首页 > 最新文献

Current topics in membranes最新文献

英文 中文
The role of extracellular vesicles in cancer. 细胞外囊泡在癌症中的作用。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 Epub Date: 2024-07-22 DOI: 10.1016/bs.ctm.2024.06.010
Elizabeth Cristina Perez Hurtado, Juan Sebastian Henao Agudelo, Rodrigo Augusto Foganholi da Silva, Thiago Albuquerque Viração, Célio Junior da Costa Fernandes

Extracellular vesicles (EVs), which include small EVs such as exosomes, play a critical role in intercellular communication and are produced by both cancer and non-cancer cells. Several studies have shown that cancer cells exploit various strategies to regulate the biogenesis, composition, and functions of EVs primarily to promote cancer progression. Given that exosomes originate from major sorting hubs at the limiting membrane of endosomes, they are central to a signaling network that connects external stimuli with intrinsic tumor cell features. Exosomes contain diverse repertoires of molecular cargos, such as proteins, lipids, and nucleic acids, which determine their heterogeneity and functional properties in cancer progression. Therefore, targeting exosome biogenesis will enhance our understanding of tumorigenesis and also promote the discovery of novel approaches for cancer therapy. In this chapter we summarize the machinery of exosome biogenesis and the local, distant, and systemic effects of exosomes released by cancer cells. Furthermore, we explore how these exosomes regulate the anti-tumor immune response and epigenetic mechanisms to sustain cancer progression and their implications in cancer prevention and treatment.

细胞外囊泡(EVs)包括外泌体(exosomes)等小型 EVs,在细胞间通信中发挥着关键作用,癌细胞和非癌细胞都会产生这种囊泡。一些研究表明,癌细胞利用各种策略来调节EVs的生物生成、组成和功能,主要是为了促进癌症的发展。鉴于外泌体来源于内泌体边缘膜的主要分拣枢纽,它们是连接外部刺激与肿瘤细胞内在特征的信号网络的核心。外泌体含有多种不同的分子载体,如蛋白质、脂质和核酸,这决定了它们在癌症进展过程中的异质性和功能特性。因此,针对外泌体生物发生的研究将增进我们对肿瘤发生的了解,并促进新型癌症治疗方法的发现。在本章中,我们总结了外泌体的生物发生机制以及癌细胞释放的外泌体对局部、远处和全身的影响。此外,我们还探讨了这些外泌体如何调节抗肿瘤免疫反应和表观遗传机制以维持癌症进展,以及它们在癌症预防和治疗中的意义。
{"title":"The role of extracellular vesicles in cancer.","authors":"Elizabeth Cristina Perez Hurtado, Juan Sebastian Henao Agudelo, Rodrigo Augusto Foganholi da Silva, Thiago Albuquerque Viração, Célio Junior da Costa Fernandes","doi":"10.1016/bs.ctm.2024.06.010","DOIUrl":"https://doi.org/10.1016/bs.ctm.2024.06.010","url":null,"abstract":"<p><p>Extracellular vesicles (EVs), which include small EVs such as exosomes, play a critical role in intercellular communication and are produced by both cancer and non-cancer cells. Several studies have shown that cancer cells exploit various strategies to regulate the biogenesis, composition, and functions of EVs primarily to promote cancer progression. Given that exosomes originate from major sorting hubs at the limiting membrane of endosomes, they are central to a signaling network that connects external stimuli with intrinsic tumor cell features. Exosomes contain diverse repertoires of molecular cargos, such as proteins, lipids, and nucleic acids, which determine their heterogeneity and functional properties in cancer progression. Therefore, targeting exosome biogenesis will enhance our understanding of tumorigenesis and also promote the discovery of novel approaches for cancer therapy. In this chapter we summarize the machinery of exosome biogenesis and the local, distant, and systemic effects of exosomes released by cancer cells. Furthermore, we explore how these exosomes regulate the anti-tumor immune response and epigenetic mechanisms to sustain cancer progression and their implications in cancer prevention and treatment.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":"94 ","pages":"247-285"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles. 细胞外囊泡
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 Epub Date: 2024-08-23 DOI: 10.1016/bs.ctm.2024.06.008
Mariana Ottaiano Gonçalves, Juliana Fortes Di Iorio, Gabriela Villa Marin, Paula Meneghetti, Náthani Gabrielly Silva Negreiros, Ana Claudia Torrecilhas

