The steel plate shear walls (SPSWs) have been proven effective in reinforced concrete frames (RCFs) as a lateral force-resistant structure. Despite of advancements, accurately predicting the ultimate shear capacity of RCFs with SPSWs remains challenging using current simplified models. Additionally, the flexural capacity design procedure for the boundary elements (beams and columns) in previous studies of RCF-SPSWs involved intricate iterative procedures, hindering its widespread implementation. To address the two issues, this paper investigates the pushover responses and the plate-frame interaction (PFI) of an RCF-SPSWs system using theoretical and numerical methods. There are three main contributions. First, a theoretical model of ultimate shear capacity for RCF-SPSWs is proposed, which can also be used to predict shear contributions of boundary frames in RCF-SPSWs. Calculation errors for ultimate shear capacity of RCF-SPSWs and shear contribution from the boundary frame are only 3.7% and 6.7% respectively, which are reduced dramatically compared with the traditional model. A simplified schematic diagram for the global collapse mechanism (uniform distribution of plastic hinges within a structure) of RCF-SPSWs is developed to facilitate the calculation of internal work and reaction forces. Secondly, a flexural capacity design method for the boundary elements to avoid in-span plastic hinges is proposed. The proposed method enables the achievement of direct estimation of the flexural demands that could trigger a global collapse mechanism, all without intricate iterative procedures. The applicability of current assumptions for the design of steel boundary frame in RCF-SPSWs system is discussed, and engineering suggestions are provided to ensure safer and more economic designs. Comparison results confirmed the applicability of the proposed design method, which can be adopted to achieve the global collapse mechanism for RCF-SPSW system. Thirdly, impacts of yielding panel actions on the flexural capacity of boundary elements of RCF-SPSWs are clarified. Comparison results demonstrated that adding SPSWs to an RCF alters the axial force on boundary elements and significantly impacts the flexural capacity. A design suggestion is made to emphasize the importance of avoiding the balanced failure of boundary elements. The proposed theoretical model can be used to economize the cross-section of boundary elements in RCF-SPSWs system under seismic loads due to accurate prediction of their shear contribution; the proposed flexural capacity design method can achieve a global collapse mechanism, and thus the structural safety and energy dissipation capacity are improved; moreover, the building design efficiency is also improved due to avoidance of intricate iterative procedures.
{"title":"Theoretical model of ultimate shear capacity and flexural capacity design method of boundary elements for reinforced concrete frames with steel plate shear walls","authors":"Yonghui An, Shentong Lin, Jinping Ou","doi":"10.1002/eqe.4234","DOIUrl":"https://doi.org/10.1002/eqe.4234","url":null,"abstract":"<p>The steel plate shear walls (SPSWs) have been proven effective in reinforced concrete frames (RCFs) as a lateral force-resistant structure. Despite of advancements, accurately predicting the ultimate shear capacity of RCFs with SPSWs remains challenging using current simplified models. Additionally, the flexural capacity design procedure for the boundary elements (beams and columns) in previous studies of RCF-SPSWs involved intricate iterative procedures, hindering its widespread implementation. To address the two issues, this paper investigates the pushover responses and the plate-frame interaction (PFI) of an RCF-SPSWs system using theoretical and numerical methods. There are three main contributions. First, a theoretical model of ultimate shear capacity for RCF-SPSWs is proposed, which can also be used to predict shear contributions of boundary frames in RCF-SPSWs. Calculation errors for ultimate shear capacity of RCF-SPSWs and shear contribution from the boundary frame are only 3.7% and 6.7% respectively, which are reduced dramatically compared with the traditional model. A simplified schematic diagram for the global collapse mechanism (uniform distribution of plastic hinges within a structure) of RCF-SPSWs is developed to facilitate the calculation of internal work and reaction forces. Secondly, a flexural capacity design method for the boundary elements to avoid in-span plastic hinges is proposed. The proposed method enables the achievement of direct estimation of the flexural demands that could trigger a global collapse mechanism, all without intricate iterative procedures. The applicability of current assumptions for the design of steel boundary frame in RCF-SPSWs system is discussed, and engineering suggestions are provided to ensure safer and more economic designs. Comparison results confirmed the applicability of the proposed design method, which can be adopted to achieve the global collapse mechanism for RCF-SPSW system. Thirdly, impacts of yielding panel actions on the flexural capacity of boundary elements of RCF-SPSWs are clarified. Comparison results demonstrated that adding SPSWs to an RCF alters the axial force on boundary elements and significantly impacts the flexural capacity. A design suggestion is made to emphasize the importance of avoiding the balanced failure of boundary elements. The proposed theoretical model can be used to economize the cross-section of boundary elements in RCF-SPSWs system under seismic loads due to accurate prediction of their shear contribution; the proposed flexural capacity design method can achieve a global collapse mechanism, and thus the structural safety and energy dissipation capacity are improved; moreover, the building design efficiency is also improved due to avoidance of intricate iterative procedures.