首页 > 最新文献

Day 2 Wed, October 30, 2019最新文献

英文 中文
Philosophy of EOR 提高采收率的理念
Pub Date : 2019-10-25 DOI: 10.2118/196362-ms
T. Babadagli
This paper seeks answers, through a ‘philosophical’ approach, to the questions of whether enhanced oil recovery projects are purely driven by economic restrictions (i.e. oil prices) or if there are still technical issues to be considered, making companies refrain from enhanced oil recovery (EOR) applications. Another way of approaching these questions is to ask why some EOR projects are successful and long-lasting regardless of substantial fluctuations in oil prices. To find solid answers to these two, by ‘philosophical’ reasoning, further questions were raised including: (1) has sufficient attention been given to the ‘cheapest’ EOR methods such as air and microbial injection, (2) why are we afraid of the most expensive miscible processes that yield high recoveries in the long run, or (3) why is the incubation period (research to field) of EOR projects so lengthy? After a detailed analysis using sustainable EOR example cases and identifying the myths and facts about EOR, both answers to these questions and supportive data were sought. Premises were listed as outcomes to be considered in the decision making and development of EOR projects. Examples of said considerations include: (1) Every EOR process is case-specific and analogies are difficult to make, hence we still need serious efforts for project design and research for specific processes and technologies, (2) discontinuity in fundamental and case-specific research has been one of the essential reasons preventing the continuity of the projects rather than drops in oil prices, and (3) any EOR project can be made economical, if technical success is proven, through proper optimization methods and continuous project monitoring whilst considering the minimal profit that the company can tolerate. Finally, through the ‘philosophical’ reasoning approach and using worldwide successful EOR cases, the following three parameters were found to be the most important factors in running successful EOR applications, regardless of oil prices and risky investment costs, to extend the life span of the reservoir and warrant both short and long-term profit: (1) Proper technical design and implementation of the selected EOR method through continuous monitoring and re-engineering the project (how to apply more than what to apply), (2) good reservoir characterization and geological descriptions and their effect on the mechanics of the EOR process, and (3) paying attention to experience and expertise (human factor). It is believed that the systematic analysis and philosophical approach followed in this paper and the outcome will provide proper guidance to EOR projects for upcoming decades.
本文通过“哲学”的方法来寻求答案,以解决提高采收率项目是否纯粹受到经济限制(即油价)的驱动,或者是否仍然存在需要考虑的技术问题,使公司避免提高采收率(EOR)应用。解决这些问题的另一种方法是问为什么一些EOR项目在油价大幅波动的情况下仍然成功且持久。为了找到这两个问题的可靠答案,通过“哲学”推理,提出了进一步的问题,包括:(1)是否对“最便宜”的提高采收率方法(如空气和微生物注射)给予了足够的关注,(2)为什么我们害怕最昂贵的混相工艺,从长远来看可以产生高回收率,或者(3)为什么提高采收率项目的潜伏期(从研究到现场)如此之长?在详细分析了可持续提高采收率的案例,并确定了有关提高采收率的神话和事实之后,我们寻求了这些问题的答案和支持性数据。在EOR项目的决策和开发中,房舍被列为要考虑的结果。上述考虑因素的例子包括:(1)每一种提高采收率工艺都是个案化的,很难进行类比,因此我们仍然需要认真地对具体的工艺和技术进行项目设计和研究;(2)基础和个案研究的不连续性一直是阻碍项目连续性而不是油价下降的重要原因之一;(3)任何提高采收率项目都可以在技术成功的情况下实现经济效益。通过适当的优化方法和持续的项目监控,同时考虑到公司可以承受的最小利润。最后,通过“哲学”推理方法和使用世界范围内成功的EOR案例,发现以下三个参数是成功进行EOR应用的最重要因素,无论油价和风险投资成本如何,都可以延长油藏的使用寿命,并保证短期和长期的利润。(1)通过持续监测和重新设计项目,对所选的提高采收率方法进行适当的技术设计和实施(如何应用比应用什么更多);(2)良好的储层表征和地质描述及其对提高采收率过程机理的影响;(3)注重经验和专业知识(人为因素)。相信本文所采用的系统分析和哲学方法及其结果将为未来几十年的提高采收率项目提供适当的指导。
{"title":"Philosophy of EOR","authors":"T. Babadagli","doi":"10.2118/196362-ms","DOIUrl":"https://doi.org/10.2118/196362-ms","url":null,"abstract":"\u0000 This paper seeks answers, through a ‘philosophical’ approach, to the questions of whether enhanced oil recovery projects are purely driven by economic restrictions (i.e. oil prices) or if there are still technical issues to be considered, making companies refrain from enhanced oil recovery (EOR) applications. Another way of approaching these questions is to ask why some EOR projects are successful and long-lasting regardless of substantial fluctuations in oil prices. To find solid answers to these two, by ‘philosophical’ reasoning, further questions were raised including: (1) has sufficient attention been given to the ‘cheapest’ EOR methods such as air and microbial injection, (2) why are we afraid of the most expensive miscible processes that yield high recoveries in the long run, or (3) why is the incubation period (research to field) of EOR projects so lengthy? After a detailed analysis using sustainable EOR example cases and identifying the myths and facts about EOR, both answers to these questions and supportive data were sought.\u0000 Premises were listed as outcomes to be considered in the decision making and development of EOR projects. Examples of said considerations include: (1) Every EOR process is case-specific and analogies are difficult to make, hence we still need serious efforts for project design and research for specific processes and technologies, (2) discontinuity in fundamental and case-specific research has been one of the essential reasons preventing the continuity of the projects rather than drops in oil prices, and (3) any EOR project can be made economical, if technical success is proven, through proper optimization methods and continuous project monitoring whilst considering the minimal profit that the company can tolerate.\u0000 Finally, through the ‘philosophical’ reasoning approach and using worldwide successful EOR cases, the following three parameters were found to be the most important factors in running successful EOR applications, regardless of oil prices and risky investment costs, to extend the life span of the reservoir and warrant both short and long-term profit: (1) Proper technical design and implementation of the selected EOR method through continuous monitoring and re-engineering the project (how to apply more than what to apply), (2) good reservoir characterization and geological descriptions and their effect on the mechanics of the EOR process, and (3) paying attention to experience and expertise (human factor).\u0000 It is believed that the systematic analysis and philosophical approach followed in this paper and the outcome will provide proper guidance to EOR projects for upcoming decades.","PeriodicalId":11089,"journal":{"name":"Day 2 Wed, October 30, 2019","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74906500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
期刊
Day 2 Wed, October 30, 2019
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1