocarbon windows from east to west, ranging from dry gas to wet gas, to light oil and black oil.\u0000 The productivity of Vaca Muerta is benchmarked to some of the best US shale plays such as the Eagle Ford and the Marcellus. Vaca Muerta contains 1202 Tcf of risked gas in-place and 270 billion barrels of risked oil in-place. It is estimated that 308 Tcf and 16 billion barrels of these resources are technically recoverable (EIA 2015). To date, the total number of horizontal wells exceeds 600, mostly drilled in the black oil window (Secretaria de Energia de Argentina 2020; Wood Mackenzie 2020b). Dubbed the ‘golden goose’ of Argentina, the last decade has seen rapid exploration and development activities. The Argentina state oil company (YPF) leads the development in this region together with its partners. In 2019, production from Vaca Muerta reached 90,000 bbl/d of oil and 1180 MMcf/d of gas, contributing 21% of Argentina's total production (Secretaria de Energia de Argentina 2020; Wood Mackenzie 2020b). YPF predicted these rates would increase by 150% in 2022 (Rassenfoss 2018). Part of this increase will be contributed by La Amarga Chica block, where YPF and its partner, PETRONAS approved their 30-year master development plan in late 2018 to deliver 54,000 boe/d by 2022 (Zborowski 2019). This production increase has obviously been delayed due to the COVID-19 pandemic.\u0000 The novelty of this paper is integration of geological and reservoir characterization, drilling and production strategies, as well as historical performance and economics of Vaca Muerta. It is concluded that oil and gas potential in the Vaca Muerta shale is significant and rivals the potential of some of the shales widely developed in the Unites States and Canada.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87233767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chih-Cheng Lin, A. Tallin, Xueyong Guan, J. Kaura, Sasha F. Luces, S. Shayegi, K. W. Oyler, Ron Reutzel, M. LaPointe, Michael Teoh, T. Palisch, G. K. Wong
One of the major technical challenges to this project was placing horizontal open hole gravel packs (HzOHGP) within the narrow pore pressure to frac-gradient (PPFG) margin in the target reservoirs. This paper addresses the steps taken to overcome this challenge. To maximize the use of the narrow PPFG margin, the project combined a managed pressure drilling (MPD) system with low gravel placement pump rates made possible by an ultra-light-weight proppant (ULWP). Of the MPD systems available, the Controlled Mud Level (CML) system was selected over the Surface Back Pressure (SBP) system for several reasons. It enabled conventional gravel pack pumping operations and equipment and it accommodated the brine weight needed to inhibit the shales. A series of lab tests showed that the completion fluid density required to inhibit the reservoir shale reactivity was only possible using CML. An overall evaluation of CML showed that it was most suitable and offered the greatest flexibility for the gravel pack job design. The special ceramic ULWP had to be qualified and tested. The qualification testing ranged from standard API and compatibility tests to full scale flow loop testing. The flow loop tests were needed to measure the ULWP transport velocity for the target wellbore geometry. Understanding the transport velocity is critical for gravel pack design and job execution planning. Once MPD and ceramic ULWP were selected, the gravel pack placement operations were simulated to demonstrate that their features increased the likelihood of successfully gravel packing in the target reservoirs. Small PPFG margins decrease the probability of success of placing a HzOHGP. In the target formations, the pressure margin is insufficient to safely execute HzOHGP conventionally; instead, the project combined MPD and the low pump rates facilitated by using ULWP to control circulating pressures to stay inside the narrow margin and place the gravel packs. The integration of CML and ULWP into in a gravel pack operation to control circulating pressures has never been done. The concept and its successful field implementation are industry firsts.