Cells, pathogens, and other systems release extracellular vesicles (EVs). The particles promote intercellular communication and contain proteins, lipids, RNA and DNA. Initially considered to be cellular waste in the twentieth century, EVs were becoming recognized for their function in biological communication and control. EVs are divided into many subtypes: exosomes, microvesicles, and apoptotic bodies. Exosomes form in the late endosome/multivesicular body and are released when the compartments fuse with the plasma membrane. Microvesicles are generated by direct budding of the plasma membrane, whereas apoptotic bodies are formed after cellular apoptosis. The new guideline for EVs that describes alternate nomenclature for EVs. The particles modulate the immune response by affecting both innate and adaptive immunity, and their specific the structure allows them to be used as biomarkers to diagnose a variety of diseases. EVs have a wide range of applications, for example, delivery systems for medications and genetic therapies because of their ability to convey specific cellular material. In anti-tumor therapy, EVs deliver therapeutic chemicals to tumor cells. The EVs promote transplant compatibility and reduce organ rejection. Host-parasite interactions, therapeutic and diagnostic for cancer, cardiovascular disease, cardiac tissue regeneration, and the treatment of neurological diseases such as Alzheimer's and Parkinson's. The study of EVs keeps on expanding, revealing new functions and beneficial options. EVs have the potential to change drug delivery, diagnostics, and specific therapeutics, creating a new frontier in biomedical.

细胞、病原体和其他系统会释放出细胞外囊泡 (EV)。这些微粒可促进细胞间的交流,并含有蛋白质、脂质、RNA 和 DNA。在二十世纪,EVs 最初被认为是细胞废物,但后来人们逐渐认识到它们在生物通讯和控制方面的功能。EVs分为许多亚型:外泌体、微囊泡和凋亡体。外泌体在晚期内膜体/多囊体中形成,当这些小室与质膜融合时释放出来。微囊泡由质膜直接出芽产生,而凋亡体则在细胞凋亡后形成。新的《EVs 指南》描述了 EVs 的替代命名法。这些微粒通过影响先天性免疫和适应性免疫来调节免疫反应,其特殊的结构使其可用作诊断各种疾病的生物标记物。EVs具有广泛的用途,例如,由于其能够输送特定的细胞物质,因此可用作药物和基因疗法的输送系统。在抗肿瘤治疗中,EVs 可将治疗化学物质输送到肿瘤细胞。EVs 可促进移植相容性,减少器官排斥反应。宿主与寄生虫之间的相互作用,可治疗和诊断癌症、心血管疾病、心脏组织再生,以及治疗阿尔茨海默氏症和帕金森氏症等神经系统疾病。对 EVs 的研究不断扩展,揭示了新的功能和有益的选择。EVs有可能改变药物输送、诊断和特定疗法,开创生物医学的新领域。
{"title":"Extracellular vesicles.","authors":"Mariana Ottaiano Gonçalves, Juliana Fortes Di Iorio, Gabriela Villa Marin, Paula Meneghetti, Náthani Gabrielly Silva Negreiros, Ana Claudia Torrecilhas","doi":"10.1016/bs.ctm.2024.06.008","DOIUrl":"https://doi.org/10.1016/bs.ctm.2024.06.008","url":null,"abstract":"<p><p>Cells, pathogens, and other systems release extracellular vesicles (EVs). The particles promote intercellular communication and contain proteins, lipids, RNA and DNA. Initially considered to be cellular waste in the twentieth century, EVs were becoming recognized for their function in biological communication and control. EVs are divided into many subtypes: exosomes, microvesicles, and apoptotic bodies. Exosomes form in the late endosome/multivesicular body and are released when the compartments fuse with the plasma membrane. Microvesicles are generated by direct budding of the plasma membrane, whereas apoptotic bodies are formed after cellular apoptosis. The new guideline for EVs that describes alternate nomenclature for EVs. The particles modulate the immune response by affecting both innate and adaptive immunity, and their specific the structure allows them to be used as biomarkers to diagnose a variety of diseases. EVs have a wide range of applications, for example, delivery systems for medications and genetic therapies because of their ability to convey specific cellular material. In anti-tumor therapy, EVs deliver therapeutic chemicals to tumor cells. The EVs promote transplant compatibility and reduce organ rejection. Host-parasite interactions, therapeutic and diagnostic for cancer, cardiovascular disease, cardiac tissue regeneration, and the treatment of neurological diseases such as Alzheimer's and Parkinson's. The study of EVs keeps on expanding, revealing new functions and beneficial options. EVs have the potential to change drug delivery, diagnostics, and specific therapeutics, creating a new frontier in biomedical.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":"94 ","pages":"1-31"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Receptor-mediated endocytosis in kidney cells during physiological and pathological conditions. 肾脏细胞在生理和病理状态下受体介导的内吞作用。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 Epub Date: 2024-06-04 DOI: 10.1016/bs.ctm.2024.05.003
Mariana C Rodrigues, Laura B F Oliveira, Maria Aparecida R Vieira, Celso Caruso-Neves, Diogo B Peruchetti

