The marine leech Pterobdella arugamensis is a hematophagous parasite, and the extent of injury to the host largely depends on the number of attached leeches. This study aimed to assess the pathogenicity of marine leeches in Asian seabass (Lates calcarifer) and tiger grouper (Epinephelus fuscoguttatus) fingerlings under laboratory conditions. Five groups of healthy Asian seabass and tiger grouper were exposed to varying numbers of marine leeches (0, 1, 10, 30, or 70 per fish) for 7 d. Infested Asian seabass and tiger grouper both showed pathological changes even with only 1 leech, manifesting as clinical signs like haemorrhages. The cumulative mortality at 7 d post-exposure (dpe) was 11 or 33% for Asian seabass infested with 1 or 10 marine leeches, respectively. Fish with 30 or 70 marine leeches showed higher rates of mortality (56%). A similar trend was seen in tiger grouper, with mortality rates reaching 78% in fish with 30 or 70 marine leeches, and 56 or 33% in fish with 10 leeches or 1 leech, respectively. Factorial analysis of mortality after 7 dpe between both species showed significant differences (2-way ANOVA p = 0.001) when exposed to varying numbers of marine leeches. The haematocrit values differed significantly between Asian seabass or tiger grouper infested with either 0 or 1 marine leech and those infested with 10, 30, or 70 marine leeches (1-way ANOVA, p = 0.0001). This suggests that marine leech infestation has a measurable impact on both species. Consequently, fish farmers should promptly address leech infestation upon discovery in their cages.
{"title":"Pathogenicity associated with an infestation of the marine leech parasite Pterobdella arugamensis in farmed fish.","authors":"Beng Chu Kua, Yoon Yau Leaw","doi":"10.3354/dao03794","DOIUrl":"https://doi.org/10.3354/dao03794","url":null,"abstract":"<p><p>The marine leech Pterobdella arugamensis is a hematophagous parasite, and the extent of injury to the host largely depends on the number of attached leeches. This study aimed to assess the pathogenicity of marine leeches in Asian seabass (Lates calcarifer) and tiger grouper (Epinephelus fuscoguttatus) fingerlings under laboratory conditions. Five groups of healthy Asian seabass and tiger grouper were exposed to varying numbers of marine leeches (0, 1, 10, 30, or 70 per fish) for 7 d. Infested Asian seabass and tiger grouper both showed pathological changes even with only 1 leech, manifesting as clinical signs like haemorrhages. The cumulative mortality at 7 d post-exposure (dpe) was 11 or 33% for Asian seabass infested with 1 or 10 marine leeches, respectively. Fish with 30 or 70 marine leeches showed higher rates of mortality (56%). A similar trend was seen in tiger grouper, with mortality rates reaching 78% in fish with 30 or 70 marine leeches, and 56 or 33% in fish with 10 leeches or 1 leech, respectively. Factorial analysis of mortality after 7 dpe between both species showed significant differences (2-way ANOVA p = 0.001) when exposed to varying numbers of marine leeches. The haematocrit values differed significantly between Asian seabass or tiger grouper infested with either 0 or 1 marine leech and those infested with 10, 30, or 70 marine leeches (1-way ANOVA, p = 0.0001). This suggests that marine leech infestation has a measurable impact on both species. Consequently, fish farmers should promptly address leech infestation upon discovery in their cages.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"158 ","pages":"179-184"},"PeriodicalIF":1.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The southern king crab (SKC) Lithodes santolla is a crustacean parasitised by the bopyrid Eremitione tuberculata. This study aimed to analyse spatial and temporal variations in E. tuberculata prevalence in the juvenile SKC population of San Jorge Gulf (SJG) and adjacent waters (Argentine Patagonia), and evaluate the effects of the parasite on SKC juveniles to improve our understanding of its impact as a disease on SKC health condition. Moult increment and body weight were compared between parasitised and unparasitised individuals. The prevalence of E. tuberculata in SKC juveniles varied both spatially and temporally. In the south of SJG, the prevalence was 54.5% (n = 11). Temporal prevalence analysis revealed values lower than 17.4% in mid SJG during May and September 2015. No significant differences were observed in E. tuberculata prevalence between sexes or among seasons. Eremitione tuberculata had a negative effect on SKC growth (lower body dry mass, moult increment and relative increment rate) in parasitised individuals. We hypothesised that the higher prevalence of E. tuberculata in the south SJG could be attributed to the retention of parasite larvae and the presence of the frontal system in this part of the gulf. The temporal variations could reflect host mortality. Our results suggest that bopyrid infestation may have a more important role than previously believed in the dynamics of the SKC population in mid-Patagonia.
