Brielle Patlin, Yongjun Yin, Ling Li, David M Ornitz
Background: Mean linear intercept (MLI) is a method of evaluating lung structure and pathology that is widely used in clinical and research settings. Unfortunately, no widely available software for automation of this process is available, and many clinicians and scientists still perform these measurements manually.
Results: To increase the speed and accuracy of obtaining MLI measurements, we have developed a macro for Fiji is just ImageJ (Fiji) to semi-automate the acquisition of these measurements. Twenty to 25 images from each of 43 mouse lungs, a total of 1042 images, were analyzed manually and by macro (automated) to validate the accuracy of the MLI macro. No significant difference was recorded between the manual and automated methods in mouse lung tissue of either different age (P14, P21, 8 weeks) or different condition (healthy vs. emphysema). Optimization of MLI macro parameters showed that additional measurements beyond three lines per image did not further improve accuracy. We also provide an Excel macro that summarizes the airspace data for each image and averages all the image data in a given batch of images.
Conclusion: This Fiji macro can be used to automate MLI measurement in histological sections of lung tissue faster and with lower variance.
背景:平均线性截距(MLI)是一种评估肺结构和病理的方法,广泛应用于临床和研究环境。不幸的是,没有广泛可用的软件来自动化这一过程,许多临床医生和科学家仍然手动执行这些测量。结果:为了提高获得MLI测量值的速度和准确性,我们为Fiji is just ImageJ (Fiji)开发了一个宏来实现这些测量值的半自动化获取。43个小鼠肺各20 - 25张图像,共1042张图像,通过手动和宏(自动)分析来验证MLI宏的准确性。在不同年龄(P14, P21, 8周)或不同状况(健康与肺气肿)的小鼠肺组织中,手工方法和自动方法没有显著差异。MLI宏参数的优化表明,每幅图像超过三行额外的测量不能进一步提高精度。我们还提供了一个Excel宏,它总结了每个图像的空域数据,并在给定的一批图像中平均所有图像数据。结论:斐济宏可用于肺组织组织学切片MLI自动测量,速度快,方差小。
{"title":"Easily adaptable Fiji macro for mean linear intercept measurement of peripheral respiratory airspace.","authors":"Brielle Patlin, Yongjun Yin, Ling Li, David M Ornitz","doi":"10.1002/dvdy.70078","DOIUrl":"10.1002/dvdy.70078","url":null,"abstract":"<p><strong>Background: </strong>Mean linear intercept (MLI) is a method of evaluating lung structure and pathology that is widely used in clinical and research settings. Unfortunately, no widely available software for automation of this process is available, and many clinicians and scientists still perform these measurements manually.</p><p><strong>Results: </strong>To increase the speed and accuracy of obtaining MLI measurements, we have developed a macro for Fiji is just ImageJ (Fiji) to semi-automate the acquisition of these measurements. Twenty to 25 images from each of 43 mouse lungs, a total of 1042 images, were analyzed manually and by macro (automated) to validate the accuracy of the MLI macro. No significant difference was recorded between the manual and automated methods in mouse lung tissue of either different age (P14, P21, 8 weeks) or different condition (healthy vs. emphysema). Optimization of MLI macro parameters showed that additional measurements beyond three lines per image did not further improve accuracy. We also provide an Excel macro that summarizes the airspace data for each image and averages all the image data in a given batch of images.</p><p><strong>Conclusion: </strong>This Fiji macro can be used to automate MLI measurement in histological sections of lung tissue faster and with lower variance.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145039419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Janine M Ziermann-Canabarro, Julia C Boughner, Kristen N McPike
Background: During vertebrate development, p53 family members (p53, p63, and p73) play both discrete and redundant roles. While p63 gene mutations lead to various skeletal and organ birth defects, p63's role in muscle development is less considered. Muscles derive from embryonic mesoderm. However, head and heart muscle differentiation also depends on intrinsic cues and signals from adjacent epithelia. In p63 mutant mice, ectoderm- and endoderm-derived epithelia are defective, implying defective myogenesis. We review the evidence that p63 is important for the differentiation of striated muscles, including cardiopharyngeal field-derived head and heart musculature.
Results: Several p63 isoforms act during mesoderm induction, myoblast proliferation, cell cycle exit, and cell differentiation. Of particular interest, TAp63γ is expressed in embryonic myoblasts and endoderm. In striated muscles, TAp63γ functions in myogenic proliferation and differentiation and participates in sarcomere development and myofibril assembly.
Conclusions: p63 is active during all muscle development stages, from mesoderm induction to myocyte differentiation. Different p53 family members, including several p63 isoforms, have overlapping functions. This redundancy could explain the limited myopathies described in p63 mouse mutants. As these defects may be subtler and more age/stage-dependent than appreciated, they warrant further study.
