Pub Date : 2021-04-19DOI: 10.1109/LAEDC51812.2021.9437909
J. Sousa, J. Martino, P. Agopian
This paper presents a simple analytical modelling of a Electronically Tunable Potentiometer (ETP) circuit, made of a pseudo-resistor pair and a feedback mechanism that keeps resistance invariant to common mode voltage. The modelling utilizes the first order quadratic equations for the MOS transistor. In order to validate the analytical model, a Verilog-A model was written using the same MOS equations, and later matched to the ibm 130nm technology node resulting in a satisfactory approximation, with relative errors within 15%. Analysis of the ETP control voltage, pseudo-resistor current and pseudo-resistor resistance using the simple model were performed as a function of body factor. When the body factor decreases (better gate to channel electrostatic coupling) the pseudo-resistance increases for the same silicon chip area.
{"title":"Simple Analytical Modelling of an Electronically Tunable Potentiometer and Body Factor Influence","authors":"J. Sousa, J. Martino, P. Agopian","doi":"10.1109/LAEDC51812.2021.9437909","DOIUrl":"https://doi.org/10.1109/LAEDC51812.2021.9437909","url":null,"abstract":"This paper presents a simple analytical modelling of a Electronically Tunable Potentiometer (ETP) circuit, made of a pseudo-resistor pair and a feedback mechanism that keeps resistance invariant to common mode voltage. The modelling utilizes the first order quadratic equations for the MOS transistor. In order to validate the analytical model, a Verilog-A model was written using the same MOS equations, and later matched to the ibm 130nm technology node resulting in a satisfactory approximation, with relative errors within 15%. Analysis of the ETP control voltage, pseudo-resistor current and pseudo-resistor resistance using the simple model were performed as a function of body factor. When the body factor decreases (better gate to channel electrostatic coupling) the pseudo-resistance increases for the same silicon chip area.","PeriodicalId":112590,"journal":{"name":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134043301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-19DOI: 10.1109/LAEDC51812.2021.9437937
C. Macambira, P. Agopian, J. Martino
In this paper, the sensitivity of the fringing field n-type tunneling field-effect transistor biosensor (Bio-nTFET) was investigated over the influence of positive fixed charges density (QBio) and dielectric constant k, in the source underlap (LUS) region. Numerical simulations were performed using Sentaurus TCAD device simulator. The presence of different biomolecules, in the LUS region, affects the drain current of the on-state (IOn). It is shown that the sensitivity of the Bio-nTFET increases 3 orders of magnitude from k = 1 to k = 10 due to the improved fringing field that reduces the tunneling length resulting in a higher tunneling current. The sensibility also increases for a higher values of QBio. The highest sensitivity value obtained in this work was 6.103 A/A for QBio = 1.1012 cm-2 and k = 10. The proposed device shows great potential as a biosensor based on TFET devices.
{"title":"Impact of Positive Charges in a Fringing Field Bio-Tunnel-FET Device with Source Underlap","authors":"C. Macambira, P. Agopian, J. Martino","doi":"10.1109/LAEDC51812.2021.9437937","DOIUrl":"https://doi.org/10.1109/LAEDC51812.2021.9437937","url":null,"abstract":"In this paper, the sensitivity of the fringing field n-type tunneling field-effect transistor biosensor (Bio-nTFET) was investigated over the influence of positive fixed charges density (QBio) and dielectric constant k, in the source underlap (LUS) region. Numerical simulations were performed using Sentaurus TCAD device simulator. The presence of different biomolecules, in the LUS region, affects the drain current of the on-state (IOn). It is shown that the sensitivity of the Bio-nTFET increases 3 orders of magnitude from k = 1 to k = 10 due to the improved fringing field that reduces the tunneling length resulting in a higher tunneling current. The sensibility also increases for a higher values of QBio. The highest sensitivity value obtained in this work was 6.103 A/A for QBio = 1.1012 cm-2 and k = 10. The proposed device shows great potential as a biosensor based on TFET devices.","PeriodicalId":112590,"journal":{"name":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115359296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-19DOI: 10.1109/LAEDC51812.2021.9437956
Aarti Rathi, Purushothman Srinivasan, F. Guarín, A. Dixit
In this paper, a Power Amplifier (PA) cell comprised of a single n- channel PDSOI transistor fabricated in a 45-nm RFSOI technology is used for the reliability study. DC stress bias at gate and drain terminals are applied for reproducing practical conditions for a PA. The impact of varying DC stress at the drain terminal is studied thoroughly by analyzing DC and RF performance. Impact of hot carrier degradation through DC, small, and large signal performance is studied. Perspectives of the mechanism for the generation of defects are studied through the time slope exponent method and behavior of transconductance characteristics for pre-and post- stress instances.