{"title":"Infestation of Lithodes santolla by Eremitione tuberculata: spatial and temporal variations in parasite prevalence and effect on host growth.","authors":"Julia Soledad Colombo, Martín Varisco","doi":"10.3354/dao03792","DOIUrl":"10.3354/dao03792","url":null,"abstract":"<p><p>The southern king crab (SKC) Lithodes santolla is a crustacean parasitised by the bopyrid Eremitione tuberculata. This study aimed to analyse spatial and temporal variations in E. tuberculata prevalence in the juvenile SKC population of San Jorge Gulf (SJG) and adjacent waters (Argentine Patagonia), and evaluate the effects of the parasite on SKC juveniles to improve our understanding of its impact as a disease on SKC health condition. Moult increment and body weight were compared between parasitised and unparasitised individuals. The prevalence of E. tuberculata in SKC juveniles varied both spatially and temporally. In the south of SJG, the prevalence was 54.5% (n = 11). Temporal prevalence analysis revealed values lower than 17.4% in mid SJG during May and September 2015. No significant differences were observed in E. tuberculata prevalence between sexes or among seasons. Eremitione tuberculata had a negative effect on SKC growth (lower body dry mass, moult increment and relative increment rate) in parasitised individuals. We hypothesised that the higher prevalence of E. tuberculata in the south SJG could be attributed to the retention of parasite larvae and the presence of the frontal system in this part of the gulf. The temporal variations could reflect host mortality. Our results suggest that bopyrid infestation may have a more important role than previously believed in the dynamics of the SKC population in mid-Patagonia.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"158 ","pages":"185-193"},"PeriodicalIF":1.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C J Schuster, D P Marancik, C E Couch, C Leong, J J Edwards, R M Kaplan, M L Kent
A novel microsporidium was observed in wild swamp guppies Micropoecilia picta from Levera Pond within Levera National Park Grenada, West Indies. Initial observations indicated similarity with Pseudoloma neurophilia, an important pathogen in zebrafish Danio rerio. P. neurophilia exhibit broad host specifity, including members of the family Poecillidae, and both parasites infect the central nervous system. However, spore morphology and molecular phylogeny based on rDNA showed that the swamp guppy microsporidium (SGM) is distinct from P. neurophilia and related microsporidia (Microsporidium cerebralis and M. luceopercae). Spores of the SGM were smaller than others in the clade (3.6 µm long). Differences were also noted in histology; the SGM formed large aggregates of spores within neural tissues along with a high incidence of numerous smaller aggregates and single spores within the surface tissue along the ventricular spaces that extended submeninx, whereas P. neurophilia and M. cerebralis infect deep into the neuropile and cause associated lesions. Analysis of small subunit ribosomal DNA sequences showed that the SGM was <93% similar to these related microsporidia. Nevertheless, one of 2 commonly used PCR tests for P. neurophilia cross reacted with tissues infected with SGM. These data suggest that there could be other related microsporidia capable of infecting zebrafish and other laboratory fishes that are not being detected by these highly specific assays. Consequently, exclusive use of these PCR tests may not accurately diagnose other related microsporidia infecting animals in laboratory and ornamental fish facilities.