{"title":"Role of p53 family members during development of striated muscle, with focus on p63.","authors":"Janine M Ziermann-Canabarro, Julia C Boughner, Kristen N McPike","doi":"10.1002/dvdy.70077","DOIUrl":"https://doi.org/10.1002/dvdy.70077","url":null,"abstract":"<p><strong>Background: </strong>During vertebrate development, p53 family members (p53, p63, and p73) play both discrete and redundant roles. While p63 gene mutations lead to various skeletal and organ birth defects, p63's role in muscle development is less considered. Muscles derive from embryonic mesoderm. However, head and heart muscle differentiation also depends on intrinsic cues and signals from adjacent epithelia. In p63 mutant mice, ectoderm- and endoderm-derived epithelia are defective, implying defective myogenesis. We review the evidence that p63 is important for the differentiation of striated muscles, including cardiopharyngeal field-derived head and heart musculature.</p><p><strong>Results: </strong>Several p63 isoforms act during mesoderm induction, myoblast proliferation, cell cycle exit, and cell differentiation. Of particular interest, TAp63γ is expressed in embryonic myoblasts and endoderm. In striated muscles, TAp63γ functions in myogenic proliferation and differentiation and participates in sarcomere development and myofibril assembly.</p><p><strong>Conclusions: </strong>p63 is active during all muscle development stages, from mesoderm induction to myocyte differentiation. Different p53 family members, including several p63 isoforms, have overlapping functions. This redundancy could explain the limited myopathies described in p63 mouse mutants. As these defects may be subtler and more age/stage-dependent than appreciated, they warrant further study.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145039329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna K Leinheiser, Timothy T Nguyen, Kayla M Henry, Mariela Rosales, Eric Van Otterloo, Chad E Grueter
Background: Gene transcription is crucial for embryo and postnatal development and is regulated by the Mediator complex. Mediator is comprised of four submodules, including the kinase submodule (CKM). The CKM consists of MED13, MED12, CDK8, and CCNC. In mammals, there are paralogs for CKM components, including MED13L, MED12L, and CDK19. Neurological disorders have been associated with mutations in CKM genes including MED13L syndrome. MED13L syndrome is generally characterized as a haploinsufficiency of MED13L with a broad phenotypic response due in part to a wide range of de novo mutations.
Results: We developed a Med13l heterozygous (HET) mouse model with an exon 11 deletion to evaluate whether Med13l HET mice are a viable research tool to study human phenotypes. We characterized our mouse model using growth, cardiovascular, and skeletal readouts. We observed Med13l HET mice are smaller than wildtype (WT) littermates, and over 60% of them exhibited one of two craniofacial anomalies: a pug snout with midface hypoplasia or a crooked snout. We also observed discontinuous squamosal sutures in a subset of our Med13l HETs.
Conclusions: Med13l HET mice recapitulate MED13L syndrome phenotypes including a developmental growth delay and craniofacial anomalies. Med13l HET mice represent a novel research tool for MED13L syndrome.
{"title":"Heterozygous Med13l mice recapitulate a developmental growth delay and craniofacial anomalies seen in MED13L syndrome.","authors":"Anna K Leinheiser, Timothy T Nguyen, Kayla M Henry, Mariela Rosales, Eric Van Otterloo, Chad E Grueter","doi":"10.1002/dvdy.70079","DOIUrl":"10.1002/dvdy.70079","url":null,"abstract":"<p><strong>Background: </strong>Gene transcription is crucial for embryo and postnatal development and is regulated by the Mediator complex. Mediator is comprised of four submodules, including the kinase submodule (CKM). The CKM consists of MED13, MED12, CDK8, and CCNC. In mammals, there are paralogs for CKM components, including MED13L, MED12L, and CDK19. Neurological disorders have been associated with mutations in CKM genes including MED13L syndrome. MED13L syndrome is generally characterized as a haploinsufficiency of MED13L with a broad phenotypic response due in part to a wide range of de novo mutations.</p><p><strong>Results: </strong>We developed a Med13l heterozygous (HET) mouse model with an exon 11 deletion to evaluate whether Med13l HET mice are a viable research tool to study human phenotypes. We characterized our mouse model using growth, cardiovascular, and skeletal readouts. We observed Med13l HET mice are smaller than wildtype (WT) littermates, and over 60% of them exhibited one of two craniofacial anomalies: a pug snout with midface hypoplasia or a crooked snout. We also observed discontinuous squamosal sutures in a subset of our Med13l HETs.