{"title":"An Industry First: Concept Selection, Material Testing, and Modelling Process for a Successful Managed Pressure Open Hole Gravel Pack Project","authors":"Chih-Cheng Lin, A. Tallin, Xueyong Guan, J. Kaura, Sasha F. Luces, S. Shayegi, K. W. Oyler, Ron Reutzel, M. LaPointe, Michael Teoh, T. Palisch, G. K. Wong","doi":"10.2118/205771-ms","DOIUrl":"https://doi.org/10.2118/205771-ms","url":null,"abstract":"\u0000 One of the major technical challenges to this project was placing horizontal open hole gravel packs (HzOHGP) within the narrow pore pressure to frac-gradient (PPFG) margin in the target reservoirs. This paper addresses the steps taken to overcome this challenge. To maximize the use of the narrow PPFG margin, the project combined a managed pressure drilling (MPD) system with low gravel placement pump rates made possible by an ultra-light-weight proppant (ULWP). Of the MPD systems available, the Controlled Mud Level (CML) system was selected over the Surface Back Pressure (SBP) system for several reasons. It enabled conventional gravel pack pumping operations and equipment and it accommodated the brine weight needed to inhibit the shales. A series of lab tests showed that the completion fluid density required to inhibit the reservoir shale reactivity was only possible using CML. An overall evaluation of CML showed that it was most suitable and offered the greatest flexibility for the gravel pack job design.\u0000 The special ceramic ULWP had to be qualified and tested. The qualification testing ranged from standard API and compatibility tests to full scale flow loop testing. The flow loop tests were needed to measure the ULWP transport velocity for the target wellbore geometry. Understanding the transport velocity is critical for gravel pack design and job execution planning. Once MPD and ceramic ULWP were selected, the gravel pack placement operations were simulated to demonstrate that their features increased the likelihood of successfully gravel packing in the target reservoirs. Small PPFG margins decrease the probability of success of placing a HzOHGP. In the target formations, the pressure margin is insufficient to safely execute HzOHGP conventionally; instead, the project combined MPD and the low pump rates facilitated by using ULWP to control circulating pressures to stay inside the narrow margin and place the gravel packs. The integration of CML and ULWP into in a gravel pack operation to control circulating pressures has never been done. The concept and its successful field implementation are industry firsts.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84198261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Paredes, Luciano Bravo Marques da Silva, L. Egas, Edison Endara, Pedro Escalona, O. Maulidani, Alexander Pineda, D. Estevez, J. Guaman, J. Carrión, C. Freire, F. Villamar
In this case study, EP Petroecuador and Consorcio Shushufindi evaluate a chemical treatment and completion strategies to reduce the extensive impact of bottomhole scale deposits on oil production, electrical submersible pumps (ESP) run life, and operating costs of wells completed in the high-scaling tendencies reservoir. The positive impact on oil production optimization resulting from these strategies will also be discussed and the advantages, lessons learned, and constraints of this work. Conventionally, corrosion and scale chemical inhibitors are deployed through capillary lines; this method is effective up to the pump depth but does not prevent deposits at the perforations or at the lower completion and near wellbore. Rapid production decline or complete loss of production is observed, requiring costly well interventions. Laboratory analysis and evidences from the interventions show that lower T-sand fluids present a high-scale tendency at the bottomhole; therefore, a process to identify candidates and deploy chemical treatment in the rathole to prevent scale deposits was defined and proved. The technology selected was encapsulated scale inhibitors (microcaps). Based on the process, two wells were selected from a portfolio of 12 wells that match the criteria to apply the method to deploy the technology. The following observations were drawn: -Calcium carbonate (CaCO3) is the most common scale-ESP parameters and production surveillance are essential for early detection of problems associated with scale deposits at bottomhole-The action of microcaps and the installation of a pipe tail below the ESP base sensor allowed to deepen the continuous dosage of scale inhibitor and has already doubled the run life of the ESP equipment, with direct savings on operations costs (approximately USD 240,000) in the short time and continue and can continue to yield more.-According to post workover (WO) production tests of the two candidates and the performance of ESP parameters, the application of this strategy made possible to restore the productivity indexes and sustain them over time. This leads to reduction in production losses of 310 BOPD or 60% of the actual production in the similar period before the treatment.-The microcaps can be applied and refilled through rig-less annulus-It is a low-cost solution for scale problems at bottomhole. This document presents an analysis to reduce operating costs in wells that produce fluids with a high-scaling tendency at bottom hole, through an unconventional and low-cost strategy of chemical treatment from the sand face to the wellhead. This novel process and microcaps application can be used in wells in remote and difficult areas to service on a regular basis.
