首页 > 最新文献

Current topics in membranes最新文献

英文 中文
Investigating molecular crowding during cell division and hyperosmotic stress in budding yeast with FRET. 用FRET研究出芽酵母细胞分裂和高渗胁迫过程中的分子拥挤。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-01-01 Epub Date: 2021-11-16 DOI: 10.1016/bs.ctm.2021.09.001
Sarah Lecinski, Jack W Shepherd, Lewis Frame, Imogen Hayton, Chris MacDonald, Mark C Leake

Cell division, aging, and stress recovery triggers spatial reorganization of cellular components in the cytoplasm, including membrane bound organelles, with molecular changes in their compositions and structures. However, it is not clear how these events are coordinated and how they integrate with regulation of molecular crowding. We use the budding yeast Saccharomyces cerevisiae as a model system to study these questions using recent progress in optical fluorescence microscopy and crowding sensing probe technology. We used a Förster Resonance Energy Transfer (FRET) based sensor, illuminated by confocal microscopy for high throughput analyses and Slimfield microscopy for single-molecule resolution, to quantify molecular crowding. We determine crowding in response to cellular growth of both mother and daughter cells, in addition to osmotic stress, and reveal hot spots of crowding across the bud neck in the burgeoning daughter cell. This crowding might be rationalized by the packing of inherited material, like the vacuole, from mother cells. We discuss recent advances in understanding the role of crowding in cellular regulation and key current challenges and conclude by presenting our recent advances in optimizing FRET-based measurements of crowding while simultaneously imaging a third color, which can be used as a marker that labels organelle membranes. Our approaches can be combined with synchronized cell populations to increase experimental throughput and correlate molecular crowding information with different stages in the cell cycle.

细胞分裂、衰老和应激恢复触发细胞质中细胞成分的空间重组,包括膜结合细胞器,其分子组成和结构发生变化。然而,目前尚不清楚这些事件是如何协调的,以及它们如何与分子拥挤的调节相结合。本文以出芽酵母酿酒酵母为模型系统,利用光学荧光显微镜和拥挤传感探针技术的最新进展对这些问题进行了研究。我们使用Förster共振能量转移(FRET)为基础的传感器,共聚焦显微镜照射高通量分析和细场显微镜单分子分辨率,量化分子拥挤。除了渗透胁迫外,我们还确定了母细胞和子细胞细胞生长时的拥挤反应,并揭示了在萌芽中的子细胞芽颈上拥挤的热点。这种拥挤可能是由于来自母细胞的遗传物质(如液泡)的堆积而形成的。我们讨论了在理解拥挤在细胞调节中的作用方面的最新进展和当前的关键挑战,最后介绍了我们在优化基于fret的拥挤测量方面的最新进展,同时成像第三种颜色,它可以用作标记细胞器膜的标记。我们的方法可以与同步细胞群相结合,以增加实验吞吐量,并将分子拥挤信息与细胞周期的不同阶段相关联。
{"title":"Investigating molecular crowding during cell division and hyperosmotic stress in budding yeast with FRET.","authors":"Sarah Lecinski, Jack W Shepherd, Lewis Frame, Imogen Hayton, Chris MacDonald, Mark C Leake","doi":"10.1016/bs.ctm.2021.09.001","DOIUrl":"10.1016/bs.ctm.2021.09.001","url":null,"abstract":"<p><p>Cell division, aging, and stress recovery triggers spatial reorganization of cellular components in the cytoplasm, including membrane bound organelles, with molecular changes in their compositions and structures. However, it is not clear how these events are coordinated and how they integrate with regulation of molecular crowding. We use the budding yeast Saccharomyces cerevisiae as a model system to study these questions using recent progress in optical fluorescence microscopy and crowding sensing probe technology. We used a Förster Resonance Energy Transfer (FRET) based sensor, illuminated by confocal microscopy for high throughput analyses and Slimfield microscopy for single-molecule resolution, to quantify molecular crowding. We determine crowding in response to cellular growth of both mother and daughter cells, in addition to osmotic stress, and reveal hot spots of crowding across the bud neck in the burgeoning daughter cell. This crowding might be rationalized by the packing of inherited material, like the vacuole, from mother cells. We discuss recent advances in understanding the role of crowding in cellular regulation and key current challenges and conclude by presenting our recent advances in optimizing FRET-based measurements of crowding while simultaneously imaging a third color, which can be used as a marker that labels organelle membranes. Our approaches can be combined with synchronized cell populations to increase experimental throughput and correlate molecular crowding information with different stages in the cell cycle.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"75-118"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39943093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating membrane structure by Laurdan imaging: Disruption of lipid packing by oxidized lipids. 利用Laurdan成像评价膜结构:氧化脂质破坏脂质包装。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-01-01 Epub Date: 2021-11-18 DOI: 10.1016/bs.ctm.2021.10.003
Irena Levitan