{"title":"Impact of Hot Carrier Degradation on DC and RF Performance of 45-nm Power Amplifier Cell","authors":"Aarti Rathi, Purushothman Srinivasan, F. Guarín, A. Dixit","doi":"10.1109/LAEDC51812.2021.9437956","DOIUrl":"https://doi.org/10.1109/LAEDC51812.2021.9437956","url":null,"abstract":"In this paper, a Power Amplifier (PA) cell comprised of a single n- channel PDSOI transistor fabricated in a 45-nm RFSOI technology is used for the reliability study. DC stress bias at gate and drain terminals are applied for reproducing practical conditions for a PA. The impact of varying DC stress at the drain terminal is studied thoroughly by analyzing DC and RF performance. Impact of hot carrier degradation through DC, small, and large signal performance is studied. Perspectives of the mechanism for the generation of defects are studied through the time slope exponent method and behavior of transconductance characteristics for pre-and post- stress instances.","PeriodicalId":112590,"journal":{"name":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123876103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-19DOI: 10.1109/LAEDC51812.2021.9437926
Khoirom Johnson Singh, A. Bulusu, Sudeb Dasgupta
The idea of harnessing the negative capacitance signature (NCS) effect in a ferroelectric (FE) material is a recent entry in the world of nanoelectronics. There is an urgent need to harness this effect at a minimum supply voltage (VA). Therefore, in this paper, we have investigated the transient NCS response in a series resistor (R)-organic FE (OFE) (RCOFE) circuit at ±0.4 V employing a well-calibrated multidomain Ginzburg-Landau-Khalatnikov model in Sentaurus technology computer-aided design (STCAD) environment. A remarkable average coercive voltage reduction of about 69 to 90.16 % is achieved concerning different literature reports. The proposed OFE gate stack (OFEGS) can capture the NCS effect even at ±0.4 V, while its counterpart FE hafnium dioxide (HfO2) based gate stack fails to harness the NCS and behaves like a positive linear capacitor. The various influence of the Landau parameters, R, and switching resistivity (ρOFE) on the transient NCS behavior are significantly investigated. We found that the NCS response time (δt) and the NCS voltage window (δVNCS) accentuate as R increases. The δt in the proposed OFEGS is much faster (99.77 to ~99.88 %) than its state-of-the-art counterparts. Finally, our OFEGS can capture the maximum δVNCS by coming close to the ideal Landau path with a negligible deviation of about ±0.009 V at zero FE polarization. Therefore, the proposed device capturing NCS with a small VA of ±0.4 V, total switched charge density of 2.54 µC/cm2, and lower energy dissipation of 0.95 fJ could act as a rescuer for many standard transistors from the Boltzmann’s Tyranny.