在西印度群岛格林纳达勒维拉国家公园勒维拉池塘的野生沼泽河鲦中观察到一种新型微孢子虫。初步观察结果表明,这种微孢子虫与斑马鱼Danio rerio的重要病原体Pseudoloma neurophilia很相似。P.neurophilia具有广泛的宿主特异性,包括Poecillidae科的成员,两种寄生虫都会感染中枢神经系统。然而,孢子形态学和基于 rDNA 的分子系统发育表明,沼泽古比鱼微孢子虫(SGM)有别于神经嗜血杆菌和相关的微孢子虫(脑微孢子虫和 M. luceopercae)。SGM 的孢子比该支系的其他孢子小(3.6 微米长)。在组织学方面也存在差异;SGM 在神经组织内形成大的孢子聚集体,同时在沿脑室间隙延伸至门下的表层组织内也有大量较小的聚集体和单孢子,而 P. neurophilia 和 M. cerebralis 则会感染到神经椎体深处并引起相关病变。对小亚基核糖体 DNA 序列的分析表明,SGM 是
{"title":"A novel neurotropic microsporidium from the swamp guppy Micropoecilia picta from Grenada, West Indies.","authors":"C J Schuster, D P Marancik, C E Couch, C Leong, J J Edwards, R M Kaplan, M L Kent","doi":"10.3354/dao03789","DOIUrl":"https://doi.org/10.3354/dao03789","url":null,"abstract":"<p><p>A novel microsporidium was observed in wild swamp guppies Micropoecilia picta from Levera Pond within Levera National Park Grenada, West Indies. Initial observations indicated similarity with Pseudoloma neurophilia, an important pathogen in zebrafish Danio rerio. P. neurophilia exhibit broad host specifity, including members of the family Poecillidae, and both parasites infect the central nervous system. However, spore morphology and molecular phylogeny based on rDNA showed that the swamp guppy microsporidium (SGM) is distinct from P. neurophilia and related microsporidia (Microsporidium cerebralis and M. luceopercae). Spores of the SGM were smaller than others in the clade (3.6 µm long). Differences were also noted in histology; the SGM formed large aggregates of spores within neural tissues along with a high incidence of numerous smaller aggregates and single spores within the surface tissue along the ventricular spaces that extended submeninx, whereas P. neurophilia and M. cerebralis infect deep into the neuropile and cause associated lesions. Analysis of small subunit ribosomal DNA sequences showed that the SGM was <93% similar to these related microsporidia. Nevertheless, one of 2 commonly used PCR tests for P. neurophilia cross reacted with tissues infected with SGM. These data suggest that there could be other related microsporidia capable of infecting zebrafish and other laboratory fishes that are not being detected by these highly specific assays. Consequently, exclusive use of these PCR tests may not accurately diagnose other related microsporidia infecting animals in laboratory and ornamental fish facilities.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"158 ","pages":"133-141"},"PeriodicalIF":1.4,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eliot Hanrio, Daniel Bogema, Kathleen Davern, Jacqueline Batley, Michael Clarke, Laila Abudulai, Anita Severn-Ellis, Cécile Dang
Perkinsus olseni and P. marinus are classified as notifiable pathogens by the World Organisation for Animal Health and are known to cause perkinsosis in a variety of molluscs globally. Mass mortalities due to these parasites in farms and in the wild have been a recurrent issue. Diagnosis for these protozoans is currently done using Ray's fluid thioglycollate medium method followed by optical microscopy or molecular assays. Both require a high level of skill and are time-consuming. An immunoassay method would make the diagnosis of perkinsosis quicker and cheaper. The present study used mass spectrometry-based proteomics to investigate common hypothetical surface peptides between different geographical isolates of P. olseni, which could be used to develop immunoassays in the future. Two peptides were identified: POLS_08089, which is a 42.7 kDa peptide corresponding to the 60S ribosomal subunit protein L4; and POLS_15916, which is a conserved hypothetical protein of 55.6 kDa. The identification of peptides may allow the development of immunoassays through a more targeted approach.