Mammalian cell membranes are very dynamic where they respond to several environmental stimuli by rearranging the membrane composition by basic biological processes, including endocytosis. In this context, receptor-mediated endocytosis, either clathrin-dependent or caveolae-dependent, is involved in different physiological and pathological conditions. In the last years, an important amount of evidence has been reported that kidney function involves the modulation of different types of endocytosis, including renal protein handling. In addition, the dysfunction of the endocytic machinery is involved with the development of proteinuria as well as glomerular and tubular injuries observed in kidney diseases associated with hypertension, diabetes, and others. In this present review, we will discuss the mechanisms underlying the receptor-mediated endocytosis in different glomerular cells and proximal tubule epithelial cells as well as their modulation by different factors during physiological and pathological conditions. These findings could help to expand the current understanding regarding renal protein handling as well as identify possible new therapeutic targets to halt the progression of kidney disease.

哺乳动物的细胞膜是非常动态的,它们通过基本的生物过程(包括内吞作用)重新排列膜组成,从而对多种环境刺激做出反应。在这种情况下,受体介导的内吞作用(依赖于凝集素或依赖于洞穴内膜)参与了不同的生理和病理状态。近年来,有大量证据表明,肾脏功能涉及不同类型内吞作用的调节,包括肾脏蛋白处理。此外,内吞机制的功能障碍与蛋白尿的形成以及与高血压、糖尿病等肾脏疾病相关的肾小球和肾小管损伤有关。在本综述中,我们将讨论不同肾小球细胞和近端肾小管上皮细胞中受体介导的内吞机制,以及生理和病理条件下不同因素对它们的调节作用。这些发现有助于扩展目前对肾脏蛋白质处理的认识,并确定可能的新治疗靶点,以阻止肾脏疾病的进展。
{"title":"Receptor-mediated endocytosis in kidney cells during physiological and pathological conditions.","authors":"Mariana C Rodrigues, Laura B F Oliveira, Maria Aparecida R Vieira, Celso Caruso-Neves, Diogo B Peruchetti","doi":"10.1016/bs.ctm.2024.05.003","DOIUrl":"https://doi.org/10.1016/bs.ctm.2024.05.003","url":null,"abstract":"<p><p>Mammalian cell membranes are very dynamic where they respond to several environmental stimuli by rearranging the membrane composition by basic biological processes, including endocytosis. In this context, receptor-mediated endocytosis, either clathrin-dependent or caveolae-dependent, is involved in different physiological and pathological conditions. In the last years, an important amount of evidence has been reported that kidney function involves the modulation of different types of endocytosis, including renal protein handling. In addition, the dysfunction of the endocytic machinery is involved with the development of proteinuria as well as glomerular and tubular injuries observed in kidney diseases associated with hypertension, diabetes, and others. In this present review, we will discuss the mechanisms underlying the receptor-mediated endocytosis in different glomerular cells and proximal tubule epithelial cells as well as their modulation by different factors during physiological and pathological conditions. These findings could help to expand the current understanding regarding renal protein handling as well as identify possible new therapeutic targets to halt the progression of kidney disease.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":"93 ","pages":"1-25"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles in malaria: Pathogenesis, diagnosis and therapy. 疟疾中的细胞外囊泡:发病机制、诊断和治疗。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 Epub Date: 2024-08-31 DOI: 10.1016/bs.ctm.2024.06.006
Ana Acacia S Pinheiro, Celso Caruso-Neves, Patricia R M Rocco

Malaria is a life-threatening disease caused by parasites from the genus Plasmodium. Five species can cause malaria in humans, with Plasmodium vivax being the most common in many countries and Plasmodium falciparum having the highest lethality, which can lead to cerebral malaria. Extracellular vesicles (EVs) are in focus in malaria research to better understand pathogenesis, diagnosis, therapy, and prognosis. Malaria-causing parasites use EVs to transfer their molecules to host cells, a mechanism that significantly contributes to parasite survival and successful infection. EVs have thus emerged as an essential component of the immunopathological cascade of malaria, playing a pivotal role in disease progression and severity. This chapter discusses the epidemiology and pathogenesis of malaria and the role of EVs as new diagnostic and therapeutic tools, emphasizing their potential clinical significance.