Impact of different lipids on membrane structure/lipid order is critical for multiple biological processes. Laurdan microscopy provides a unique tool to assess this property in heterogeneous biological membranes. This review describes the general principles of the approach and its application in model membranes and cells. It also provides an in-depth discussion of the insights obtained using Laurdan microscopy to evaluate the differential effects of cholesterol, oxysterols and oxidized phospholipids on lipid packing of ordered and disordered domains in vascular endothelial cells.

不同脂质对膜结构/脂质顺序的影响对多种生物过程至关重要。劳氏显微镜提供了一个独特的工具来评估这种性质在异质生物膜。本文综述了该方法的一般原理及其在模型膜和细胞中的应用。它还提供了一个深入的讨论,利用Laurdan显微镜来评估胆固醇、氧化甾醇和氧化磷脂对血管内皮细胞中有序和无序结构域的脂质堆积的不同影响。
{"title":"Evaluating membrane structure by Laurdan imaging: Disruption of lipid packing by oxidized lipids.","authors":"Irena Levitan","doi":"10.1016/bs.ctm.2021.10.003","DOIUrl":"https://doi.org/10.1016/bs.ctm.2021.10.003","url":null,"abstract":"<p><p>Impact of different lipids on membrane structure/lipid order is critical for multiple biological processes. Laurdan microscopy provides a unique tool to assess this property in heterogeneous biological membranes. This review describes the general principles of the approach and its application in model membranes and cells. It also provides an in-depth discussion of the insights obtained using Laurdan microscopy to evaluate the differential effects of cholesterol, oxysterols and oxidized phospholipids on lipid packing of ordered and disordered domains in vascular endothelial cells.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"235-256"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8929669/pdf/nihms-1780850.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39690564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Fluorescence sensors for imaging membrane lipid domains and cholesterol. 荧光传感器成像膜脂结构域和胆固醇。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-01-01 Epub Date: 2021-10-20 DOI: 10.1016/bs.ctm.2021.09.004
Francisco J Barrantes

Lipid membrane domains are supramolecular lateral heterogeneities of biological membranes. Of nanoscopic dimensions, they constitute specialized hubs used by the cell as transient signaling platforms for a great variety of biologically important mechanisms. Their property to form and dissolve in the bulk lipid bilayer endow them with the ability to engage in highly dynamic processes, and temporarily recruit subpopulations of membrane proteins in reduced nanometric compartments that can coalesce to form larger mesoscale assemblies. Cholesterol is an essential component of these lipid domains; its unique molecular structure is suitable for interacting intricately with crevices and cavities of transmembrane protein surfaces through its rough β face while "talking" to fatty acid acyl chains of glycerophospholipids and sphingolipids via its smooth α face. Progress in the field of membrane domains has been closely associated with innovative improvements in fluorescence microscopy and new fluorescence sensors. These advances enabled the exploration of the biophysical properties of lipids and their supramolecular platforms. Here I review the rationale behind the use of biosensors over the last few decades and their contributions towards elucidation of the in-plane and transbilayer topography of cholesterol-enriched lipid domains and their molecular constituents. The challenges introduced by super-resolution optical microscopy are discussed, as well as possible scenarios for future developments in the field, including virtual ("no staining") staining.