</p><p><strong>Conclusions: </strong>Med13l HET mice recapitulate MED13L syndrome phenotypes including a developmental growth delay and craniofacial anomalies. Med13l HET mice represent a novel research tool for MED13L syndrome.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145014121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>Every organism is a model organism for understanding development, evolution, disease, and regeneration, and we have only begun to scratch the surface of the interdisciplinary genetic, molecular, cellular, and developmental mechanisms that regulate these biological processes. These “Highlights” denote exciting advances recently reported in <i>Developmental Dynamics</i> that illustrate the complex dynamics of developmental biology.</p><p><b>Signaling in Organogenesis.</b> “The synergistic link between sonic hedgehog signaling pathway and gut–lung axis: Its influential role toward chronic obstructive pulmonary disease progression” by Nidhi Mahajan, Vishal Chopra, Kranti Garg, and Siddharth Sharma.<span><sup>1</sup></span> Chronic obstructive pulmonary disease (COPD) is a progressive heterogeneous lung disease characterized by obstructive airflow due to the abnormalities of bronchitis and alveoli. The etiology and pathogenesis of COPD is however, poorly understood due to the complexity of the multitude of mechanisms involved, including gene–environment interactions, abnormal lung development, lung dysfunction, psychological distress, muscle dysfunction, and other comorbid diseases. Smoking is a key driver of the pathogenesis of COPD via the aberrant activation of SHH signaling which regulates epithelial and mesenchymal transition (EMT) in the airways. This review describes the role of SHH signaling during lung development and its dysregulation in association with the clinical features of COPD pathogenesis. The authors also link the effects of nicotine on SHH signaling and discuss a surprising link between microbiota and the gut–lung axis on COPD pathogenesis.</p><p><b>Tooth Development.</b> “Endocytosis mediated by megalin and cubilin is involved in enamel development” by Aijia Wang, Yangxi Chen, Xinye Zhang, Ming Liu, Shumin Liu, Renata Kozyraki, and Zhi Chen.<span><sup>2</sup></span> Amelogenesis is the process of forming tooth enamel, a highly mineralized tissue. Amelogenesis consists of a secretory stage and maturation stage, and endocytosis of enamel matrix proteins by ameloblasts during the maturation stage is critical for the mineralization of enamel. This study set out to discover the receptors that mediate endocytosis of enamel matrix proteins. Megalin and cubilin, two known endocytic receptors, are expressed by ameloblasts in mouse incisors and molars during the secretory and maturation stages of amelogenesis, but megalin was more specifically localized to the vesicle structures in an ameloblast lineage cell line. Inhibition of megalin and cubilin by receptor-associated protein (RAP) resulted in reduced the absorption of amelogenin, illustrating their key roles in amelogenesis. Megalin and cubilin function in the recycling of amelogenin during the maturation stage of amelogenesis and may contribute to the subsequent mineralization of mature enamel.</p><p><b>WNT Signaling and the Evolution of Multicellularity.</b> “β-Catenin localization
每一种生物都是理解发育、进化、疾病和再生的模式生物,而我们才刚刚开始触及调节这些生物过程的跨学科遗传、分子、细胞和发育机制的表面。这些“亮点”表示最近在《发育动力学》上报道的令人兴奋的进展,这些进展说明了发育生物学的复杂动力学。器官发生中的信号传导。Nidhi Mahajan、Vishal Chopra、Kranti Garg和Siddharth sharma发表的《sonic hedgehog信号通路与肠-肺轴之间的协同联系:其对慢性阻塞性肺疾病进展的影响》1慢性阻塞性肺疾病(COPD)是一种进行性异质性肺部疾病,以支气管炎和肺泡异常引起的气流阻塞为特征。然而,由于涉及多种复杂的机制,包括基因-环境相互作用、肺发育异常、肺功能障碍、心理困扰、肌肉功能障碍和其他合并症,COPD的病因和发病机制尚不清楚。吸烟是COPD发病机制的一个关键驱动因素,通过SHH信号的异常激活来调节气道上皮和间质转化(EMT)。本文综述了SHH信号在肺发育过程中的作用及其失调与COPD发病的临床特征的关系。作者还将尼古丁对SHH信号的影响联系起来,并讨论了微生物群和肠-肺轴在COPD发病机制中的惊人联系。牙齿发育。王爱家、陈杨喜、张新野、刘明、刘淑敏、Renata Kozyraki、陈智等发表的《megalin和cubilin介导的内噬作用参与牙釉质发育》。2釉质发生是牙釉质形成的过程,是一种高度矿化的组织。成釉发育分为分泌期和成熟期,成熟期成釉细胞对釉质基质蛋白的内吞作用是釉质矿化的关键。本研究旨在发现介导釉质基质蛋白内吞作用的受体。Megalin和cubilin是两种已知的内吞噬受体,在小鼠门牙和磨牙的成釉细胞在成釉发生的分泌和成熟阶段表达,但Megalin更特异性地定位于成釉细胞系细胞系的囊泡结构。受体相关蛋白(RAP)抑制meggalin和cubilin导致淀粉原蛋白吸收减少,说明它们在淀粉形成中的关键作用。Megalin和cubilin在成釉发育成熟阶段参与成釉原素的再循环,并可能参与成熟牙釉质的后续矿化。WNT信号传导与多细胞进化。由Brian Walters, Lucas Guttieres, Mayline Goëb, Stanley Marjenberg, Mark Martindale和Athula wikramanayak撰写的“β-连环蛋白在纤丝水母中定位表明其祖先在细胞粘附和细胞核功能中的作用”。3多细胞生物的起源是一个重大的进化事件,它将我们的单细胞祖先转变为由多种特化细胞类型组成的复杂生物体。但是,使这种转变发生的基本机制随后支撑了整个自然界动植物的进化和多样化。细胞粘附、细胞外基质相互作用、细胞间通讯和细胞命运规范等许多其他细胞过程都涉及其中,而WNT/β-catenin信号是许多这些过程的关键调节因子。