{"title":"Characterisation of common hypothetical surface peptides between protozoan parasites (Perkinsus olseni) originating from different geographical locations.","authors":"Eliot Hanrio, Daniel Bogema, Kathleen Davern, Jacqueline Batley, Michael Clarke, Laila Abudulai, Anita Severn-Ellis, Cécile Dang","doi":"10.3354/dao03790","DOIUrl":"https://doi.org/10.3354/dao03790","url":null,"abstract":"<p><p>Perkinsus olseni and P. marinus are classified as notifiable pathogens by the World Organisation for Animal Health and are known to cause perkinsosis in a variety of molluscs globally. Mass mortalities due to these parasites in farms and in the wild have been a recurrent issue. Diagnosis for these protozoans is currently done using Ray's fluid thioglycollate medium method followed by optical microscopy or molecular assays. Both require a high level of skill and are time-consuming. An immunoassay method would make the diagnosis of perkinsosis quicker and cheaper. The present study used mass spectrometry-based proteomics to investigate common hypothetical surface peptides between different geographical isolates of P. olseni, which could be used to develop immunoassays in the future. Two peptides were identified: POLS_08089, which is a 42.7 kDa peptide corresponding to the 60S ribosomal subunit protein L4; and POLS_15916, which is a conserved hypothetical protein of 55.6 kDa. The identification of peptides may allow the development of immunoassays through a more targeted approach.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"158 ","pages":"143-155"},"PeriodicalIF":1.4,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Norway had historically been considered free of marteiliosis in bivalves since the disease surveillance programme began in 1995. However, in 2016, Marteilia pararefringens, a protistan parasite of mussels Mytilus spp., was described in a heliothermic lagoon-a poll-previously used to produce flat oyster spat. To study whether the parasite was introduced, and possibly spread, via the historical flat oyster networks on the south and west coast, we sampled aquaculture polls that were part of different networks of farmers and wild, natural polls with no aquaculture activity. Additionally, we sampled mussel banks influenced by polls and sheltered bays that could have a similar environment to that of polls. We identified 7 sites with M. pararefringens-infected mussel populations: 5 were polls used in flat oyster production and 2 were in fjord areas with no known connection to any bivalve aquaculture. Prevalence ranged between 2 and 88%. At one site, Trysfjorden, we found M. pararefringens in atypical organs, including the gills, mantle, and intestine. Marteilia-like cells were also observed in the epithelium, lumen, and surrounding connective tissue of metanephridia and in the sinus of the anterior retractor muscle. Our results demonstrate that the parasite is more widespread than previously thought and is neither isolated to polls nor connected directly to aquaculture activity. Lastly, our findings highlight the need for an improved sampling strategy in surveillance programmes to detect marteiliosis in mussels.
{"title":"Marteilia pararefringens infections are more frequent than revealed by the Norwegian surveillance programme, highlighting the need for its improvement.","authors":"Mats Bøgwald, Stein Mortensen","doi":"10.3354/dao03785","DOIUrl":"https://doi.org/10.3354/dao03785","url":null,"abstract":"<p><p>Norway had historically been considered free of marteiliosis in bivalves since the disease surveillance programme began in 1995. However, in 2016, Marteilia pararefringens, a protistan parasite of mussels Mytilus spp., was described in a heliothermic lagoon-a poll-previously used to produce flat oyster spat. To study whether the parasite was introduced, and possibly spread, via the historical flat oyster networks on the south and west coast, we sampled aquaculture polls that were part of different networks of farmers and wild, natural polls with no aquaculture activity. Additionally, we sampled mussel banks influenced by polls and sheltered bays that could have a similar environment to that of polls. We identified 7 sites with M. pararefringens-infected mussel populations: 5 were polls used in flat oyster production and 2 were in fjord areas with no known connection to any bivalve aquaculture. Prevalence ranged between 2 and 88%. At one site, Trysfjorden, we found M. pararefringens in atypical organs, including the gills, mantle, and intestine. Marteilia-like cells were also observed in the epithelium, lumen, and surrounding connective tissue of metanephridia and in the sinus of the anterior retractor muscle. Our results demonstrate that the parasite is more widespread than previously thought and is neither isolated to polls nor connected directly to aquaculture activity. Lastly, our findings highlight the need for an improved sampling strategy in surveillance programmes to detect marteiliosis in mussels.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"158 ","pages":"157-172"},"PeriodicalIF":1.4,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claudio Borteiro, Gabriel Laufer, Noelia Gobel, Mailén Arleo, Francisco Kolenc, Sofía Cortizas, Diego A Barrasso, Rafael O de Sá, Alvaro Soutullo, Martin Ubilla, Claudio Martínez-Debat