脂质膜结构域是生物膜的超分子横向异质性。在纳米尺度上,它们构成了细胞的专门枢纽,作为多种重要生物学机制的瞬态信号平台。它们在大体积脂质双分子层中形成和溶解的特性赋予了它们参与高动态过程的能力,并在缩小的纳米隔室中暂时招募膜蛋白亚群,这些隔室可以合并形成更大的中尺度组装。胆固醇是这些脂质结构域的重要组成部分;其独特的分子结构适合于通过其粗糙的β面与跨膜蛋白表面的裂缝和空洞相互作用,同时通过其光滑的α面与甘油磷脂和鞘脂的脂肪酸酰基链“对话”。膜结构域领域的进展与荧光显微镜和新型荧光传感器的创新改进密切相关。这些进展使探索脂质及其超分子平台的生物物理特性成为可能。在这里,我回顾了生物传感器在过去几十年使用背后的基本原理,以及它们对阐明富含胆固醇的脂质结构域及其分子成分的平面内和跨双层地形的贡献。讨论了超分辨率光学显微镜带来的挑战,以及该领域未来发展的可能情况,包括虚拟(“无染色”)染色。
{"title":"Fluorescence sensors for imaging membrane lipid domains and cholesterol.","authors":"Francisco J Barrantes","doi":"10.1016/bs.ctm.2021.09.004","DOIUrl":"https://doi.org/10.1016/bs.ctm.2021.09.004","url":null,"abstract":"<p><p>Lipid membrane domains are supramolecular lateral heterogeneities of biological membranes. Of nanoscopic dimensions, they constitute specialized hubs used by the cell as transient signaling platforms for a great variety of biologically important mechanisms. Their property to form and dissolve in the bulk lipid bilayer endow them with the ability to engage in highly dynamic processes, and temporarily recruit subpopulations of membrane proteins in reduced nanometric compartments that can coalesce to form larger mesoscale assemblies. Cholesterol is an essential component of these lipid domains; its unique molecular structure is suitable for interacting intricately with crevices and cavities of transmembrane protein surfaces through its rough β face while \"talking\" to fatty acid acyl chains of glycerophospholipids and sphingolipids via its smooth α face. Progress in the field of membrane domains has been closely associated with innovative improvements in fluorescence microscopy and new fluorescence sensors. These advances enabled the exploration of the biophysical properties of lipids and their supramolecular platforms. Here I review the rationale behind the use of biosensors over the last few decades and their contributions towards elucidation of the in-plane and transbilayer topography of cholesterol-enriched lipid domains and their molecular constituents. The challenges introduced by super-resolution optical microscopy are discussed, as well as possible scenarios for future developments in the field, including virtual (\"no staining\") staining.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"257-314"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39943089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Membrane tension. 膜张力。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-01-01 Epub Date: 2021-11-02 DOI: 10.1016/bs.ctm.2021.09.002
Pei-Chuan Chao, Frederick Sachs

The cell membrane serves as a barrier that restricts the rate of exchange of diffusible molecules. Tension in the membrane regulates many crucial cell functions involving shape changes and motility, cell signaling, endocytosis, and mechanosensation. Tension reflects the forces contributed by the lipid bilayer, the cytoskeleton, and the extracellular matrix. With a fluid-like bilayer model, membrane tension is presumed uniform and hence propagated instantaneously. In this review, we discuss techniques to measure the mean membrane tension and how to resolve the stresses in different components and consider the role of bilayer heterogeneity.