在本研究中,作者报道了制备亲和纯化的兔多克隆抗体,靶向栉水母leidyi Mnemiopsis β-catenin蛋白,然后用它来测定该蛋白在栉水母胚胎早期发育过程中的亚细胞分布。本研究提供了β-连环蛋白在口腔极栉水母胚胎原肠胚形成过程中的核限制和细胞-细胞界面富集的证据。β-catenin的定位表明该蛋白在细胞粘附和细胞核功能中也具有祖先作用。因此,在后生动物最后的共同祖先中,WNT/β-catenin信号可能通过细胞-细胞粘附、细胞-细胞外基质相互作用、细胞-细胞通信和细胞命运规范的分配促进了细胞合作。肌肉的发展。Leif Neitzel、Maya Silver、Aaron Wasserman、Samantha Rea、Charles Hong和Charles williams发表的“斑马鱼细胞外酸化的一种新型转基因报告基因阐明了骨骼肌t小管pH调节”。4细胞外质子(H+)作为细胞间通讯的关键参与者正在获得认可,但它们在发育过程中的作用仍然知之甚少。 然而,细胞外pH值和质子感应的破坏会影响细胞和蛋白质功能,导致发育缺陷。测量细胞外质子历来受到技术限制的阻碍。因此,作者开发了一种新的转基因斑马鱼系Tg(ubi:pHluorin2-GPI),它无处不在地表达一个比例荧光pH传感器,通过糖基磷脂酰肌醇(GPI)锚定在质膜的细胞外表面。监测pHluorin2荧光揭示了细胞外酸化的动态和离散域,最明显的是在肌瘤的细胞外空间,pH值与t小管内的pH值非常不同。有趣的是,核中心性肌病基因Bin1b和MTM1的敲低会破坏t小管的形成,这与肌肌瘤酸化紊乱有关。因此,这条实时报告线可以阐明细胞外pH在正常生理发育和疾病发病机制中的作用。耳朵的发展。它至少有六个感觉器官,包括耳蜗、两个黄斑(耳室和囊)和三个壶腹嵴。这些结构包括机械感觉毛细胞和非感觉支持细胞,它们可能来自一个共同的祖先,但随后相互协调以维持听力和平衡。有趣的是,Gfi1敲除小鼠表现出行为缺陷,包括绕圈和对惊吓反应的脱敏,这两者都与内耳异常一致,最近,Gfi1被证明可以调节哺乳动物内耳毛细胞的成熟和维持。在这项研究中,作者使用了一种不同的Gfi1GFP敲入小鼠模型来跟踪新生儿耳蜗中毛细胞和支持细胞的命运,并与前庭进行比较。Gfi1的缺失导致听觉毛细胞减少,外部毛细胞比内部毛细胞受到的影响更大。然而,前庭毛细胞未受影响。有趣的是,Gfi1从未在支持细胞中表达,这表明Gfi1发挥了一种新的非自主细胞作用,影响耳蜗支持细胞的存活。因此,在内耳发育过程中,Gfi1在耳蜗和前庭中表现出不同的功能。
{"title":"Editorial highlights","authors":"Paul A. Trainor","doi":"10.1002/dvdy.70075","DOIUrl":"10.1002/dvdy.70075","url":null,"abstract":"<p>Every organism is a model organism for understanding development, evolution, disease, and regeneration, and we have only begun to scratch the surface of the interdisciplinary genetic, molecular, cellular, and developmental mechanisms that regulate these biological processes. These “Highlights” denote exciting advances recently reported in <i>Developmental Dynamics</i> that illustrate the complex dynamics of developmental biology.</p><p><b>Signaling in Organogenesis.</b> “The synergistic link between sonic hedgehog signaling pathway and gut–lung axis: Its influential role toward chronic obstructive pulmonary disease progression” by Nidhi Mahajan, Vishal Chopra, Kranti Garg, and Siddharth Sharma.<span><sup>1</sup></span> Chronic obstructive pulmonary disease (COPD) is a progressive heterogeneous lung disease characterized by obstructive airflow due to the abnormalities of bronchitis and alveoli. The etiology and pathogenesis of COPD is however, poorly understood due to the complexity of the multitude of mechanisms involved, including gene–environment interactions, abnormal lung development, lung dysfunction, psychological distress, muscle dysfunction, and other comorbid diseases. Smoking is a key driver of the pathogenesis of COPD via the aberrant activation of SHH signaling which regulates epithelial and mesenchymal transition (EMT) in the airways. This review describes the role of SHH signaling during lung development and its dysregulation in association with the clinical features of COPD pathogenesis. The authors also link the effects of nicotine on SHH signaling and discuss a surprising link between microbiota and the gut–lung axis on COPD pathogenesis.</p><p><b>Tooth Development.</b> “Endocytosis mediated by megalin and cubilin is involved in enamel development” by Aijia Wang, Yangxi Chen, Xinye Zhang, Ming Liu, Shumin Liu, Renata Kozyraki, and Zhi Chen.<span><sup>2</sup></span> Amelogenesis is the process of forming tooth enamel, a highly mineralized tissue. Amelogenesis consists of a secretory stage and maturation stage, and endocytosis of enamel matrix proteins by ameloblasts during the maturation stage is critical for the mineralization of enamel. This study set out to discover the receptors that mediate endocytosis of enamel matrix proteins. Megalin and cubilin, two known endocytic receptors, are expressed by ameloblasts in mouse incisors and molars during the secretory and maturation stages of amelogenesis, but megalin was more specifically localized to the vesicle structures in an ameloblast lineage cell line. Inhibition of megalin and cubilin by receptor-associated protein (RAP) resulted in reduced the absorption of amelogenin, illustrating their key roles in amelogenesis. Megalin and cubilin function in the recycling of amelogenin during the maturation stage of amelogenesis and may contribute to the subsequent mineralization of mature enamel.</p><p><b>WNT Signaling and the Evolution of Multicellularity.</b> “β-Catenin localization ","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":"254 9","pages":"1016-1017"},"PeriodicalIF":1.5,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://anatomypubs.onlinelibrary.wiley.com/doi/epdf/10.1002/dvdy.70075","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144998841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brenda I Medina-Jiménez, Graham E Budd, Ralf Janssen