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease among the main causes of amphibian declines worldwide. However, Bd studies on Neotropical amphibians from temperate areas are scarce. We present a comprehensive survey of Bd in Uruguay, in temperate central eastern South America, carried out between 2006 and 2014. Skin swabs of 535 specimens of 21 native and exotic frogs were tested by PCR. We used individual-level data to examine the relationship between infection, climatic variables, and their effects on body condition and the number of prey items found in stomach contents. Infection was widespread in free-ranging anurans with an overall prevalence of 41.9%, detected in 15 native species, wild American bullfrogs Aquarana catesbeiana, and captive specimens of Ceratophrys ornata and Xenopus laevis. Three haplotypes of the Bd ITS region were identified in native amphibians, all belonging to the global panzootic lineage (BdGPL), of which only one was present in exotic hosts. Despite high infection frequencies in different anurans, we found no evidence of morbidity or mortality attributable to chytridiomycosis, and we observed no discernible impact on body condition or consumed prey. Climatic conditions at the time of our surveys suggested that the chance of infection is associated with monthly mean temperature, mean humidity, and total precipitation. Temperatures below 21°C combined with moderate humidity and pronounced rainfall may increase the likelihood of infection. Multiple haplotypes of BdGPL combined with high frequencies of infection suggest an enzootic pattern in native species, underscoring the need for continued monitoring.
{"title":"Widespread occurrence of the amphibian chytrid panzootic lineage in Uruguay is constrained by climate.","authors":"Claudio Borteiro, Gabriel Laufer, Noelia Gobel, Mailén Arleo, Francisco Kolenc, Sofía Cortizas, Diego A Barrasso, Rafael O de Sá, Alvaro Soutullo, Martin Ubilla, Claudio Martínez-Debat","doi":"10.3354/dao03783","DOIUrl":"https://doi.org/10.3354/dao03783","url":null,"abstract":"<p><p>The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease among the main causes of amphibian declines worldwide. However, Bd studies on Neotropical amphibians from temperate areas are scarce. We present a comprehensive survey of Bd in Uruguay, in temperate central eastern South America, carried out between 2006 and 2014. Skin swabs of 535 specimens of 21 native and exotic frogs were tested by PCR. We used individual-level data to examine the relationship between infection, climatic variables, and their effects on body condition and the number of prey items found in stomach contents. Infection was widespread in free-ranging anurans with an overall prevalence of 41.9%, detected in 15 native species, wild American bullfrogs Aquarana catesbeiana, and captive specimens of Ceratophrys ornata and Xenopus laevis. Three haplotypes of the Bd ITS region were identified in native amphibians, all belonging to the global panzootic lineage (BdGPL), of which only one was present in exotic hosts. Despite high infection frequencies in different anurans, we found no evidence of morbidity or mortality attributable to chytridiomycosis, and we observed no discernible impact on body condition or consumed prey. Climatic conditions at the time of our surveys suggested that the chance of infection is associated with monthly mean temperature, mean humidity, and total precipitation. Temperatures below 21°C combined with moderate humidity and pronounced rainfall may increase the likelihood of infection. Multiple haplotypes of BdGPL combined with high frequencies of infection suggest an enzootic pattern in native species, underscoring the need for continued monitoring.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"158 ","pages":"123-132"},"PeriodicalIF":1.4,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James E Noelker, Vitoria Abreu Ruozzi, Hunter M Craig, Jason P Sckrabulis, Thomas R Raffel
Working with aquatic organisms often requires handling multiple individuals in a single session, potentially resulting in cross-contamination by live pathogens or DNA. Most researchers address this problem by disposing of gloves between animals. However, this generates excessive waste and may be impractical for processing very slippery animals that might be easier to handle with cotton gloves. We tested methods to decontaminate cotton or nitrile gloves after contamination with cultured Batrachochytrium dendrobatidis (Bd) or after handling heavily Bd-infected Xenopus laevis with layered cotton and nitrile gloves. Bleach eliminated detectable Bd DNA from culture-contaminated nitrile gloves, but gloves retained detectable Bd DNA following ethanol disinfection. After handling a Bd-infected frog, Bd DNA contamination was greatly reduced by removal of the outer cotton glove, after which either bleach decontamination or ethanol decontamination followed by drying hands with a paper towel lowered Bd DNA below the detection threshold of our assay. These results provide new options to prevent pathogen or DNA cross-contamination, especially when handling slippery aquatic organisms. However, tradeoffs should be considered when selecting an animal handling procedure, such as the potential for cotton gloves to abrade amphibian skin or disrupt skin mucus. Disposing of gloves between animals should remain the gold standard for maintaining biosecurity in sensitive situations.