细胞膜起屏障作用,限制可扩散分子的交换速率。膜张力调节许多重要的细胞功能,包括形状变化和运动、细胞信号、内吞作用和机械感觉。张力反映了脂质双分子层、细胞骨架和细胞外基质所产生的力。在类流体双层模型中,膜张力被认为是均匀的,因此是瞬时传播的。在这篇综述中,我们讨论了测量平均膜张力的技术,以及如何解决不同组分的应力,并考虑了双层非均质性的作用。
{"title":"Membrane tension.","authors":"Pei-Chuan Chao,&nbsp;Frederick Sachs","doi":"10.1016/bs.ctm.2021.09.002","DOIUrl":"https://doi.org/10.1016/bs.ctm.2021.09.002","url":null,"abstract":"<p><p>The cell membrane serves as a barrier that restricts the rate of exchange of diffusible molecules. Tension in the membrane regulates many crucial cell functions involving shape changes and motility, cell signaling, endocytosis, and mechanosensation. Tension reflects the forces contributed by the lipid bilayer, the cytoskeleton, and the extracellular matrix. With a fluid-like bilayer model, membrane tension is presumed uniform and hence propagated instantaneously. In this review, we discuss techniques to measure the mean membrane tension and how to resolve the stresses in different components and consider the role of bilayer heterogeneity.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"189-203"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39690562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Current methods for studying intracellular liquid-liquid phase separation. 细胞内液-液相分离的研究现状。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-01-01 Epub Date: 2021-10-25 DOI: 10.1016/bs.ctm.2021.09.003
Amber R Titus, Edgar E Kooijman

Liquid-liquid phase separation (LLPS) is a ubiquitous process that drives the formation of membrane-less intracellular compartments. This compartmentalization contains vastly different protein/RNA/macromolecule concentrations compared to the surrounding cytosol despite the absence of a lipid boundary. Because of this, LLPS is important for many cellular signaling processes and may play a role in their dysregulation. This chapter highlights recent advances in the understanding of intracellular phase transitions along with current methods used to identify LLPS in vitro and model LLPS in situ.

液-液相分离(LLPS)是一种普遍存在的过程,它驱动无膜细胞内区室的形成。尽管没有脂质边界,但与周围的细胞质相比,这种区隔化含有截然不同的蛋白质/RNA/大分子浓度。正因为如此,LLPS对许多细胞信号传导过程很重要,并可能在它们的失调中发挥作用。本章重点介绍了细胞内相变的最新进展,以及目前用于体外鉴定LLPS和原位模拟LLPS的方法。
{"title":"Current methods for studying intracellular liquid-liquid phase separation.","authors":"Amber R Titus,&nbsp;Edgar E Kooijman","doi":"10.1016/bs.ctm.2021.09.003","DOIUrl":"https://doi.org/10.1016/bs.ctm.2021.09.003","url":null,"abstract":"<p><p>Liquid-liquid phase separation (LLPS) is a ubiquitous process that drives the formation of membrane-less intracellular compartments. This compartmentalization contains vastly different protein/RNA/macromolecule concentrations compared to the surrounding cytosol despite the absence of a lipid boundary. Because of this, LLPS is important for many cellular signaling processes and may play a role in their dysregulation. This chapter highlights recent advances in the understanding of intracellular phase transitions along with current methods used to identify LLPS in vitro and model LLPS in situ.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"55-73"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39943092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical forces and metabolic changes cooperate to drive cellular memory and endothelial phenotypes. 机械力和新陈代谢变化共同驱动细胞记忆和内皮表型。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-01-01 Epub Date: 2021-09-25 DOI: 10.1016/bs.ctm.2021.07.003
Jin Li, Yun Fang, David Wu

Endothelial cells line the innermost layer of arterial, venous, and lymphatic vascular tree and accordingly are subject to hemodynamic, stretch, and stiffness mechanical forces. Normally quiescent, endothelial cells have a hemodynamic set point and become "activated" in response to disturbed hemodynamics, which may signal impending nutrient or gas depletion. Endothelial cells in the majority of tissue beds are normally inactivated and maintain vessel barrier functions, are anti-inflammatory, anti-coagulant, and anti-thrombotic. However, under aberrant mechanical forces, endothelial signaling transforms in response, resulting cellular changes that herald pathological diseases. Endothelial cell metabolism is now recognized as the primary intermediate pathway that undergirds cellular transformation. In this review, we discuss the various mechanical forces endothelial cells sense in the large vessels, microvasculature, and lymphatics, and how changes in environmental mechanical forces result in changes in metabolism, which ultimately influence cell physiology, cellular memory, and ultimately disease initiation and progression.