Background: Jointed appendages represent one of the key innovations of arthropods, and thus understanding the development and evolution of these structures is important for the understanding of the evolutionary success of Arthropoda. In this paper, we analyze a cell cluster that was identified in a previous single-cell sequencing (SCS) experiment on embryos of the spider Parasteatoda tepidariorum. This cell cluster is characterized by marker genes that suggest a role in appendage patterning and joint development.
Results: We analyzed the expression profiles of these marker genes showing that they are expressed in the developing appendages and in a pattern that suggests a potential function during joint development. Several of the investigated genes represent new and unexpected factors such as dysfusion (dysf), spätzle3 (spz3), seven-up (svp). In order to study their evolutionary origin, we also investigated orthologs of the identified appendage-patterning genes in the harvestman Phalangium opilio, a distantly related chelicerate.
Conclusion: Our work highlights the usefulness of SCS experiments for the identification of potential new genetic factors that are involved in specific developmental processes. The current data provide potential new insights into the gene regulatory networks that underlie arthropod joint development.
{"title":"Single-cell sequencing reveals potential novel insights into appendage-patterning and joint-development in a spider.","authors":"Brenda I Medina-Jiménez, Graham E Budd, Ralf Janssen","doi":"10.1002/dvdy.70069","DOIUrl":"https://doi.org/10.1002/dvdy.70069","url":null,"abstract":"<p><strong>Background: </strong>Jointed appendages represent one of the key innovations of arthropods, and thus understanding the development and evolution of these structures is important for the understanding of the evolutionary success of Arthropoda. In this paper, we analyze a cell cluster that was identified in a previous single-cell sequencing (SCS) experiment on embryos of the spider Parasteatoda tepidariorum. This cell cluster is characterized by marker genes that suggest a role in appendage patterning and joint development.</p><p><strong>Results: </strong>We analyzed the expression profiles of these marker genes showing that they are expressed in the developing appendages and in a pattern that suggests a potential function during joint development. Several of the investigated genes represent new and unexpected factors such as dysfusion (dysf), spätzle3 (spz3), seven-up (svp). In order to study their evolutionary origin, we also investigated orthologs of the identified appendage-patterning genes in the harvestman Phalangium opilio, a distantly related chelicerate.</p><p><strong>Conclusion: </strong>Our work highlights the usefulness of SCS experiments for the identification of potential new genetic factors that are involved in specific developmental processes. The current data provide potential new insights into the gene regulatory networks that underlie arthropod joint development.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144793761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The word symmetry is a derivative of symmetria and symmetros in Latin and Greek, meaning to have agreement in dimensions, proportion, and arrangement. The correct development of multicellular organisms depends on the establishment of symmetry both at the whole-body level and within individual tissues and organs. In biology, symmetry comes in many forms and is associated with beauty and functional necessity, which can have evolutionary or fitness advantages. Starfish are a classic example of radial symmetry, which can be halved in any plane to produce identical parts. In contrast, bilateral symmetry is defined by a single plane that divides an organism into two identical mirror-image halves. This is typical of the majority of animals on Earth, such as butterflies, for example. It would therefore be convenient to think of symmetry as a natural state for vertebrates and their embryos. However, there is also considerable evolutionary pressure to develop asymmetry in structures with high complexity, which drives variation, diversification, and adaptation. The breaking of symmetry is therefore also a fundamental feature of normal vertebrate development and is necessary to establish the anterior–posterior, dorsal–ventral, and left–right axes of the body plan. But how is symmetry established and maintained, and what are the evolutionary and developmental consequences of repeatedly breaking symmetry? Defining the mechanisms that establish, maintain, and break symmetry is fundamental to an improved understanding of development, evolution, and disease.