疟疾是一种由疟原虫属寄生虫引起的威胁生命的疾病。五种疟原虫可引起人类疟疾,其中间日疟原虫在许多国家最为常见,恶性疟原虫致死率最高,可导致脑型疟疾。为了更好地了解发病机制、诊断、治疗和预后,细胞外囊泡(EVs)成为疟疾研究的重点。致疟寄生虫利用细胞外小泡将其分子转移到宿主细胞,这种机制大大有助于寄生虫的存活和成功感染。因此,EVs 已成为疟疾免疫病理级联的重要组成部分,在疾病进展和严重程度方面发挥着关键作用。本章讨论了疟疾的流行病学和发病机制,以及 EVs 作为新的诊断和治疗工具的作用,并强调了其潜在的临床意义。
{"title":"Extracellular vesicles in malaria: Pathogenesis, diagnosis and therapy.","authors":"Ana Acacia S Pinheiro, Celso Caruso-Neves, Patricia R M Rocco","doi":"10.1016/bs.ctm.2024.06.006","DOIUrl":"https://doi.org/10.1016/bs.ctm.2024.06.006","url":null,"abstract":"<p><p>Malaria is a life-threatening disease caused by parasites from the genus Plasmodium. Five species can cause malaria in humans, with Plasmodium vivax being the most common in many countries and Plasmodium falciparum having the highest lethality, which can lead to cerebral malaria. Extracellular vesicles (EVs) are in focus in malaria research to better understand pathogenesis, diagnosis, therapy, and prognosis. Malaria-causing parasites use EVs to transfer their molecules to host cells, a mechanism that significantly contributes to parasite survival and successful infection. EVs have thus emerged as an essential component of the immunopathological cascade of malaria, playing a pivotal role in disease progression and severity. This chapter discusses the epidemiology and pathogenesis of malaria and the role of EVs as new diagnostic and therapeutic tools, emphasizing their potential clinical significance.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":"94 ","pages":"107-132"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles as biomarkers in parasitic disease diagnosis. 细胞外囊泡作为寄生虫病诊断的生物标志物。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 Epub Date: 2024-08-12 DOI: 10.1016/bs.ctm.2024.07.003
Berta Barnadas-Carceller, Hernando A Del Portillo, Carmen Fernandez-Becerra

Parasitic diseases constitute a major global health problem, affecting millions of people worldwide. Recent advances in the study of extracellular vesicles (EVs) have opened up new strategies for biomarker discovery in protozoan and helminth infections. Analyses of EVs in cultures and biological fluids have identified numerous potential biomarkers that could be useful for early and differential diagnosis, monitoring therapeutic responses, and the overall management and control of these diseases. Despite the potential of these biomarkers, several challenges must be addressed, including limited research, the need for standardized protocols, and the reproducibility of results across studies. In many parasitic infections, EVs have been obtained from various sample types, including plasma from human patients and mouse models, as well as cultures of the parasites at different stages. EVs were isolated by various methods and predominantly characterized through proteomic analysis or RNA sequencing to assess their cargo and identify potential biomarkers. These biomarker candidates were investigated and validated using different assays such as ELISA, Western Blot, and ROC curves. Overall, the use of EVs is considered a promising new diagnostic strategy for parasite infections, but further research with larger cohorts, standardized methods, and additional validation tests are essential for effective diagnosis and management of these diseases.

寄生虫病是一个重大的全球健康问题,影响着全球数百万人。细胞外囊泡(EVs)研究的最新进展为发现原生动物和蠕虫感染的生物标志物开辟了新策略。通过对培养物和生物液体中的 EVs 进行分析,发现了许多潜在的生物标记物,这些标记物可用于早期诊断和鉴别诊断、监测治疗反应以及这些疾病的整体管理和控制。尽管这些生物标记物潜力巨大,但仍有一些挑战必须解决,包括研究有限、需要标准化方案以及不同研究结果的可重复性。在许多寄生虫感染中,EVs 都是从各种类型的样本中获得的,包括人类患者和小鼠模型的血浆,以及处于不同阶段的寄生虫培养物。通过各种方法分离出的EVs主要通过蛋白质组分析或RNA测序进行表征,以评估其载体并确定潜在的生物标记物。使用不同的检测方法,如 ELISA、Western 印迹和 ROC 曲线,对这些候选生物标志物进行了研究和验证。总之,使用 EVs 被认为是一种很有前景的寄生虫感染诊断新策略,但要有效诊断和管理这些疾病,还必须进行更大规模的队列、标准化方法和更多验证测试的进一步研究。
{"title":"Extracellular vesicles as biomarkers in parasitic disease diagnosis.","authors":"Berta Barnadas-Carceller, Hernando A Del Portillo, Carmen Fernandez-Becerra","doi":"10.1016/bs.ctm.2024.07.003","DOIUrl":"https://doi.org/10.1016/bs.ctm.2024.07.003","url":null,"abstract":"<p><p>Parasitic diseases constitute a major global health problem, affecting millions of people worldwide. Recent advances in the study of extracellular vesicles (EVs) have opened up new strategies for biomarker discovery in protozoan and helminth infections. Analyses of EVs in cultures and biological fluids have identified numerous potential biomarkers that could be useful for early and differential diagnosis, monitoring therapeutic responses, and the overall management and control of these diseases. Despite the potential of these biomarkers, several challenges must be addressed, including limited research, the need for standardized protocols, and the reproducibility of results across studies. In many parasitic infections, EVs have been obtained from various sample types, including plasma from human patients and mouse models, as well as cultures of the parasites at different stages. EVs were isolated by various methods and predominantly characterized through proteomic analysis or RNA sequencing to assess their cargo and identify potential biomarkers. These biomarker candidates were investigated and validated using different assays such as ELISA, Western Blot, and ROC curves. Overall, the use of EVs is considered a promising new diagnostic strategy for parasite infections, but further research with larger cohorts, standardized methods, and additional validation tests are essential for effective diagnosis and management of these diseases.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":"94 ","pages":"187-223"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles release from protozoa parasite and animal model. 原生动物寄生虫和动物模型释放的细胞外囊泡。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 Epub Date: 2024-08-31 DOI: 10.1016/bs.ctm.2024.06.007
Andrey Sladkevicius Vidal, Rogéria Cristina Zauli, Wagner Luiz Batista, Patricia Xander