内皮细胞位于动脉、静脉和淋巴管的最内层,因此会受到血液动力学、拉伸和僵硬机械力的影响。内皮细胞通常处于静止状态,有一个血液动力学设定点,当血液动力学发生紊乱时,内皮细胞就会被 "激活",这可能是营养或气体即将耗尽的信号。大多数组织床的内皮细胞通常处于失活状态,可维持血管屏障功能、抗炎、抗凝和抗血栓形成。然而,在异常机械力的作用下,内皮细胞的信号传递会发生转变,从而导致细胞发生变化,预示着病理疾病的发生。内皮细胞新陈代谢是目前公认的支撑细胞转变的主要中间途径。在这篇综述中,我们将讨论内皮细胞在大血管、微血管和淋巴管中感受到的各种机械力,以及环境机械力的变化如何导致新陈代谢的变化,而新陈代谢的变化最终会影响细胞生理、细胞记忆,并最终影响疾病的发生和发展。
{"title":"Mechanical forces and metabolic changes cooperate to drive cellular memory and endothelial phenotypes.","authors":"Jin Li, Yun Fang, David Wu","doi":"10.1016/bs.ctm.2021.07.003","DOIUrl":"10.1016/bs.ctm.2021.07.003","url":null,"abstract":"<p><p>Endothelial cells line the innermost layer of arterial, venous, and lymphatic vascular tree and accordingly are subject to hemodynamic, stretch, and stiffness mechanical forces. Normally quiescent, endothelial cells have a hemodynamic set point and become \"activated\" in response to disturbed hemodynamics, which may signal impending nutrient or gas depletion. Endothelial cells in the majority of tissue beds are normally inactivated and maintain vessel barrier functions, are anti-inflammatory, anti-coagulant, and anti-thrombotic. However, under aberrant mechanical forces, endothelial signaling transforms in response, resulting cellular changes that herald pathological diseases. Endothelial cell metabolism is now recognized as the primary intermediate pathway that undergirds cellular transformation. In this review, we discuss the various mechanical forces endothelial cells sense in the large vessels, microvasculature, and lymphatics, and how changes in environmental mechanical forces result in changes in metabolism, which ultimately influence cell physiology, cellular memory, and ultimately disease initiation and progression.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"199-253"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639155/pdf/nihms-1758401.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39558573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SWI/SNF (BAF) complexes: From framework to a functional role in endothelial mechanotransduction. SWI/SNF (BAF)复合物:从框架到内皮机械转导的功能作用。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-01-01 Epub Date: 2021-10-09 DOI: 10.1016/bs.ctm.2021.09.006
Sandeep Kumar

Endothelial cells (ECs) are constantly subjected to an array of mechanical cues, especially shear stress, due to their luminal placement in the blood vessels. Blood flow can regulate various aspects of endothelial biology and pathophysiology by regulating the endothelial processes at the transcriptomic, proteomic, miRNomic, metabolomics, and epigenomic levels. ECs sense, respond, and adapt to altered blood flow patterns and shear profiles by specialized mechanisms of mechanosensing and mechanotransduction, resulting in qualitative and quantitative differences in their gene expression. Chromatin-regulatory proteins can regulate transcriptional activation by modifying the organization of nucleosomes at promoters, enhancers, silencers, insulators, and locus control regions. Recent research efforts have illustrated that SWI/SNF (SWItch/Sucrose Non-Fermentable) or BRG1/BRM-associated factor (BAF) complex regulates DNA accessibility and chromatin structure. Since the discovery, the gene-regulatory mechanisms of the BAF complex associated with chromatin remodeling have been intensively studied to investigate its role in diverse disease phenotypes. Thus far, it is evident that (1) the SWI/SNF complex broadly regulates the activity of transcriptional enhancers to control lineage-specific differentiation and (2) mutations in the BAF complex proteins lead to developmental disorders and cancers. It is unclear if blood flow can modulate the activity of SWI/SNF complex to regulate EC differentiation and reprogramming. This review emphasizes the integrative role of SWI/SNF complex from a structural and functional standpoint with a special reference to cardiovascular diseases (CVDs). The review also highlights how regulation of this complex by blood flow can lead to the discovery of new therapeutic interventions for the treatment of endothelial dysfunction in vascular diseases.