This Special Issue on “The Establishment, Maintenance and Breaking of Symmetry” contains a diverse selection of articles that explore some of the basic mechanisms that break symmetry during anterior–posterior axis formation and left–right patterning, including morphological structures such as the node and cilia, and the molecular pathways that drive asymmetric signaling, particularly the Nodal pathway. Asymmetry is a frequent feature of developmental disorders and the development and application of new tools for quantifying asymmetry can help reveal the genetic and environmental factors that drive the establishment, maintenance, and breaking of symmetry.
Breaking radial symmetry to establish anterior–posterior axis formation is a key developmental step in vertebrate gastrulation. The transient longitudinally oriented primitive streak is representative of the emerging anterior–posterior axis of birds and mammals. Pre-gastrulation pig embryos develop as a flat disc, the ancestral form of amniotes, and in this study,1 Ploger and colleagues explore the expression and possible evolutionarily conserved function of Eomes, Tbx6, Wnt3, and Pkdcc in anterior–posterior axis formation. Similarities in expression patterns in pig embryos as compared to rabbit provide the first evidence for equivalence in the number of transient axial domains.
{"title":"The establishment, maintenance, and breaking of symmetry","authors":"Paul A. Trainor","doi":"10.1002/dvdy.70067","DOIUrl":"10.1002/dvdy.70067","url":null,"abstract":"<p>The word symmetry is a derivative of <i>symmetria</i> and <i>symmetros</i> in Latin and Greek, meaning to have agreement in dimensions, proportion, and arrangement. The correct development of multicellular organisms depends on the establishment of symmetry both at the whole-body level and within individual tissues and organs. In biology, symmetry comes in many forms and is associated with beauty and functional necessity, which can have evolutionary or fitness advantages. Starfish are a classic example of radial symmetry, which can be halved in any plane to produce identical parts. In contrast, bilateral symmetry is defined by a single plane that divides an organism into two identical mirror-image halves. This is typical of the majority of animals on Earth, such as butterflies, for example. It would therefore be convenient to think of symmetry as a natural state for vertebrates and their embryos. However, there is also considerable evolutionary pressure to develop asymmetry in structures with high complexity, which drives variation, diversification, and adaptation. The breaking of symmetry is therefore also a fundamental feature of normal vertebrate development and is necessary to establish the anterior–posterior, dorsal–ventral, and left–right axes of the body plan. But how is symmetry established and maintained, and what are the evolutionary and developmental consequences of repeatedly breaking symmetry? Defining the mechanisms that establish, maintain, and break symmetry is fundamental to an improved understanding of development, evolution, and disease.</p><p>This Special Issue on “The Establishment, Maintenance and Breaking of Symmetry” contains a diverse selection of articles that explore some of the basic mechanisms that break symmetry during anterior–posterior axis formation and left–right patterning, including morphological structures such as the node and cilia, and the molecular pathways that drive asymmetric signaling, particularly the Nodal pathway. Asymmetry is a frequent feature of developmental disorders and the development and application of new tools for quantifying asymmetry can help reveal the genetic and environmental factors that drive the establishment, maintenance, and breaking of symmetry.</p><p>Breaking radial symmetry to establish anterior–posterior axis formation is a key developmental step in vertebrate gastrulation. The transient longitudinally oriented primitive streak is representative of the emerging anterior–posterior axis of birds and mammals. Pre-gastrulation pig embryos develop as a flat disc, the ancestral form of amniotes, and in this study,<span><sup>1</sup></span> Ploger and colleagues explore the expression and possible evolutionarily conserved function of <i>Eomes</i>, <i>Tbx6</i>, <i>Wnt3</i>, and <i>Pkdcc</i> in anterior–posterior axis formation. Similarities in expression patterns in pig embryos as compared to rabbit provide the first evidence for equivalence in the number of transient axial domains. ","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":"254 8","pages":"884-886"},"PeriodicalIF":1.5,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://anatomypubs.onlinelibrary.wiley.com/doi/epdf/10.1002/dvdy.70067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144793762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Biomineralization is a vital biological process through which organisms produce mineralized structures such as shells, skeletons, and teeth. Microtubules are essential for biomineralization in various eukaryotic species; however, their specific roles in this process remain unclear.