与水生生物打交道通常需要在一次工作中处理多个个体,这可能会导致活病原体或 DNA 的交叉感染。大多数研究人员通过在动物之间丢弃手套来解决这个问题。然而,这样做会产生过多的废物,而且对于处理非常滑溜的动物可能不切实际,因为使用棉手套可能更容易处理这些动物。我们测试了在棉手套或丁腈手套受到培养的巴特拉氏菌(Bd)污染后,或在使用分层棉手套和丁腈手套处理受到严重 Bd 感染的爪蟾后对其进行净化的方法。漂白剂消除了受培养物污染的丁腈手套中可检测到的 Bd DNA,但乙醇消毒后手套仍可检测到 Bd DNA。在处理受 Bd 感染的青蛙后,脱掉外层棉手套可大大减少 Bd DNA 污染,之后无论是漂白剂去污还是乙醇去污,再用纸巾擦干双手,都可将 Bd DNA 降低到检测阈值以下。这些结果为防止病原体或 DNA 交叉污染提供了新的选择,尤其是在处理湿滑的水生生物时。不过,在选择动物处理程序时应考虑折衷因素,如棉手套可能会磨损两栖动物皮肤或破坏皮肤粘液。在动物之间丢弃手套仍应是在敏感情况下保持生物安全的黄金标准。
{"title":"Glove decontamination procedures to prevent pathogen and DNA cross-contamination among frogs.","authors":"James E Noelker, Vitoria Abreu Ruozzi, Hunter M Craig, Jason P Sckrabulis, Thomas R Raffel","doi":"10.3354/dao03793","DOIUrl":"https://doi.org/10.3354/dao03793","url":null,"abstract":"<p><p>Working with aquatic organisms often requires handling multiple individuals in a single session, potentially resulting in cross-contamination by live pathogens or DNA. Most researchers address this problem by disposing of gloves between animals. However, this generates excessive waste and may be impractical for processing very slippery animals that might be easier to handle with cotton gloves. We tested methods to decontaminate cotton or nitrile gloves after contamination with cultured Batrachochytrium dendrobatidis (Bd) or after handling heavily Bd-infected Xenopus laevis with layered cotton and nitrile gloves. Bleach eliminated detectable Bd DNA from culture-contaminated nitrile gloves, but gloves retained detectable Bd DNA following ethanol disinfection. After handling a Bd-infected frog, Bd DNA contamination was greatly reduced by removal of the outer cotton glove, after which either bleach decontamination or ethanol decontamination followed by drying hands with a paper towel lowered Bd DNA below the detection threshold of our assay. These results provide new options to prevent pathogen or DNA cross-contamination, especially when handling slippery aquatic organisms. However, tradeoffs should be considered when selecting an animal handling procedure, such as the potential for cotton gloves to abrade amphibian skin or disrupt skin mucus. Disposing of gloves between animals should remain the gold standard for maintaining biosecurity in sensitive situations.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"158 ","pages":"173-178"},"PeriodicalIF":1.4,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shokoofeh Shamsi, František Moravec, Diane P Barton
Information about parasites of cetaceans in Australia is scarce and mostly opportunistic. The morphology of specimens of the metastrongyloid Stenurus globicephalae Baylis & Daubney, 1925 (Nematoda: Pseudaliidae), collected from the blowhole of a pilot whale Globicephala macrorhynchus Gray, 1846 (Cetacea: Delphinidae) off northern Tasmania, Australia, were studied. Light and scanning electron microscopical examinations enabled a detailed redescription of this nematode species, including corrections of some inaccuracies in previous species descriptions, particularly those concerning cephalic and caudal structures. The presence of numerous ventrolateral oblique muscle bands, characteristic of the males of S. globicephalae, is reported for the first time. This is the second finding of this nematode parasite, in a different host species, in Tasmania.