Diseases caused by protozoan parasites, such as leishmaniasis, trypanosomiasis, and malaria, are highly complex and together continue to cause high annual morbidity and mortality. The search for new compounds in environmental biodiversity, repositioning known drugs, and developing vaccines using old and innovative technologies have been employed to discover vaccines and new and alternative treatments. Extracellular vesicles (EVs) can carry parasite antigens, creating a new possibility to develop an effective and affordable platform for treatment, vaccines, and drug delivery. Thus, the evaluation of EVs in animal models can and should be explored among the countless biomedical applications. Herein, we will address the concept of EVs, their acquisition and characterization in protozoan parasite models, and the primary studies using these vesicles in therapeutic applications.

利什曼病、锥虫病和疟疾等由原生动物寄生虫引起的疾病非常复杂,每年都会造成很高的发病率和死亡率。在环境生物多样性中寻找新的化合物、重新定位已知药物以及利用旧技术和创新技术开发疫苗,已被用于发现疫苗和新的替代治疗方法。细胞外囊泡(EVs)可携带寄生虫抗原,为开发有效、经济的治疗、疫苗和给药平台提供了新的可能性。因此,在无数的生物医学应用中,可以而且应该探索在动物模型中对EVs进行评估。在这里,我们将讨论 EVs 的概念、其在原生动物寄生虫模型中的获取和表征,以及将这些囊泡用于治疗应用的主要研究。
{"title":"Extracellular vesicles release from protozoa parasite and animal model.","authors":"Andrey Sladkevicius Vidal, Rogéria Cristina Zauli, Wagner Luiz Batista, Patricia Xander","doi":"10.1016/bs.ctm.2024.06.007","DOIUrl":"https://doi.org/10.1016/bs.ctm.2024.06.007","url":null,"abstract":"<p><p>Diseases caused by protozoan parasites, such as leishmaniasis, trypanosomiasis, and malaria, are highly complex and together continue to cause high annual morbidity and mortality. The search for new compounds in environmental biodiversity, repositioning known drugs, and developing vaccines using old and innovative technologies have been employed to discover vaccines and new and alternative treatments. Extracellular vesicles (EVs) can carry parasite antigens, creating a new possibility to develop an effective and affordable platform for treatment, vaccines, and drug delivery. Thus, the evaluation of EVs in animal models can and should be explored among the countless biomedical applications. Herein, we will address the concept of EVs, their acquisition and characterization in protozoan parasite models, and the primary studies using these vesicles in therapeutic applications.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":"94 ","pages":"85-106"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring bacterial extracellular vesicles: Focus on WHO critical priority pathogens. 探索细菌胞外囊泡:关注世界卫生组织重点关注的病原体。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 Epub Date: 2024-07-20 DOI: 10.1016/bs.ctm.2024.06.009
Luciene Andrade da Rocha Minarini

Bacterial extracellular vesicles (EVs) are cell-derived particles with a phospholipidic bilayer structure and diameter ranging from 20 to 250 nm, comprising a varied of components, including bioactive proteins, lipids, DNA, RNA, and other metabolites. These EVs play an essential role in bacterial and host function and are recognized as essential keys in cell-to-cell communication and pathogenesis. Due to these characteristics and functions, EVs exhibit great potential for biomedical applications and are promising tools for the development of drug delivery systems and vaccines, as well as for use in disease diagnostics. An interesting focus of this review is on the clinical relevance of EVs, with a particular emphasis on two critical pathogens, Acinetobacter baumannii and Klebsiella pneumoniae. Insights into the outer membrane vesicles (OMVs) derived from these bacteria underscore their roles in antimicrobial resistance and pathogenicity. Additionally, the review explores OMV-based vaccine strategies as a promising means to mitigating these pathogens.