Results: Here, we investigated the structure and function of microtubule filaments and their co-localization with matrix and focal adhesion proteins during the elongation of the calcite spicules of the sea urchin larva. First, we show that inhibiting microtubule polymerization using Nocodazole in whole embryos and isolated skeletogenic cell cultures results in a significant reduction of skeletal growth and affects skeletal morphology. Next, we demonstrate that microtubule filaments elongate from around the skeletogenic nuclei to the biomineralization compartment where they overlap with active focal adhesion kinase. The expression of spicule matrix proteins overlaps with microtubule filaments around the nuclei and with microtubule filaments that elongate to the spicule cavity.
Conclusions: We propose that vesicles bearing matrix proteins are trafficked on microtubules to the spicule cavity where their exocytosis is assisted by focal adhesions. The role of microtubules in biomineralization from unicellular algae to human bones suggests that the proposed microtubule-guided vesicle transport into the biomineralization compartment could be a common mechanism in Eukaryotes' biomineralization.
{"title":"Possible role of microtubules in vesicular transport of matrix protein during sea urchin larval biomineralization.","authors":"Areen Qassem, Tsvia Gildor, Smadar Ben-Tabou de-Leon","doi":"10.1002/dvdy.70068","DOIUrl":"https://doi.org/10.1002/dvdy.70068","url":null,"abstract":"<p><strong>Background: </strong>Biomineralization is a vital biological process through which organisms produce mineralized structures such as shells, skeletons, and teeth. Microtubules are essential for biomineralization in various eukaryotic species; however, their specific roles in this process remain unclear.</p><p><strong>Results: </strong>Here, we investigated the structure and function of microtubule filaments and their co-localization with matrix and focal adhesion proteins during the elongation of the calcite spicules of the sea urchin larva. First, we show that inhibiting microtubule polymerization using Nocodazole in whole embryos and isolated skeletogenic cell cultures results in a significant reduction of skeletal growth and affects skeletal morphology. Next, we demonstrate that microtubule filaments elongate from around the skeletogenic nuclei to the biomineralization compartment where they overlap with active focal adhesion kinase. The expression of spicule matrix proteins overlaps with microtubule filaments around the nuclei and with microtubule filaments that elongate to the spicule cavity.</p><p><strong>Conclusions: </strong>We propose that vesicles bearing matrix proteins are trafficked on microtubules to the spicule cavity where their exocytosis is assisted by focal adhesions. The role of microtubules in biomineralization from unicellular algae to human bones suggests that the proposed microtubule-guided vesicle transport into the biomineralization compartment could be a common mechanism in Eukaryotes' biomineralization.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144774909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The International Mouse Phenotyping Consortium (IMPC) has generated thousands of knockout mouse lines, many of which exhibit embryonic or perinatal lethality. Using micro-computed tomography (micro-CT), the IMPC has created and publicly released three-dimensional image data sets of embryos from these lethal and subviable lines. In this study, we leveraged this data set to screen homozygous null mutants for anomalies in secondary palate development. We analyzed optical sections from 2987 embryos at embryonic days E15.5 and E18.5, representing 484 homozygous mutant lines.
Results and conclusions: Our analysis identified 44 novel genes implicated in palatogenesis. Gene set enrichment analysis highlighted biological processes and pathways relevant to palate development and uncovered 18 genes jointly regulating the development of the eye and the palate. These findings present a valuable resource for further research, offer novel insights into the molecular mechanisms underlying palatogenesis, and provide important context for understanding the etiology of rare human congenital disorders involving malformations of the palate and other organs.
{"title":"Identification of novel genes regulating the development of the palate.","authors":"Ashwin Bhaskar, Sophie Astrof","doi":"10.1002/dvdy.70066","DOIUrl":"10.1002/dvdy.70066","url":null,"abstract":"<p><strong>Background: </strong>The International Mouse Phenotyping Consortium (IMPC) has generated thousands of knockout mouse lines, many of which exhibit embryonic or perinatal lethality. Using micro-computed tomography (micro-CT), the IMPC has created and publicly released three-dimensional image data sets of embryos from these lethal and subviable lines. In this study, we leveraged this data set to screen homozygous null mutants for anomalies in secondary palate development. We analyzed optical sections from 2987 embryos at embryonic days E15.5 and E18.5, representing 484 homozygous mutant lines.</p><p><strong>Results and conclusions: </strong>Our analysis identified 44 novel genes implicated in palatogenesis. Gene set enrichment analysis highlighted biological processes and pathways relevant to palate development and uncovered 18 genes jointly regulating the development of the eye and the palate. These findings present a valuable resource for further research, offer novel insights into the molecular mechanisms underlying palatogenesis, and provide important context for understanding the etiology of rare human congenital disorders involving malformations of the palate and other organs.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12364609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144768473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: To understand cellular morphology, biologists have relied on traditional optical microscopy of tissues combined with tissue clearing protocols to image structures deep within tissues. Unfortunately, these protocols often struggle to retain cell boundary markers, especially at high enough resolutions necessary for precise cell segmentation. This limitation affects the ability to study changes in cell shape during major developmental events.