{"title":"Occurrence of Stenurus globicephalae (Nematoda: Pseudaliidae) in the blowhole of Globicephala macrorhynchus (Cetacea: Delphinidae) in Tasmania, Australia.","authors":"Shokoofeh Shamsi, František Moravec, Diane P Barton","doi":"10.3354/dao03791","DOIUrl":"https://doi.org/10.3354/dao03791","url":null,"abstract":"<p><p>Information about parasites of cetaceans in Australia is scarce and mostly opportunistic. The morphology of specimens of the metastrongyloid Stenurus globicephalae Baylis & Daubney, 1925 (Nematoda: Pseudaliidae), collected from the blowhole of a pilot whale Globicephala macrorhynchus Gray, 1846 (Cetacea: Delphinidae) off northern Tasmania, Australia, were studied. Light and scanning electron microscopical examinations enabled a detailed redescription of this nematode species, including corrections of some inaccuracies in previous species descriptions, particularly those concerning cephalic and caudal structures. The presence of numerous ventrolateral oblique muscle bands, characteristic of the males of S. globicephalae, is reported for the first time. This is the second finding of this nematode parasite, in a different host species, in Tasmania.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"158 ","pages":"115-122"},"PeriodicalIF":1.4,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACT: Climate change and the associated environmental temperature fluctuations are contributing to increases in the frequency and severity of disease outbreaks in both wild and farmed aquatic species. This has a significant impact on biodiversity and also puts global food production systems, such as aquaculture, at risk. Most infections are the result of complex interactions between multiple pathogens, and understanding these interactions and their co-evolutionary mechanisms is crucial for developing effective diagnosis and control strategies. In this review, we discuss current knowledge on bacteria-bacteria, virus-virus, and bacterial and viral co-infections in aquaculture as well as their co-evolution in the context of global warming. We also propose a framework and different novel methods (e.g. advanced molecular tools such as digital PCR and next-generation sequencing) to (1) precisely identify overlooked co-infections, (2) gain an understanding of the co-infection dynamics and mechanisms by knowing species interactions, and (3) facilitate the development multi-pathogen preventive measures such as polyvalent vaccines. As aquaculture disease outbreaks are forecasted to increase both due to the intensification of practices to meet the protein demand of the increasing global population and as a result of global warming, understanding and treating co-infections in aquatic species has important implications for global food security and the economy.
