Qinyue Jiang, Ciska Lindelauf, Vincent van Unen, Andrea E. van der Meulen-de Jong, Frits Koning, M. Fernanda Pascutti
We have developed a 37-color spectral flow cytometry panel to assess the phenotypical differentiation of innate and adaptive immune lymphoid subsets within human intestinal tissue. In addition to lineage markers for identifying innate lymphoid cells (ILC), TCRγδ, MAIT (mucosal-associated invariant T), natural killer (NK), CD4+ and CD8+ T cells, we incorporated markers of differentiation and activation (CD45RA, CD45RO, CD25, CD27, CD38, CD39, CD69, CD103, CD127, CD161, HLA-DR, CTLA-4 [CD152]), alongside transcription factors (Bcl-6, FoxP3, GATA-3, Helios, T-bet, PU.1 and RORγt) and chemokine receptors (CCR4, CCR6, CCR7, CXCR3, and CXCR5). Additionally, Granzyme B and Ki-67 were included to assess cytotoxicity and proliferation potential of the different subsets. This panel is currently used for in-depth immunophenotyping in endoscopic biopsies and peripheral blood mononuclear cells (PBMC) from inflammatory bowel disease (IBD) patients. Distinguished from other OMIP papers, the comprehensive detection of both transcription factors and chemokine receptors facilitates the efficient assessment of several subsets, particularly CD4+ T helper cells, and its potential application extends to both tissue and circulation.
{"title":"OMIP-110: A 37-Color Spectral Flow Cytometric Panel to Assess Transcription Factors and Chemokine Receptors in Human Intestinal Lymphoid Cells","authors":"Qinyue Jiang, Ciska Lindelauf, Vincent van Unen, Andrea E. van der Meulen-de Jong, Frits Koning, M. Fernanda Pascutti","doi":"10.1002/cyto.a.24914","DOIUrl":"10.1002/cyto.a.24914","url":null,"abstract":"<p>We have developed a 37-color spectral flow cytometry panel to assess the phenotypical differentiation of innate and adaptive immune lymphoid subsets within human intestinal tissue. In addition to lineage markers for identifying innate lymphoid cells (ILC), TCRγδ, MAIT (mucosal-associated invariant T), natural killer (NK), CD4<sup>+</sup> and CD8<sup>+</sup> T cells, we incorporated markers of differentiation and activation (CD45RA, CD45RO, CD25, CD27, CD38, CD39, CD69, CD103, CD127, CD161, HLA-DR, CTLA-4 [CD152]), alongside transcription factors (Bcl-6, FoxP3, GATA-3, Helios, T-bet, PU.1 and RORγt) and chemokine receptors (CCR4, CCR6, CCR7, CXCR3, and CXCR5). Additionally, Granzyme B and Ki-67 were included to assess cytotoxicity and proliferation potential of the different subsets. This panel is currently used for in-depth immunophenotyping in endoscopic biopsies and peripheral blood mononuclear cells (PBMC) from inflammatory bowel disease (IBD) patients. Distinguished from other OMIP papers, the comprehensive detection of both transcription factors and chemokine receptors facilitates the efficient assessment of several subsets, particularly CD4<sup>+</sup> T helper cells, and its potential application extends to both tissue and circulation.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"107 1","pages":"9-35"},"PeriodicalIF":2.5,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.24914","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard E. Cavicchi, Dean C. Ripple, Joshua A. Welsh, Jerilyn R. Izac, Alexander W. Peterson, Aaron M. Goldfain, Wyatt N. Vreeland
An emulsion of silicone oil droplets in aqueous buffer produces a distinctive series of peaks or resonances in the side scatter histogram in a flow cytometer. As many as 12 peaks are observed in the violet-side scatter channel at 405 nm, with half that number observed in the blue side scatter channel at 488 nm. Using the index of refraction of the oil and buffer, the wavelength of light, and the collection angle and gain of the instrument, we assign the peaks to specific diameters at which Mie resonances occur. With the close match for the index of refraction of silicone oil (n = 1.417 at 405 nm) to biological materials, these resonances could form the basis of a finely spaced size calibration ladder in the range 0.5–6 μm for estimating the size of biological particles in a flow cytometer. Resonances were also observed using mineral oil (n = 1.483 at 405 nm) suggesting that investigating and modeling resonances for emulsion systems may be useful for understanding these systems.
{"title":"Measuring the size of oil droplets in a flow cytometer using Mie resonances: A possible size calibration ladder for 0.5–6 μm","authors":"Richard E. Cavicchi, Dean C. Ripple, Joshua A. Welsh, Jerilyn R. Izac, Alexander W. Peterson, Aaron M. Goldfain, Wyatt N. Vreeland","doi":"10.1002/cyto.a.24912","DOIUrl":"10.1002/cyto.a.24912","url":null,"abstract":"<p>An emulsion of silicone oil droplets in aqueous buffer produces a distinctive series of peaks or resonances in the side scatter histogram in a flow cytometer. As many as 12 peaks are observed in the violet-side scatter channel at 405 nm, with half that number observed in the blue side scatter channel at 488 nm. Using the index of refraction of the oil and buffer, the wavelength of light, and the collection angle and gain of the instrument, we assign the peaks to specific diameters at which Mie resonances occur. With the close match for the index of refraction of silicone oil (<i>n</i> = 1.417 at 405 nm) to biological materials, these resonances could form the basis of a finely spaced size calibration ladder in the range 0.5–6 μm for estimating the size of biological particles in a flow cytometer. Resonances were also observed using mineral oil (<i>n</i> = 1.483 at 405 nm) suggesting that investigating and modeling resonances for emulsion systems may be useful for understanding these systems.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"107 1","pages":"45-53"},"PeriodicalIF":2.5,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.24912","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}