Characterization of microbial pathogens is necessary for surveillance, outbreak detection, and tracing of outbreak sources. This unit describes a multiplex oligonucleotide ligation-PCR (MOL-PCR) optimized for characterization of microbial pathogens. With MOL-PCR, different types of markers, like unique sequences, single-nucleotide polymorphisms (SNPs) and indels, can be simultaneously analyzed in one assay. This assay consists of a multiplex ligation for detection of the markers, a singleplex PCR for signal amplification, and hybridization to MagPlex-TAG beads for readout on a Luminex platform after fluorescent staining. The current protocol describes the MOL-PCR, as well as methods for DNA isolation, probe design, and data interpretation and it is based on an optimized MOL-PCR assay for subtyping of Salmonella Typhimurium. © 2016 by John Wiley & Sons, Inc.
Multicolor flow cytometer assays with fluorescently labeled antibodies are routinely used in clinical laboratories to measure the cell number of specific immunophenotypes and to estimate expression levels of specific receptors/antigens either on the cell surface or intracellularly. The cell number and specific receptors/antigens serve as biomarkers for pathological conditions at various stages of a disease. Existing methods and cell reference materials for quantitative expression measurements have not yet produced results that are of wide clinical interest or are instrument-independent across all fluorescence channels. This unit details a procedure for quantifying surface and intracellular biomarkers by calibrating the output of a multicolor flow cytometer in units of antibody bound per cell (ABC). The procedure includes (1) quality control of the flow cytometer, (2) fluorescence intensity calibration using hard dyed microspheres assigned with fluorescence intensity values, (3) compensation for fluorescence spillover between adjacent fluorescence channels, and (4) application of a biological reference calibrator to establish an ABC scale. The unit also points out current efforts for quantifying biomarkers in a manner that is independent of instrument platforms and reagent differences. © 2016 by John Wiley & Sons, Inc.
Nucleic acid content can be quantified by flow cytometry through the use of intercalating compounds; however, measuring the presence of specific sequences has hitherto been difficult to achieve by this methodology. The primary obstacle to detecting discrete nucleic acid sequences by flow cytometry is their low quantity and the presence of high background signals, rendering the detection of hybridized fluorescent probes challenging. Amplification of nucleic acid sequences by molecular techniques such as in situ PCR have been applied to single-cell suspensions, but these approaches have not been easily adapted to conventional flow cytometry. An alternative strategy implements a Branched DNA technique, comprising target-specific probes and sequentially hybridized amplification reagents, resulting in a theoretical 8,000- to 16,000-fold increase in fluorescence signal amplification. The Branched DNA technique allows for the quantification of native and unmanipulated mRNA content with increased signal detection and reduced background. This procedure utilizes gentle fixation steps with low hybridization temperatures, leaving the assayed cells intact to permit their concomitant immunophenotyping. This technology has the potential to advance scientific discovery by correlating potentially small quantities of mRNA with many biological measurements at the single-cell level. © 2016 by John Wiley & Sons, Inc.