细菌胞外囊泡(EVs)是一种源自细胞的颗粒,具有磷脂双分子层结构,直径在 20 到 250 nm 之间,由多种成分组成,包括生物活性蛋白质、脂类、DNA、RNA 和其他代谢物。这些 EVs 在细菌和宿主的功能中发挥着重要作用,被认为是细胞间通信和致病过程中不可或缺的关键。由于这些特点和功能,EVs 在生物医学应用方面展现出巨大潜力,是开发药物输送系统和疫苗以及用于疾病诊断的前景广阔的工具。本综述的一个有趣重点是 EVs 的临床相关性,尤其侧重于两种关键病原体:鲍曼不动杆菌和肺炎克雷伯菌。对这些细菌产生的外膜囊泡 (OMV) 的深入研究强调了它们在抗菌药耐药性和致病性方面的作用。此外,该综述还探讨了基于 OMV 的疫苗策略,认为这是减轻这些病原体感染的一种可行方法。
{"title":"Exploring bacterial extracellular vesicles: Focus on WHO critical priority pathogens.","authors":"Luciene Andrade da Rocha Minarini","doi":"10.1016/bs.ctm.2024.06.009","DOIUrl":"https://doi.org/10.1016/bs.ctm.2024.06.009","url":null,"abstract":"<p><p>Bacterial extracellular vesicles (EVs) are cell-derived particles with a phospholipidic bilayer structure and diameter ranging from 20 to 250 nm, comprising a varied of components, including bioactive proteins, lipids, DNA, RNA, and other metabolites. These EVs play an essential role in bacterial and host function and are recognized as essential keys in cell-to-cell communication and pathogenesis. Due to these characteristics and functions, EVs exhibit great potential for biomedical applications and are promising tools for the development of drug delivery systems and vaccines, as well as for use in disease diagnostics. An interesting focus of this review is on the clinical relevance of EVs, with a particular emphasis on two critical pathogens, Acinetobacter baumannii and Klebsiella pneumoniae. Insights into the outer membrane vesicles (OMVs) derived from these bacteria underscore their roles in antimicrobial resistance and pathogenicity. Additionally, the review explores OMV-based vaccine strategies as a promising means to mitigating these pathogens.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":"94 ","pages":"225-246"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endocytosis in malaria parasites: An ultrastructural perspective of membrane interplay in a unique infection model. 疟原虫的内吞作用:从超微结构角度看独特感染模型中的膜相互作用
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 Epub Date: 2024-08-05 DOI: 10.1016/bs.ctm.2024.05.001
Camila Wendt, Kildare Miranda

Malaria remains a major global threat, representing a severe public health problem worldwide. Annually, it is responsible for a high rate of morbidity and mortality in many tropical developing countries where the disease is endemic. The causative agent of malaria, Plasmodium spp., exhibits a complex life cycle, alternating between an invertebrate vector, which transmits the disease, and the vertebrate host. The disease pathology observed in the vertebrate host is attributed to the asexual development of Plasmodium spp. inside the erythrocyte. Once inside the red blood cell, malaria parasites cause extensive changes in the host cell, increasing membrane rigidity and altering its normal discoid shape. Additionally, during their intraerythrocytic development, malaria parasites incorporate and degrade up to 70 % of host cell hemoglobin. This mechanism is essential for parasite development and represents an important drug target. Blocking the steps related to hemoglobin endocytosis or degradation impairs parasite development and can lead to its death. The ultrastructural analysis of hemoglobin endocytosis on Plasmodium spp. has been broadly explored along the years. However, it is only recently that the proteins involved in this process have started to emerge. Here, we will review the most important features related to hemoglobin endocytosis and catabolism on malaria parasites. A special focus will be given to the recent analysis obtained through 3D visualization approaches and to the molecules involved in these mechanisms.