{"title":"A Novel Chemical Treatment and Well Completion Strategy to Prevent Scale and Production Losses in Shushufindi Aguarico Field","authors":"M. Paredes, Luciano Bravo Marques da Silva, L. Egas, Edison Endara, Pedro Escalona, O. Maulidani, Alexander Pineda, D. Estevez, J. Guaman, J. Carrión, C. Freire, F. Villamar","doi":"10.2118/205815-ms","DOIUrl":"https://doi.org/10.2118/205815-ms","url":null,"abstract":"\u0000 In this case study, EP Petroecuador and Consorcio Shushufindi evaluate a chemical treatment and completion strategies to reduce the extensive impact of bottomhole scale deposits on oil production, electrical submersible pumps (ESP) run life, and operating costs of wells completed in the high-scaling tendencies reservoir. The positive impact on oil production optimization resulting from these strategies will also be discussed and the advantages, lessons learned, and constraints of this work.\u0000 Conventionally, corrosion and scale chemical inhibitors are deployed through capillary lines; this method is effective up to the pump depth but does not prevent deposits at the perforations or at the lower completion and near wellbore. Rapid production decline or complete loss of production is observed, requiring costly well interventions. Laboratory analysis and evidences from the interventions show that lower T-sand fluids present a high-scale tendency at the bottomhole; therefore, a process to identify candidates and deploy chemical treatment in the rathole to prevent scale deposits was defined and proved. The technology selected was encapsulated scale inhibitors (microcaps).\u0000 Based on the process, two wells were selected from a portfolio of 12 wells that match the criteria to apply the method to deploy the technology. The following observations were drawn: -Calcium carbonate (CaCO3) is the most common scale-ESP parameters and production surveillance are essential for early detection of problems associated with scale deposits at bottomhole-The action of microcaps and the installation of a pipe tail below the ESP base sensor allowed to deepen the continuous dosage of scale inhibitor and has already doubled the run life of the ESP equipment, with direct savings on operations costs (approximately USD 240,000) in the short time and continue and can continue to yield more.-According to post workover (WO) production tests of the two candidates and the performance of ESP parameters, the application of this strategy made possible to restore the productivity indexes and sustain them over time. This leads to reduction in production losses of 310 BOPD or 60% of the actual production in the similar period before the treatment.-The microcaps can be applied and refilled through rig-less annulus-It is a low-cost solution for scale problems at bottomhole.\u0000 This document presents an analysis to reduce operating costs in wells that produce fluids with a high-scaling tendency at bottom hole, through an unconventional and low-cost strategy of chemical treatment from the sand face to the wellhead. This novel process and microcaps application can be used in wells in remote and difficult areas to service on a regular basis.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81563521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New vapour liquid equilibrium (VLE) data for carbon dioxide (CO2) and hydrogen sulphide (H2S) mixture in deionized water and NaCl aqueous solution are generated at temperature range from 373.15 to 423.15 K and pressure up to 25.0 MPa. A static-analytic type method, taking advantage of two magnetic capillary samplers for phase sampling is used for this VLE measurements. The VLE data generated in this work are compared against literature data, Duan model and the simplified cubic plus association (CPA-SRK72) Equation of State (EoS) model predictions. From the results, it is demonstrated that the CPA-SRK72 EoS model is able to predict the phase behaviour of CO2 and H2S in water and NaCl aqueous solutions with low absolute average deviation (AAD) against the measured experimental data.