内皮细胞(ECs)由于位于血管腔内,因此经常受到一系列机械因素的影响,尤其是剪切应力。血流可以通过在转录组学、蛋白质组学、miRNomic、代谢组学和表观基因组水平上调节内皮过程,从而调节内皮生物学和病理生理学的各个方面。ECs通过机械传感和机械转导的特殊机制感知、响应和适应改变的血流模式和剪切剖面,从而导致其基因表达的定性和定量差异。染色质调节蛋白可以通过改变核小体启动子、增强子、沉默子、绝缘子和基因座控制区的组织来调节转录激活。最近的研究表明,SWI/SNF (SWItch/ sugar Non-Fermentable)或BRG1/BRM-associated factor (BAF)复合物调节DNA可及性和染色质结构。自发现以来,人们对与染色质重塑相关的BAF复合物的基因调控机制进行了深入研究,以探讨其在多种疾病表型中的作用。到目前为止,很明显:(1)SWI/SNF复合物广泛调节转录增强子的活性以控制谱系特异性分化;(2)BAF复合物蛋白的突变导致发育障碍和癌症。目前尚不清楚血流是否可以调节SWI/SNF复合物的活性来调节EC的分化和重编程。本文从结构和功能的角度强调SWI/SNF复合物的综合作用,并特别提到心血管疾病(cvd)。该综述还强调了如何通过血流调节这种复合物,从而发现治疗血管疾病中内皮功能障碍的新治疗干预措施。
{"title":"SWI/SNF (BAF) complexes: From framework to a functional role in endothelial mechanotransduction.","authors":"Sandeep Kumar","doi":"10.1016/bs.ctm.2021.09.006","DOIUrl":"https://doi.org/10.1016/bs.ctm.2021.09.006","url":null,"abstract":"<p><p>Endothelial cells (ECs) are constantly subjected to an array of mechanical cues, especially shear stress, due to their luminal placement in the blood vessels. Blood flow can regulate various aspects of endothelial biology and pathophysiology by regulating the endothelial processes at the transcriptomic, proteomic, miRNomic, metabolomics, and epigenomic levels. ECs sense, respond, and adapt to altered blood flow patterns and shear profiles by specialized mechanisms of mechanosensing and mechanotransduction, resulting in qualitative and quantitative differences in their gene expression. Chromatin-regulatory proteins can regulate transcriptional activation by modifying the organization of nucleosomes at promoters, enhancers, silencers, insulators, and locus control regions. Recent research efforts have illustrated that SWI/SNF (SWItch/Sucrose Non-Fermentable) or BRG1/BRM-associated factor (BAF) complex regulates DNA accessibility and chromatin structure. Since the discovery, the gene-regulatory mechanisms of the BAF complex associated with chromatin remodeling have been intensively studied to investigate its role in diverse disease phenotypes. Thus far, it is evident that (1) the SWI/SNF complex broadly regulates the activity of transcriptional enhancers to control lineage-specific differentiation and (2) mutations in the BAF complex proteins lead to developmental disorders and cancers. It is unclear if blood flow can modulate the activity of SWI/SNF complex to regulate EC differentiation and reprogramming. This review emphasizes the integrative role of SWI/SNF complex from a structural and functional standpoint with a special reference to cardiovascular diseases (CVDs). The review also highlights how regulation of this complex by blood flow can lead to the discovery of new therapeutic interventions for the treatment of endothelial dysfunction in vascular diseases.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"171-198"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39560069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorescence-based sensing of the bioenergetic and physicochemical status of the cell. 荧光感应细胞的生物能量和物理化学状态。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-01-01 Epub Date: 2021-11-02 DOI: 10.1016/bs.ctm.2021.10.002
Luca Mantovanelli, Bauke F Gaastra, Bert Poolman