疟疾仍然是一个重大的全球性威胁,是全世界严重的公共卫生问题。在许多疟疾流行的热带发展中国家,疟疾每年都会造成很高的发病率和死亡率。疟疾的病原体疟原虫的生命周期十分复杂,在传播疾病的无脊椎病媒和脊椎动物宿主之间交替出现。在脊椎动物宿主身上观察到的疾病病理现象归因于疟原虫在红细胞内的无性发育。寄生在红细胞内的疟原虫会使宿主细胞发生巨大变化,增加细胞膜的硬度并改变其正常的盘状形状。此外,在红细胞内的发育过程中,疟原虫会吸收并降解宿主细胞中高达 70% 的血红蛋白。这一机制对寄生虫的发育至关重要,也是一个重要的药物靶点。阻断与血红蛋白内吞或降解有关的步骤会影响寄生虫的发育并导致其死亡。多年来,人们对疟原虫血红蛋白内吞的超微结构分析进行了广泛的探索。然而,参与这一过程的蛋白质直到最近才开始出现。在此,我们将回顾与疟原虫血红蛋白内吞和分解有关的最重要特征。我们将特别关注最近通过三维可视化方法获得的分析结果以及参与这些机制的分子。
{"title":"Endocytosis in malaria parasites: An ultrastructural perspective of membrane interplay in a unique infection model.","authors":"Camila Wendt, Kildare Miranda","doi":"10.1016/bs.ctm.2024.05.001","DOIUrl":"https://doi.org/10.1016/bs.ctm.2024.05.001","url":null,"abstract":"<p><p>Malaria remains a major global threat, representing a severe public health problem worldwide. Annually, it is responsible for a high rate of morbidity and mortality in many tropical developing countries where the disease is endemic. The causative agent of malaria, Plasmodium spp., exhibits a complex life cycle, alternating between an invertebrate vector, which transmits the disease, and the vertebrate host. The disease pathology observed in the vertebrate host is attributed to the asexual development of Plasmodium spp. inside the erythrocyte. Once inside the red blood cell, malaria parasites cause extensive changes in the host cell, increasing membrane rigidity and altering its normal discoid shape. Additionally, during their intraerythrocytic development, malaria parasites incorporate and degrade up to 70 % of host cell hemoglobin. This mechanism is essential for parasite development and represents an important drug target. Blocking the steps related to hemoglobin endocytosis or degradation impairs parasite development and can lead to its death. The ultrastructural analysis of hemoglobin endocytosis on Plasmodium spp. has been broadly explored along the years. However, it is only recently that the proteins involved in this process have started to emerge. Here, we will review the most important features related to hemoglobin endocytosis and catabolism on malaria parasites. A special focus will be given to the recent analysis obtained through 3D visualization approaches and to the molecules involved in these mechanisms.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":"93 ","pages":"27-49"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of female sexual hormones on the endothelial glycocalyx. 雌性性激素对内皮糖萼的影响。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1016/bs.ctm.2023.02.005
Simone R Potje, Núbia S Martins, Maira N Benatti, Daniel Rodrigues, Vânia L D Bonato, Rita C Tostes

The glycocalyx is a layer composed of carbohydrate side chains bound to core proteins that lines the vascular endothelium. The integrity of the glycocalyx is essential for endothelial cells' performance and vascular homeostasis. The neuroendocrine and immune systems influence the composition, maintenance, activity and degradation of the endothelial glycocalyx. The female organism has unique characteristics, and estrogen and progesterone, the main female hormones are essential to the development and physiology of the reproductive system and to the ability to develop a fetus. Female sex hormones also exert a wide variety of effects on other organs, including the vascular endothelium. They upregulate nitric oxide synthase expression and activity, decrease oxidative stress, increase vasodilation, and protect from vascular injury. This review will discuss how female hormones and pregnancy, which prompts to high levels of estrogen and progesterone, modulate the endothelial glycocalyx. Diseases prevalent in women that alter the glycocalyx, and therapeutic forms to prevent glycocalyx degradation and potential treatments that can reconstitute its structure and function will also be discussed.

糖萼是由碳水化合物侧链与排列在血管内皮上的核心蛋白结合而成的一层。糖萼的完整性对内皮细胞的功能和血管稳态至关重要。神经内分泌和免疫系统影响内皮糖萼的组成、维持、活性和降解。雌性生物具有独特的特征,雌性激素和黄体酮是主要的雌性激素,对生殖系统的发育和生理以及胎儿的发育能力至关重要。女性性激素对其他器官也有广泛的影响,包括血管内皮。它们上调一氧化氮合酶的表达和活性,减少氧化应激,增加血管舒张,保护血管免受损伤。本文将讨论女性激素和妊娠对内皮细胞糖萼的调节作用,妊娠促使雌激素和孕激素水平升高。还将讨论改变糖萼的妇女常见疾病、防止糖萼降解的治疗形式以及可以重建其结构和功能的潜在治疗方法。
{"title":"The effects of female sexual hormones on the endothelial glycocalyx.","authors":"Simone R Potje,&nbsp;Núbia S Martins,&nbsp;Maira N Benatti,&nbsp;Daniel Rodrigues,&nbsp;Vânia L D Bonato,&nbsp;Rita C Tostes","doi":"10.1016/bs.ctm.2023.02.005","DOIUrl":"https://doi.org/10.1016/bs.ctm.2023.02.005","url":null,"abstract":"<p><p>The glycocalyx is a layer composed of carbohydrate side chains bound to core proteins that lines the vascular endothelium. The integrity of the glycocalyx is essential for endothelial cells' performance and vascular homeostasis. The neuroendocrine and immune systems influence the composition, maintenance, activity and degradation of the endothelial glycocalyx. The female organism has unique characteristics, and estrogen and progesterone, the main female hormones are essential to the development and physiology of the reproductive system and to the ability to develop a fetus. Female sex hormones also exert a wide variety of effects on other organs, including the vascular endothelium. They upregulate nitric oxide synthase expression and activity, decrease oxidative stress, increase vasodilation, and protect from vascular injury. This review will discuss how female hormones and pregnancy, which prompts to high levels of estrogen and progesterone, modulate the endothelial glycocalyx. Diseases prevalent in women that alter the glycocalyx, and therapeutic forms to prevent glycocalyx degradation and potential treatments that can reconstitute its structure and function will also be discussed.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":"91 ","pages":"89-137"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9436873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Impairment of endothelial glycocalyx in atherosclerosis and obesity. 动脉粥样硬化和肥胖症中的内皮糖萼受损。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 Epub Date: 2023-03-10 DOI: 10.1016/bs.ctm.2023.02.001
Sang Joon Ahn, Elizabeth Le Master, Sara T Granados, Irena Levitan

