The advent of single-cell cytometric technologies, in conjunction with advances in single-cell biology, has significantly propelled forward the field of geroscience, enhancing our comprehension of the mechanisms underlying age-related diseases. Given that aging is a primary risk factor for numerous chronic health conditions, investigating the dynamic changes within the physiological landscape at the granularity of single cells is crucial for elucidating the molecular foundations of biological aging. Utilizing hallmarks of aging as a conceptual framework, we review current literature to delineate the progression of single-cell cytometric techniques and their pivotal applications in the exploration of molecular alterations associated with aging. We next discuss recent advancements in single-cell cytometry in terms of the development in instrument, software, and reagents, highlighting its promising and critical role in driving future breakthrough discoveries in aging research.
{"title":"Deciphering the aging process through single-cell cytometric technologies","authors":"Lok Ming Tam, Timothy Bushnell","doi":"10.1002/cyto.a.24852","DOIUrl":"10.1002/cyto.a.24852","url":null,"abstract":"<p>The advent of single-cell cytometric technologies, in conjunction with advances in single-cell biology, has significantly propelled forward the field of geroscience, enhancing our comprehension of the mechanisms underlying age-related diseases. Given that aging is a primary risk factor for numerous chronic health conditions, investigating the dynamic changes within the physiological landscape at the granularity of single cells is crucial for elucidating the molecular foundations of biological aging. Utilizing hallmarks of aging as a conceptual framework, we review current literature to delineate the progression of single-cell cytometric techniques and their pivotal applications in the exploration of molecular alterations associated with aging. We next discuss recent advancements in single-cell cytometry in terms of the development in instrument, software, and reagents, highlighting its promising and critical role in driving future breakthrough discoveries in aging research.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"105 8","pages":"621-638"},"PeriodicalIF":2.5,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dan Hou, Jiehua Zhou, Ruidong Xiao, Kaining Yang, Yan Ding, Du Wang, Guoqiang Wu, Cheng Lei
Optofluidic time-stretch imaging flow cytometry (OTS-IFC) provides a suitable solution for high-precision cell analysis and high-sensitivity detection of rare cells due to its high-throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a challenge. In this study, we designed a high-speed streaming storage strategy to store OTS-IFC data in real-time, overcoming the imbalance between the fast generation speed in the data acquisition and processing subsystem and the comparatively slower storage speed in the transmission and storage subsystem. This strategy, utilizing an asynchronous buffer structure built on the producer-consumer model, optimizes memory usage for enhanced data throughput and stability. We evaluated the storage performance of the high-speed streaming storage strategy in ultra-large-scale blood cell imaging on a common commercial device. The experimental results show that it can provide a continuous data throughput of up to 5891 MB/s.
{"title":"Optofluidic time-stretch imaging flow cytometry with a real-time storage rate beyond 5.9 GB/s","authors":"Dan Hou, Jiehua Zhou, Ruidong Xiao, Kaining Yang, Yan Ding, Du Wang, Guoqiang Wu, Cheng Lei","doi":"10.1002/cyto.a.24854","DOIUrl":"10.1002/cyto.a.24854","url":null,"abstract":"<p>Optofluidic time-stretch imaging flow cytometry (OTS-IFC) provides a suitable solution for high-precision cell analysis and high-sensitivity detection of rare cells due to its high-throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a challenge. In this study, we designed a high-speed streaming storage strategy to store OTS-IFC data in real-time, overcoming the imbalance between the fast generation speed in the data acquisition and processing subsystem and the comparatively slower storage speed in the transmission and storage subsystem. This strategy, utilizing an asynchronous buffer structure built on the producer-consumer model, optimizes memory usage for enhanced data throughput and stability. We evaluated the storage performance of the high-speed streaming storage strategy in ultra-large-scale blood cell imaging on a common commercial device. The experimental results show that it can provide a continuous data throughput of up to 5891 MB/s.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"105 9","pages":"713-721"},"PeriodicalIF":2.5,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Volume 105A, Number 5, May 2024 Cover Image","authors":"","doi":"10.1002/cyto.a.24750","DOIUrl":"10.1002/cyto.a.24750","url":null,"abstract":"","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"105 5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.24750","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141035116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}