Fluorescence-based sensors play a fundamental role in biological research. These sensors can be based on fluorescent proteins, fluorescent probes or they can be hybrid systems. The availability of a very large dataset of fluorescent molecules, both genetically encoded and synthetically produced, together with the structural insights on many sensing domains, allowed to rationally design a high variety of sensors, capable of monitoring both molecular and global changes in living cells or in in vitro systems. The advancements in the fluorescence-imaging field helped researchers to obtain a deeper understanding of how and where specific changes occur in a cell or in vitro by combining the readout of the fluorescent sensors with the spatial information provided by fluorescent microscopy techniques. In this review we give an overview of the state of the art in the field of fluorescent biosensors and fluorescence imaging techniques, and eventually guide the reader through the choice of the best combination of fluorescent tools and techniques to answer specific biological questions. We particularly focus on sensors for probing the bioenergetics and physicochemical status of the cell.

荧光传感器在生物学研究中起着重要作用。这些传感器可以基于荧光蛋白、荧光探针,也可以是混合系统。大量荧光分子数据集的可用性,包括遗传编码和合成,以及对许多传感领域的结构见解,允许合理设计各种各样的传感器,能够监测活细胞或体外系统中的分子和全局变化。荧光成像领域的进步帮助研究人员通过将荧光传感器的读数与荧光显微镜技术提供的空间信息相结合,更深入地了解细胞或体外特定变化的发生方式和位置。在这篇综述中,我们概述了荧光生物传感器和荧光成像技术领域的最新进展,并最终指导读者选择荧光工具和技术的最佳组合来回答特定的生物学问题。我们特别关注用于探测细胞的生物能量学和物理化学状态的传感器。
{"title":"Fluorescence-based sensing of the bioenergetic and physicochemical status of the cell.","authors":"Luca Mantovanelli,&nbsp;Bauke F Gaastra,&nbsp;Bert Poolman","doi":"10.1016/bs.ctm.2021.10.002","DOIUrl":"https://doi.org/10.1016/bs.ctm.2021.10.002","url":null,"abstract":"<p><p>Fluorescence-based sensors play a fundamental role in biological research. These sensors can be based on fluorescent proteins, fluorescent probes or they can be hybrid systems. The availability of a very large dataset of fluorescent molecules, both genetically encoded and synthetically produced, together with the structural insights on many sensing domains, allowed to rationally design a high variety of sensors, capable of monitoring both molecular and global changes in living cells or in in vitro systems. The advancements in the fluorescence-imaging field helped researchers to obtain a deeper understanding of how and where specific changes occur in a cell or in vitro by combining the readout of the fluorescent sensors with the spatial information provided by fluorescent microscopy techniques. In this review we give an overview of the state of the art in the field of fluorescent biosensors and fluorescence imaging techniques, and eventually guide the reader through the choice of the best combination of fluorescent tools and techniques to answer specific biological questions. We particularly focus on sensors for probing the bioenergetics and physicochemical status of the cell.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"1-54"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39690556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
"Enhancing" mechanosensing: Enhancers and enhancer-derived long non-coding RNAs in endothelial response to flow. "增强 "机械传感:内皮细胞对血流反应中的增强子和增强子衍生的长非编码 RNA。
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-01-01 Epub Date: 2021-09-21 DOI: 10.1016/bs.ctm.2021.08.002
Zhen Bouman Chen, Xuejing Liu, Aleysha T Chen

