Neural crest cells are a transient cell population that emerges from the dorsal neural tube during neurulation and migrates extensively throughout the embryo. Among their diverse derivatives, glial cells (such as Schwann and satellite ganglionic cells) and melanocytes represent two major lineages. In vitro studies suggested they share a common progenitor yet follow distinct differentiation pathways. Hence, neural crest cells must choose between glia and melanocyte fates-a decision crucial for forming the peripheral nervous and pigmentary systems. A groundbreaking discovery revealed that Schwann cell precursors along peripheral nerves serve as a secondary source of melanocytes during development. This finding challenged the traditional view that melanocytes arise exclusively from direct neural crest migration and demonstrated remarkable plasticity in the glial lineage. This glia/melanocyte fate choice represents a well-characterized example of binary fate decisions in vertebrate development, involving complex interactions between transcriptional networks, signaling pathways, and environmental cues. Importantly, the glia/melanocyte decision has implications for cancer and injury-induced plasticity, where embryonic pathways may be reactivated. For example, during melanomagenesis, cells can exhibit both melanocytic and glial features. Understanding how neural crest cells decide between glial and melanocyte fates may offer new insights for regenerative medicine and cancer therapy.