Gamze Akarsu, Katja R MacCharles, Kenneth Kin Lam Wong, Joy M Richman, Esther M Verheyen
Background: Robinow syndrome is a rare developmental syndrome caused by variants in genes in Wnt signaling pathways. We previously showed that expression of patient variants in Dishevelled 1 (DVL1) in Drosophila and chicken models disrupts the balance of canonical and non-canonical Wnt signaling.
Results: In this study, we further examine morphological changes that occur due to expression of DVL11519ΔT, which serves as a prototype for other pathogenic variants. We show that epithelial imaginal disc development is disrupted in legs and wings and accompanied by increased cell death, without changes in cell proliferation. By inhibiting caspase-dependent cell death, we show that the altered epithelial morphology is not solely due to variant-induced cell death. Furthermore, we find alterations of basement membrane components and modulators. Notably we find ectopic Mmp1 expression and tissue distortion, which is dependent on JNK signaling. We also find an abnormal abundance of Drosophila collagen IV (Viking) in pupal wing development. Due to the complex nature of appendage development, we also examined the Bone Morphogenetic Protein pathway and found elevated signaling activity via the transcriptional readout dad-lacZ.
Conclusions: Through these studies, we have gained more insight into the developmental consequences of DVL1 variants implicated in autosomal dominant Robinow syndrome.
{"title":"Robinow syndrome DVL1 variants disrupt morphogenesis and appendage formation in a Drosophila disease model.","authors":"Gamze Akarsu, Katja R MacCharles, Kenneth Kin Lam Wong, Joy M Richman, Esther M Verheyen","doi":"10.1002/dvdy.70056","DOIUrl":"https://doi.org/10.1002/dvdy.70056","url":null,"abstract":"<p><strong>Background: </strong>Robinow syndrome is a rare developmental syndrome caused by variants in genes in Wnt signaling pathways. We previously showed that expression of patient variants in Dishevelled 1 (DVL1) in Drosophila and chicken models disrupts the balance of canonical and non-canonical Wnt signaling.</p><p><strong>Results: </strong>In this study, we further examine morphological changes that occur due to expression of DVL1<sup>1519ΔT</sup>, which serves as a prototype for other pathogenic variants. We show that epithelial imaginal disc development is disrupted in legs and wings and accompanied by increased cell death, without changes in cell proliferation. By inhibiting caspase-dependent cell death, we show that the altered epithelial morphology is not solely due to variant-induced cell death. Furthermore, we find alterations of basement membrane components and modulators. Notably we find ectopic Mmp1 expression and tissue distortion, which is dependent on JNK signaling. We also find an abnormal abundance of Drosophila collagen IV (Viking) in pupal wing development. Due to the complex nature of appendage development, we also examined the Bone Morphogenetic Protein pathway and found elevated signaling activity via the transcriptional readout dad-lacZ.</p><p><strong>Conclusions: </strong>Through these studies, we have gained more insight into the developmental consequences of DVL1 variants implicated in autosomal dominant Robinow syndrome.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144539512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christine E Larkins, Daniel M Grunberg, Gabriel M Daniels, Erik J Feldtmann, Martin J Cohn
Background: In eutherian mammals, the embryonic cloaca is partitioned into genitourinary and anorectal canals by the urorectal septum. In the mouse embryo, the urorectal septum contributes to the perineum, which separates the anus from the external genitalia. During the growth of the urorectal septum, endodermal epithelium of the cloaca is displaced to the surface of the perineum, where endodermal cells are integrated into the developing skin. However, it is unknown whether the endodermal lineage of the perineum acquires true epidermal identity, an enigmatic fate for endodermal cells.
Results: We find that endodermal cells that reach the surface of the perineum express markers of basal, spinous, and granular epidermis. During postnatal development, the endodermal lineage of the perineum epidermis undergoes terminal differentiation and desquamation and is replaced by adjacent ectoderm. Live imaging and single-cell tracking show that ectodermal cells move at a faster velocity in a lateral-to-medial direction, indicating convergence toward the narrow band of endoderm that lies between the anus and external genitalia.
Conclusions: Cloacal endoderm differentiates into a non-renewing, transient epidermis at the midline of the perineum. Differences in directionality and velocity of cell movement patterns between endodermal and ectodermal cells suggest that the perineum epidermis develops by convergent extension.