Endothelial cells (ECs), uniquely localized and strategically forming the inner lining of vascular wall, constitute the largest cell surface by area in the human body. The dynamic sensing and response of ECs to mechanical cues, especially shear stress, is crucial for maintenance of vascular homeostasis. It is well recognized that different flow patterns associated with atheroprotective vs atheroprone regions in the arterial tree, result in distinct EC functional phenotypes with differential transcriptome profiles. Mounting evidence has demonstrated an integrative and essential regulatory role of non-coding genome in EC biology. In particular, recent studies have begun to reveal the importance of enhancers and enhancer-derived transcripts in flow-regulated EC gene expression and function. In this minireview, we summarize studies in this area and discuss examples in support of the emerging importance of enhancers and enhancer(-derived) long non-coding RNAs (elncRNAs) in EC mechanosensing, with a focus on flow-responsive EC transcription. Finally, we will provide perspective and discuss standing questions to elucidate the role of these novel regulators in EC mechanobiology.

内皮细胞(ECs)具有独特的定位和战略地位,构成了血管壁的内衬,是人体面积最大的细胞表面。内皮细胞对机械信号(尤其是剪切应力)的动态感应和反应对维持血管平衡至关重要。众所周知,动脉树中动脉粥样硬化保护区与动脉粥样硬化易发区相关的不同流动模式会导致不同的 EC 功能表型和不同的转录组特征。越来越多的证据表明,非编码基因组在心血管细胞生物学中起着重要的综合调控作用。特别是,最近的研究已开始揭示增强子和增强子衍生转录本在血流调控的心血管细胞基因表达和功能中的重要性。在本小视图中,我们将总结这一领域的研究,并讨论支持增强子和增强子(衍生)长非编码 RNAs(elncRNAs)在欧共体机械传感中新出现的重要性的实例,重点关注欧共体的流动响应转录。最后,我们将从不同角度探讨这些新型调控因子在心肌机械生物学中的作用,并讨论有待解决的问题。
{"title":"\"Enhancing\" mechanosensing: Enhancers and enhancer-derived long non-coding RNAs in endothelial response to flow.","authors":"Zhen Bouman Chen, Xuejing Liu, Aleysha T Chen","doi":"10.1016/bs.ctm.2021.08.002","DOIUrl":"10.1016/bs.ctm.2021.08.002","url":null,"abstract":"<p><p>Endothelial cells (ECs), uniquely localized and strategically forming the inner lining of vascular wall, constitute the largest cell surface by area in the human body. The dynamic sensing and response of ECs to mechanical cues, especially shear stress, is crucial for maintenance of vascular homeostasis. It is well recognized that different flow patterns associated with atheroprotective vs atheroprone regions in the arterial tree, result in distinct EC functional phenotypes with differential transcriptome profiles. Mounting evidence has demonstrated an integrative and essential regulatory role of non-coding genome in EC biology. In particular, recent studies have begun to reveal the importance of enhancers and enhancer-derived transcripts in flow-regulated EC gene expression and function. In this minireview, we summarize studies in this area and discuss examples in support of the emerging importance of enhancers and enhancer(-derived) long non-coding RNAs (elncRNAs) in EC mechanosensing, with a focus on flow-responsive EC transcription. Finally, we will provide perspective and discuss standing questions to elucidate the role of these novel regulators in EC mechanobiology.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"153-169"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39560068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular Mechanotransduction Mechanisms in Cardiovascular and Fibrotic Diseases 心血管和纤维化疾病的细胞机械转导机制
4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-01-01 DOI: 10.1016/s1063-5823(21)x0002-6
{"title":"Cellular Mechanotransduction Mechanisms in Cardiovascular and Fibrotic Diseases","authors":"","doi":"10.1016/s1063-5823(21)x0002-6","DOIUrl":"https://doi.org/10.1016/s1063-5823(21)x0002-6","url":null,"abstract":"","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"56450539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Current topics in membranes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1