{"title":"Ultrascaled Multidomain P(VDF-TrFE) Organic Ferroelectric Gate Stack to the Rescue","authors":"Khoirom Johnson Singh, A. Bulusu, Sudeb Dasgupta","doi":"10.1109/LAEDC51812.2021.9437926","DOIUrl":"https://doi.org/10.1109/LAEDC51812.2021.9437926","url":null,"abstract":"The idea of harnessing the negative capacitance signature (NCS) effect in a ferroelectric (FE) material is a recent entry in the world of nanoelectronics. There is an urgent need to harness this effect at a minimum supply voltage (VA). Therefore, in this paper, we have investigated the transient NCS response in a series resistor (R)-organic FE (OFE) (RCOFE) circuit at ±0.4 V employing a well-calibrated multidomain Ginzburg-Landau-Khalatnikov model in Sentaurus technology computer-aided design (STCAD) environment. A remarkable average coercive voltage reduction of about 69 to 90.16 % is achieved concerning different literature reports. The proposed OFE gate stack (OFEGS) can capture the NCS effect even at ±0.4 V, while its counterpart FE hafnium dioxide (HfO2) based gate stack fails to harness the NCS and behaves like a positive linear capacitor. The various influence of the Landau parameters, R, and switching resistivity (ρOFE) on the transient NCS behavior are significantly investigated. We found that the NCS response time (δt) and the NCS voltage window (δVNCS) accentuate as R increases. The δt in the proposed OFEGS is much faster (99.77 to ~99.88 %) than its state-of-the-art counterparts. Finally, our OFEGS can capture the maximum δVNCS by coming close to the ideal Landau path with a negligible deviation of about ±0.009 V at zero FE polarization. Therefore, the proposed device capturing NCS with a small VA of ±0.4 V, total switched charge density of 2.54 µC/cm2, and lower energy dissipation of 0.95 fJ could act as a rescuer for many standard transistors from the Boltzmann’s Tyranny.","PeriodicalId":112590,"journal":{"name":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123199423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-19DOI: 10.1109/LAEDC51812.2021.9437949
J. Weinbub, M. Ballicchia, M. Nedjalkov, S. Selberherr
Electron quantum optics offers fascinating insights into the dynamic electron evolution processes governed by quantum effects, attractive for novel electronic processing or sensing devices. A key requirement for these developments is to coherently and electromagnetically confine and control the electron evolution process and the ability to correctly describe the manifesting quantum effects related to the wave nature of the electron, e.g., interference. This work provides an overview of research conducted on using specifically shaped electric and magnetic fields to influence the electron evolution in nanostructures. The Wigner based quantum transport modeling approach is used to simulate the transport and to highlight quantum effects.
{"title":"Electromagnetic Coherent Electron Control","authors":"J. Weinbub, M. Ballicchia, M. Nedjalkov, S. Selberherr","doi":"10.1109/LAEDC51812.2021.9437949","DOIUrl":"https://doi.org/10.1109/LAEDC51812.2021.9437949","url":null,"abstract":"Electron quantum optics offers fascinating insights into the dynamic electron evolution processes governed by quantum effects, attractive for novel electronic processing or sensing devices. A key requirement for these developments is to coherently and electromagnetically confine and control the electron evolution process and the ability to correctly describe the manifesting quantum effects related to the wave nature of the electron, e.g., interference. This work provides an overview of research conducted on using specifically shaped electric and magnetic fields to influence the electron evolution in nanostructures. The Wigner based quantum transport modeling approach is used to simulate the transport and to highlight quantum effects.","PeriodicalId":112590,"journal":{"name":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","volume":"67 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132939423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-02-01DOI: 10.1109/laedc49063.2020.9073204
{"title":"Special Message from the Conference Chair","authors":"","doi":"10.1109/laedc49063.2020.9073204","DOIUrl":"https://doi.org/10.1109/laedc49063.2020.9073204","url":null,"abstract":"","PeriodicalId":112590,"journal":{"name":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129588992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.1109/laedc51812.2021.9437911
{"title":"Schedule Page","authors":"","doi":"10.1109/laedc51812.2021.9437911","DOIUrl":"https://doi.org/10.1109/laedc51812.2021.9437911","url":null,"abstract":"","PeriodicalId":112590,"journal":{"name":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128807683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.1109/laedc51812.2021.9437936
{"title":"[LAEDC 2021 Front cover]","authors":"","doi":"10.1109/laedc51812.2021.9437936","DOIUrl":"https://doi.org/10.1109/laedc51812.2021.9437936","url":null,"abstract":"","PeriodicalId":112590,"journal":{"name":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121893352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.1109/laedc51812.2021.9437908
{"title":"LAEDC 2021 Index","authors":"","doi":"10.1109/laedc51812.2021.9437908","DOIUrl":"https://doi.org/10.1109/laedc51812.2021.9437908","url":null,"abstract":"","PeriodicalId":112590,"journal":{"name":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132621315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}