{"title":"Bacterial and viral co-infections in aquaculture under climate warming: co-evolutionary implications, diagnosis, and treatment","authors":"Sarahí Vega-Heredia, Ivone Giffard-Mena, Miriam Reverter","doi":"10.3354/dao03778","DOIUrl":"https://doi.org/10.3354/dao03778","url":null,"abstract":"ABSTRACT: Climate change and the associated environmental temperature fluctuations are contributing to increases in the frequency and severity of disease outbreaks in both wild and farmed aquatic species. This has a significant impact on biodiversity and also puts global food production systems, such as aquaculture, at risk. Most infections are the result of complex interactions between multiple pathogens, and understanding these interactions and their co-evolutionary mechanisms is crucial for developing effective diagnosis and control strategies. In this review, we discuss current knowledge on bacteria-bacteria, virus-virus, and bacterial and viral co-infections in aquaculture as well as their co-evolution in the context of global warming. We also propose a framework and different novel methods (e.g. advanced molecular tools such as digital PCR and next-generation sequencing) to (1) precisely identify overlooked co-infections, (2) gain an understanding of the co-infection dynamics and mechanisms by knowing species interactions, and (3) facilitate the development multi-pathogen preventive measures such as polyvalent vaccines. As aquaculture disease outbreaks are forecasted to increase both due to the intensification of practices to meet the protein demand of the increasing global population and as a result of global warming, understanding and treating co-infections in aquatic species has important implications for global food security and the economy.","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"52 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140591096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephen C Ives, Alexander G Murray, John D Armstrong
Parasitic sea lice (Copepoda: Caligidae) colonising marine salmonid (Salmoniformes: Salmonidae) aquaculture production facilities have been implicated as a possible pressure on wild salmon and sea trout populations. This investigation uses monitoring data from the mainland west coast and Western Isles of Scotland to estimate the association of the abundance of adult female Lepeophtheirus salmonis (Krøyer) colonising farmed Atlantic salmon Salmo salar L. with the occurrence of juvenile and mobile L. salmonis on wild sea trout, anadromous S. trutta L. The associations were evaluated using generalised linear mixed models incorporating farmed adult female salmon louse abundances which are temporally lagged relative to dependent wild trout values. The pattern of lags, which is consistent with time for L. salmonis development between egg and infective stage, was evaluated using model deviances. A significant positive association is identified between adult female L. salmonis abundance on farms and juvenile L. salmonis on wild trout. This association is consistent with a causal relationship in which increases in the number of L. salmonis copepodids originating from lice colonising farmed Atlantic salmon cause an increase of L. salmonis abundance on wild sea trout.
寄生在海水鲑科(鲑形目:鲑鱼科)水产养殖生产设施中的寄生海虱(桡足目:海虱科)被认为可能会对野生鲑鱼和海鳟种群造成压力。本研究利用苏格兰大陆西海岸和西岛的监测数据,估算了养殖大西洋鲑鱼(Salmo salar L.)上的成年雌性大马哈鱼虱(Lepeophtheirus salmonis (Krøyer))数量与野生海鳟(溯河产卵的 S. trutta L.)上幼年和移动大马哈鱼虱发生量之间的关联。滞后模式与鲑虱从卵到感染期的发育时间一致,使用模型偏差进行评估。养殖场中成年雌性 L. salmonis 数量与野生鳟鱼中幼年 L. salmonis 数量之间存在明显的正相关关系。这种关联符合一种因果关系,即养殖大西洋鲑鱼上的虱目鲑桡足类数量增加会导致野生海鳟上的鲑桡足类数量增加。
{"title":"Association of ectoparasite Lepeophtheirus salmonis counts on farmed Atlantic salmon and wild sea trout in Scotland.","authors":"Stephen C Ives, Alexander G Murray, John D Armstrong","doi":"10.3354/dao03774","DOIUrl":"10.3354/dao03774","url":null,"abstract":"<p><p>Parasitic sea lice (Copepoda: Caligidae) colonising marine salmonid (Salmoniformes: Salmonidae) aquaculture production facilities have been implicated as a possible pressure on wild salmon and sea trout populations. This investigation uses monitoring data from the mainland west coast and Western Isles of Scotland to estimate the association of the abundance of adult female Lepeophtheirus salmonis (Krøyer) colonising farmed Atlantic salmon Salmo salar L. with the occurrence of juvenile and mobile L. salmonis on wild sea trout, anadromous S. trutta L. The associations were evaluated using generalised linear mixed models incorporating farmed adult female salmon louse abundances which are temporally lagged relative to dependent wild trout values. The pattern of lags, which is consistent with time for L. salmonis development between egg and infective stage, was evaluated using model deviances. A significant positive association is identified between adult female L. salmonis abundance on farms and juvenile L. salmonis on wild trout. This association is consistent with a causal relationship in which increases in the number of L. salmonis copepodids originating from lice colonising farmed Atlantic salmon cause an increase of L. salmonis abundance on wild sea trout.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"157 ","pages":"95-106"},"PeriodicalIF":1.4,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}