{"title":"Vapour-Liquid Equilibrium Study for the Carbon Dioxide and Hydrogen Sulphide in Deionized Water and NaCl Aqueous Solution at Temperature from 373.15 to 423.15 K","authors":"M. F. Zaidin, A. Valtz, C. Coquelet, A. Chapoy","doi":"10.2118/205551-ms","DOIUrl":"https://doi.org/10.2118/205551-ms","url":null,"abstract":"\u0000 New vapour liquid equilibrium (VLE) data for carbon dioxide (CO2) and hydrogen sulphide (H2S) mixture in deionized water and NaCl aqueous solution are generated at temperature range from 373.15 to 423.15 K and pressure up to 25.0 MPa. A static-analytic type method, taking advantage of two magnetic capillary samplers for phase sampling is used for this VLE measurements. The VLE data generated in this work are compared against literature data, Duan model and the simplified cubic plus association (CPA-SRK72) Equation of State (EoS) model predictions. From the results, it is demonstrated that the CPA-SRK72 EoS model is able to predict the phase behaviour of CO2 and H2S in water and NaCl aqueous solutions with low absolute average deviation (AAD) against the measured experimental data.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":"96 7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83459822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hydraulic fracturing is vital in unconventional shale gas development in order to produce economically from the reservoir. An optimum hydraulic fracturing design and operation can be the key difference between good and poor producing well and economics of the well. One of the most common hydraulic fracturing designs is ball drop system. Using ABAQUS software with XFEM method, a three layers model is used to represent overburden formation, shale gas formation and underburden formation. Rock properties, pore pressure and stress data are used as inputs for the generated model. A horizontal well is created in the middle shale gas formation with three fracture stages and 100m perforation spacing between them. Each hydraulic fracture stage is pressurized sequentially based on the treatment plan of ball drop sliding sleeve completion. The simulated hydraulic fractures are evaluated and compared with the measured field data. The comparison of the average wellbore pressure is good as they all showed within 10% of the measured data. The comparison of the hydraulic fracture geometry with the micro-seismicity data is reasonable overall in view of the data evaluation showing considerable uncertainties in the data. The hydraulic fracturing results also show that at 100m perforation spacing and using sequential hydraulic fracturing method (such as ball drop system), the effect of stress shadow is minimal and does not inhibit the fractures growth. However, the stress shadow effect is found to be pronounced for closer spacing between hydraulic fractures. For future application of the developed XFEM hydraulic fracturing model, it can be utilized to design new hydraulic fracturing completion in order to recommend the optimum completion, including perforation spacing, of development wells in unconventional shale gas field.
{"title":"3D Extended Finite Element Modeling of Hydraulic Fracturing Design and Operation in Shale Gas Reservoir and Validation with Micro-Seismicity Data","authors":"I. H. Musa, J. Leem, C. Tan, M. Yusoff","doi":"10.2118/205631-ms","DOIUrl":"https://doi.org/10.2118/205631-ms","url":null,"abstract":"\u0000 Hydraulic fracturing is vital in unconventional shale gas development in order to produce economically from the reservoir. An optimum hydraulic fracturing design and operation can be the key difference between good and poor producing well and economics of the well. One of the most common hydraulic fracturing designs is ball drop system. Using ABAQUS software with XFEM method, a three layers model is used to represent overburden formation, shale gas formation and underburden formation. Rock properties, pore pressure and stress data are used as inputs for the generated model. A horizontal well is created in the middle shale gas formation with three fracture stages and 100m perforation spacing between them. Each hydraulic fracture stage is pressurized sequentially based on the treatment plan of ball drop sliding sleeve completion. The simulated hydraulic fractures are evaluated and compared with the measured field data. The comparison of the average wellbore pressure is good as they all showed within 10% of the measured data. The comparison of the hydraulic fracture geometry with the micro-seismicity data is reasonable overall in view of the data evaluation showing considerable uncertainties in the data. The hydraulic fracturing results also show that at 100m perforation spacing and using sequential hydraulic fracturing method (such as ball drop system), the effect of stress shadow is minimal and does not inhibit the fractures growth. However, the stress shadow effect is found to be pronounced for closer spacing between hydraulic fractures. For future application of the developed XFEM hydraulic fracturing model, it can be utilized to design new hydraulic fracturing completion in order to recommend the optimum completion, including perforation spacing, of development wells in unconventional shale gas field.