Results: We introduce a method that preserves cell boundary markers and matches the refractive index of tissues with water. This technique enables the use of high-magnification, long working distance water-dipping objectives that provide sub-micron resolution images. We subsequently segment individual cells using a trained neural network segmentation model. These segmented images facilitate quantification of cell properties of the entire three-dimensional tissue. As a demonstration, we examine mandibles of transgenic mice that express fluorescent proteins in their cell membranes and extend this technique to a non-model animal, the catshark, investigating its dental lamina and dermal denticles-invaginating and evaginating ectodermal structures, respectively. This technique provides insight into the mechanical environment that cells experience during developmental transitions.
Conclusions: This pipeline, named MORPHOVIEW, provides a powerful tool to quantify in high throughput the 3D structures of cells and tissues during organ morphogenesis.
{"title":"Whole tissue imaging of cellular boundaries at sub-micron resolutions for deep learning cell segmentation: Applications in the analysis of epithelial bending of ectoderm.","authors":"Sam C P Norris, Jimmy K Hu, Neil H Shubin","doi":"10.1002/dvdy.70061","DOIUrl":"10.1002/dvdy.70061","url":null,"abstract":"<p><strong>Background: </strong>To understand cellular morphology, biologists have relied on traditional optical microscopy of tissues combined with tissue clearing protocols to image structures deep within tissues. Unfortunately, these protocols often struggle to retain cell boundary markers, especially at high enough resolutions necessary for precise cell segmentation. This limitation affects the ability to study changes in cell shape during major developmental events.</p><p><strong>Results: </strong>We introduce a method that preserves cell boundary markers and matches the refractive index of tissues with water. This technique enables the use of high-magnification, long working distance water-dipping objectives that provide sub-micron resolution images. We subsequently segment individual cells using a trained neural network segmentation model. These segmented images facilitate quantification of cell properties of the entire three-dimensional tissue. As a demonstration, we examine mandibles of transgenic mice that express fluorescent proteins in their cell membranes and extend this technique to a non-model animal, the catshark, investigating its dental lamina and dermal denticles-invaginating and evaginating ectodermal structures, respectively. This technique provides insight into the mechanical environment that cells experience during developmental transitions.</p><p><strong>Conclusions: </strong>This pipeline, named MORPHOVIEW, provides a powerful tool to quantify in high throughput the 3D structures of cells and tissues during organ morphogenesis.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144728711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pernille Lajer Sørensen, Anita Dittrich, Henrik Lauridsen
Background: Diabetes is a group of diseases characterized by loss of β cell mass and/or function, resulting in hyperglycemia. With no established curative treatment, this has initiated research in β cell regeneration. Current animal models have either limited regenerative capacity (mice) or small size and evolutionary distance from humans (zebrafish). There is a need for new models to study endogenous regeneration pathways. This study proposes the axolotl salamander (Ambystoma mexicanum) as a model for studying the regeneration of β cells and aims to establish a protocol for STZ-induced hyperglycemia to mimic a diabetic state.
Results: In this pilot study, five streptozotocin (STZ) protocols were tested, and the most effective one was identified on the basis of glucose tolerance tests. Blood glucose levels were monitored to track both disease progression and remission. Histological examination of the pancreas and systemic effects of STZ treatment were also evaluated.
Conclusion: Induction of a diabetes-like state (hyperglycemia) in axolotls was possible with STZ, but variability among animals suggests the need for a higher degree of normalization or larger sample sizes. Histological regeneration was not observed, though blood glucose levels normalized over time. Some STZ-treated animals developed edema, but its cause remains unknown.
{"title":"Streptozotocin induced hyperglycemia in the axolotl.","authors":"Pernille Lajer Sørensen, Anita Dittrich, Henrik Lauridsen","doi":"10.1002/dvdy.70063","DOIUrl":"https://doi.org/10.1002/dvdy.70063","url":null,"abstract":"<p><strong>Background: </strong>Diabetes is a group of diseases characterized by loss of β cell mass and/or function, resulting in hyperglycemia. With no established curative treatment, this has initiated research in β cell regeneration. Current animal models have either limited regenerative capacity (mice) or small size and evolutionary distance from humans (zebrafish). There is a need for new models to study endogenous regeneration pathways. This study proposes the axolotl salamander (Ambystoma mexicanum) as a model for studying the regeneration of β cells and aims to establish a protocol for STZ-induced hyperglycemia to mimic a diabetic state.</p><p><strong>Results: </strong>In this pilot study, five streptozotocin (STZ) protocols were tested, and the most effective one was identified on the basis of glucose tolerance tests. Blood glucose levels were monitored to track both disease progression and remission. Histological examination of the pancreas and systemic effects of STZ treatment were also evaluated.</p><p><strong>Conclusion: </strong>Induction of a diabetes-like state (hyperglycemia) in axolotls was possible with STZ, but variability among animals suggests the need for a higher degree of normalization or larger sample sizes. Histological regeneration was not observed, though blood glucose levels normalized over time. Some STZ-treated animals developed edema, but its cause remains unknown.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144689428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}