Endothelial glycocalyx is a negatively charged gel-like layer located on the apical surface of endothelial cells. It serves as a selective two-way physical barrier between the flowing blood and the endothelium, which regulates the access of macromolecules and of blood cells to the endothelial surface. In addition, endothelial glycocalyx plays a major role in sensing mechanical signals generated by the blood flow and transducing these signals to maintain endothelial functions; Thus, dysfunction or disruption of endothelial glycocalyx in pathological condition leads to endothelial dysfunction and contributes to the development of vascular diseases. In this review, we discuss the impact of atherosclerosis with the following viewpoints: (i) hypercholesterolemic effects on endothelial glycocalyx degradation in animal models and human patients, (ii) disruption of endothelial glycocalyx by atherogenic lipoproteins, (iii) proatherogenic disturbed flow effects on endothelial glycocalyx degradation, (iv) pathological consequences of the loss of glycocalyx integrity in atherogenesis, and (v) therapeutic effect of glycocalyx supplementation on atherosclerosis development. Additionally, we also discuss recent studies in pathological effects of obesity on the disruption of endothelial glycocalyx.

内皮糖萼是位于内皮细胞顶端表面的带负电荷的凝胶状层。它是流动的血液和内皮之间的一个选择性双向物理屏障,可调节大分子和血细胞进入内皮表面。此外,内皮糖萼还在感知血流产生的机械信号和传递这些信号以维持内皮功能方面发挥着重要作用;因此,在病理情况下,内皮糖萼的功能障碍或破坏会导致内皮功能障碍,并导致血管疾病的发生。在这篇综述中,我们将从以下角度讨论动脉粥样硬化的影响:(i) 动物模型和人类患者中高胆固醇血症对内皮糖萼降解的影响,(ii) 致动脉粥样硬化脂蛋白对内皮糖萼的破坏,(iii) 促动脉粥样硬化血流紊乱对内皮糖萼降解的影响,(iv) 动脉粥样硬化过程中糖萼完整性丧失的病理后果,以及 (v) 补充糖萼对动脉粥样硬化发展的治疗作用。此外,我们还讨论了肥胖对内皮糖萼破坏的病理影响的最新研究。
{"title":"Impairment of endothelial glycocalyx in atherosclerosis and obesity.","authors":"Sang Joon Ahn, Elizabeth Le Master, Sara T Granados, Irena Levitan","doi":"10.1016/bs.ctm.2023.02.001","DOIUrl":"10.1016/bs.ctm.2023.02.001","url":null,"abstract":"<p><p>Endothelial glycocalyx is a negatively charged gel-like layer located on the apical surface of endothelial cells. It serves as a selective two-way physical barrier between the flowing blood and the endothelium, which regulates the access of macromolecules and of blood cells to the endothelial surface. In addition, endothelial glycocalyx plays a major role in sensing mechanical signals generated by the blood flow and transducing these signals to maintain endothelial functions; Thus, dysfunction or disruption of endothelial glycocalyx in pathological condition leads to endothelial dysfunction and contributes to the development of vascular diseases. In this review, we discuss the impact of atherosclerosis with the following viewpoints: (i) hypercholesterolemic effects on endothelial glycocalyx degradation in animal models and human patients, (ii) disruption of endothelial glycocalyx by atherogenic lipoproteins, (iii) proatherogenic disturbed flow effects on endothelial glycocalyx degradation, (iv) pathological consequences of the loss of glycocalyx integrity in atherogenesis, and (v) therapeutic effect of glycocalyx supplementation on atherosclerosis development. Additionally, we also discuss recent studies in pathological effects of obesity on the disruption of endothelial glycocalyx.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":"91 ","pages":"1-19"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9436872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current topics in membranes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1