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":"232 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72752448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Many oil and gas operators have challenges in deepwater turbidite gas asset's reservoir management plan (RMP) readiness due to lack of experience and very limited analog field data. The objective of this article is to demonstrate how data analytics workflow, comprising of data mining and machine learning-based global deepwater turbidite gas field benchmarking and lessons learned, to identify field performance and mitigate subsurface challenges in developing and managing deepwater turbidite gas assets. To mine turbidite field data from around the world, a customized R script was constructed using optical character recognition, regular expression (regex), rule-based logic to extract subsurface and surface data attributes from unstructured data sources. All extracted contents were transformed into a properly structured query language (SQL) database relational format for the cleansing process. Having established the turbidite assets repository, exploratory data analysis (EDA) was then employed to discover insight datasets. To analyze the field performance, the number of wells needed to deplete the field was identified using support vector regression, subsequently, K-means clustering was used to classify the reservoirs productivity. The results of field benchmarking analysis from EDA are deployed in a fit-for-purpose dashboard application, which provides an elegant and powerful framework for data management and analytics purposes. The analytic dashboard which was developed to visualize EDA findings will be presented in this article. The productivity of deepwater turbidite gas reservoirs has been classified based on the maximum gas flow rate and estimated ultimate recovery per well. This result help in identifying the high-rate, high-ultimate-recovery (HRHU) reservoirs of a deepwater turbidite gas field. The regex pattern for subsurface challenges specifically as related to reservoir uncertainties and associated risks, including operational challenges in developing and managing deepwater turbidite gas fields were identified through word cloud recognition. Key subsurface challenges were then categorized and statistically ranked, finally, a decomposition tree was used to identify the issues, impacts, and mitigation plan for dealing with identified risks based on best practices from a global project point of view. Deployment of this novel workflow provides insight for better decision-making and can be a prudent complementary tool for de-risking subsurface uncertainties in developing and managing deepwater turbidite gas assets. The findings from this study can be used to develop the framework that captures current best-practices in the formulation and execution of a RMP including monitoring and benchmark of asset performance in deepwater turbidite gas fields.
{"title":"The Art of Deploying Data Mining and Machine Learning in Developing and Managing Deepwater Turbidite Gas Assets","authors":"Edo Pratama","doi":"10.2118/205652-ms","DOIUrl":"https://doi.org/10.2118/205652-ms","url":null,"abstract":"\u0000 Many oil and gas operators have challenges in deepwater turbidite gas asset's reservoir management plan (RMP) readiness due to lack of experience and very limited analog field data. The objective of this article is to demonstrate how data analytics workflow, comprising of data mining and machine learning-based global deepwater turbidite gas field benchmarking and lessons learned, to identify field performance and mitigate subsurface challenges in developing and managing deepwater turbidite gas assets.\u0000 To mine turbidite field data from around the world, a customized R script was constructed using optical character recognition, regular expression (regex), rule-based logic to extract subsurface and surface data attributes from unstructured data sources. All extracted contents were transformed into a properly structured query language (SQL) database relational format for the cleansing process. Having established the turbidite assets repository, exploratory data analysis (EDA) was then employed to discover insight datasets. To analyze the field performance, the number of wells needed to deplete the field was identified using support vector regression, subsequently, K-means clustering was used to classify the reservoirs productivity.\u0000 The results of field benchmarking analysis from EDA are deployed in a fit-for-purpose dashboard application, which provides an elegant and powerful framework for data management and analytics purposes. The analytic dashboard which was developed to visualize EDA findings will be presented in this article. The productivity of deepwater turbidite gas reservoirs has been classified based on the maximum gas flow rate and estimated ultimate recovery per well. This result help in identifying the high-rate, high-ultimate-recovery (HRHU) reservoirs of a deepwater turbidite gas field. The regex pattern for subsurface challenges specifically as related to reservoir uncertainties and associated risks, including operational challenges in developing and managing deepwater turbidite gas fields were identified through word cloud recognition. Key subsurface challenges were then categorized and statistically ranked, finally, a decomposition tree was used to identify the issues, impacts, and mitigation plan for dealing with identified risks based on best practices from a global project point of view.\u0000 Deployment of this novel workflow provides insight for better decision-making and can be a prudent complementary tool for de-risking subsurface uncertainties in developing and managing deepwater turbidite gas assets. The findings from this study can be used to develop the framework that captures current best-practices in the formulation and execution of a RMP including monitoring and benchmark of asset performance in deepwater turbidite gas fields.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":"143 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78535445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}