{"title":"Endoderm differentiates into a transient epidermis in the mouse perineum.","authors":"Christine E Larkins, Daniel M Grunberg, Gabriel M Daniels, Erik J Feldtmann, Martin J Cohn","doi":"10.1002/dvdy.70050","DOIUrl":"10.1002/dvdy.70050","url":null,"abstract":"<p><strong>Background: </strong>In eutherian mammals, the embryonic cloaca is partitioned into genitourinary and anorectal canals by the urorectal septum. In the mouse embryo, the urorectal septum contributes to the perineum, which separates the anus from the external genitalia. During the growth of the urorectal septum, endodermal epithelium of the cloaca is displaced to the surface of the perineum, where endodermal cells are integrated into the developing skin. However, it is unknown whether the endodermal lineage of the perineum acquires true epidermal identity, an enigmatic fate for endodermal cells.</p><p><strong>Results: </strong>We find that endodermal cells that reach the surface of the perineum express markers of basal, spinous, and granular epidermis. During postnatal development, the endodermal lineage of the perineum epidermis undergoes terminal differentiation and desquamation and is replaced by adjacent ectoderm. Live imaging and single-cell tracking show that ectodermal cells move at a faster velocity in a lateral-to-medial direction, indicating convergence toward the narrow band of endoderm that lies between the anus and external genitalia.</p><p><strong>Conclusions: </strong>Cloacal endoderm differentiates into a non-renewing, transient epidermis at the midline of the perineum. Differences in directionality and velocity of cell movement patterns between endodermal and ectodermal cells suggest that the perineum epidermis develops by convergent extension.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144483555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lauren Belfiore, Anjali Balakrishnan, Yacine Touahri, Dawn Zinyk, Humna Noman, Satoshi Okawa, Jeff Biernaskie, Carol Schuurmans
Background: Schwann cells provide peripheral nerve trophic support, myelinate axons, and assist in repair. However, Schwann cell repair capacity is limited by chronic injury, disease, and aging. Schwann cell reprogramming is a cellular conversion strategy that could provide a renewable cell supply to repair injured nerves. Here, we developed a plasmid-based approach to test the Schwann cell conversion potential of four glial transcription factors.
Results: We employed four transcription factors implicated in Schwann cell differentiation and repair: Sox10, Sox2, Jun, and Pax3. Expression vectors were generated for Sox10 alone and two triple transcription factor combinations: Jun-Pax3-Sox2 (triple 1, T1) and Sox10-Jun-Sox2 (triple 2, T2). Mouse embryonic fibroblasts (MEFs) were transfected with these vectors, transferred to glial inductive media, and Schwann cell-marker expression was in assessed by immunostaining, flow cytometry, and qPCR. All expression vectors repressed fibroblast-specific gene expression. However, T2 was most efficient at generating O4+ Schwann cell-like cells, which had some capacity to myelinate denervated axons from explanted dorsal root ganglia. In comparison, T1 more efficiently induced repair Schwann cell-marker expression in converted O4+ cells.
Conclusions: T1 and T2 convert MEFs to Schwann cells with different efficacies and gene expression profiles, and may provide cell-based therapies for peripheral nerve repair.
背景:雪旺细胞提供周围神经营养支持,髓鞘轴突,并协助修复。然而,雪旺细胞的修复能力受到慢性损伤、疾病和衰老的限制。雪旺细胞重编程是一种细胞转化策略,可以提供可再生的细胞供应来修复受损的神经。在这里,我们开发了一种基于质粒的方法来测试四种胶质转录因子的雪旺细胞转化潜力。结果:我们使用了四个参与雪旺细胞分化和修复的转录因子:Sox10、Sox2、Jun和Pax3。生成单独Sox10和两个三重转录因子组合Jun-Pax3-Sox2 (triple 1, T1)和Sox10- jun - sox2 (triple 2, T2)的表达载体。将这些载体转染小鼠胚胎成纤维细胞(mef),转移到胶质诱导培养基上,通过免疫染色、流式细胞术和qPCR评估雪旺细胞标志物的表达。所有表达载体均抑制成纤维细胞特异性基因的表达。然而,T2最有效的是产生O4+雪旺细胞样细胞,这些细胞具有一定的能力,能够从外植的背根神经节中形成髓鞘。相比之下,T1在转化的O4+细胞中更有效地诱导修复雪旺细胞标志物的表达。结论:T1和T2将mef转化为雪旺细胞的效果和基因表达谱不同,可能为周围神经修复提供细胞基础疗法。
{"title":"Combinatorial expression of glial transcription factors induces Schwann cell-specific gene expression in mouse embryonic fibroblasts.","authors":"Lauren Belfiore, Anjali Balakrishnan, Yacine Touahri, Dawn Zinyk, Humna Noman, Satoshi Okawa, Jeff Biernaskie, Carol Schuurmans","doi":"10.1002/dvdy.70054","DOIUrl":"10.1002/dvdy.70054","url":null,"abstract":"<p><strong>Background: </strong>Schwann cells provide peripheral nerve trophic support, myelinate axons, and assist in repair. However, Schwann cell repair capacity is limited by chronic injury, disease, and aging. Schwann cell reprogramming is a cellular conversion strategy that could provide a renewable cell supply to repair injured nerves. Here, we developed a plasmid-based approach to test the Schwann cell conversion potential of four glial transcription factors.</p><p><strong>Results: </strong>We employed four transcription factors implicated in Schwann cell differentiation and repair: Sox10, Sox2, Jun, and Pax3. Expression vectors were generated for Sox10 alone and two triple transcription factor combinations: Jun-Pax3-Sox2 (triple 1, T1) and Sox10-Jun-Sox2 (triple 2, T2). Mouse embryonic fibroblasts (MEFs) were transfected with these vectors, transferred to glial inductive media, and Schwann cell-marker expression was in assessed by immunostaining, flow cytometry, and qPCR. All expression vectors repressed fibroblast-specific gene expression. However, T2 was most efficient at generating O4<sup>+</sup> Schwann cell-like cells, which had some capacity to myelinate denervated axons from explanted dorsal root ganglia. In comparison, T1 more efficiently induced repair Schwann cell-marker expression in converted O4<sup>+</sup> cells.</p><p><strong>Conclusions: </strong>T1 and T2 convert MEFs to Schwann cells with different efficacies and gene expression profiles, and may provide cell-based therapies for peripheral nerve repair.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144332577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}