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"53 15","pages":"4604-4626"},"PeriodicalIF":4.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To manage structural responses under various external forces, the increasing incorporation of seismic isolation and supplementary damping systems in modern civil engineering necessitates post-installation performance assessments. The challenge of accurately inferring system information from these complex dynamical structures, especially with limited sensor deployment, could be significant. From the perspective of solving inverse problems, this challenge hinges on constructing an input-output mapping that assures unique solutions, achievable through theoretical observability or symmetry analysis. We introduce a unified algorithm framework designed to accommodate various definitions of Lie derivatives, specifically for observability and symmetry analysis in dynamic systems with affine, non-affine, and unknown inputs—capabilities not fully achieved in previous studies. We demonstrate its application across typical dynamic scenarios, including both linear and nonlinear examples. We also present a numerical example featuring complex isolation systems with limited sensor layouts, illustrating how uniform convergence can be achieved in estimating all system states when an observable input-output mapping is utilized. Furthermore, an experimental example employing shaking table tests showcases the potential complications that arise when an unobservable input-output mapping is used.
{"title":"Enhancing operational performance assessment of structures with seismic response modification devices: The role of observability and symmetry analysis under limited sensor deployment","authors":"Xinhao He, Yu Lin, Dan Li, Shigeki Unjoh","doi":"10.1002/eqe.4235","DOIUrl":"https://doi.org/10.1002/eqe.4235","url":null,"abstract":"<p>To manage structural responses under various external forces, the increasing incorporation of seismic isolation and supplementary damping systems in modern civil engineering necessitates post-installation performance assessments. The challenge of accurately inferring system information from these complex dynamical structures, especially with limited sensor deployment, could be significant. From the perspective of solving inverse problems, this challenge hinges on constructing an input-output mapping that assures unique solutions, achievable through theoretical observability or symmetry analysis. We introduce a unified algorithm framework designed to accommodate various definitions of Lie derivatives, specifically for observability and symmetry analysis in dynamic systems with affine, non-affine, and unknown inputs—capabilities not fully achieved in previous studies. We demonstrate its application across typical dynamic scenarios, including both linear and nonlinear examples. We also present a numerical example featuring complex isolation systems with limited sensor layouts, illustrating how uniform convergence can be achieved in estimating all system states when an observable input-output mapping is utilized. Furthermore, an experimental example employing shaking table tests showcases the potential complications that arise when an unobservable input-output mapping is used.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"53 15","pages":"4581-4603"},"PeriodicalIF":4.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eqe.4235","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaoqiang Qu, Qigang Liang, Luyu Li, Xiaoyu Bai, Jinping Ou
Tuned Mass Dampers (TMDs) are commonly used passive control devices in practical engineering applications. However, motion-limiting stoppers are usually installed to control the excessive TMD displacement due to the building space limitation, resulting in piecewise nonlinearity and detuning of TMD. This paper studies the influence of elastic motion-limiting stoppers on the optimal design of TMDs through a piecewise stiffness TMD (PSTMD) model. Performance of a PSTMD with classical design is first investigated and proven to be ineffective. To optimize the PSTMD parameters, the motion of PSTMD is decoupled from the controlled structure, and the frequency response equation of PSTMD is obtained analytically through the averaging method. Subsequently, the solution of the optimal design frequency for PSTMD is transformed into the solution of the jump frequency in the frequency response equation. With the optimal frequency of PSTMDs, the optimal damping and control performance of PSTMDs are discussed and analyzed compared with classical linear design, which fully showcases the effectiveness of the novel design method. Finally, the effectiveness of the novel design method is verified using a nine-story benchmark frame structure, and the results demonstrate that the control performance of the optimal PSTMD can be improved by nearly