Pub Date : 2024-01-15DOI: 10.1186/s13717-024-00483-y
Xiaohong Yan, Xiliang Li, Ke Jin
The priority effect of plant arrival is a key driver of community assembly and ecosystem succession during the restoration of degraded plant communities. However, the significance of the arrival order of different plant functional groups and their interactions with community assemblies remains unclear. Using a phytotron experiment with three fully crossed factors, we investigated the underlying mechanisms of priority effects and their relationships with the biomass and biodiversity effects in mixed plant communities by manipulating the order of arrival of species, isolation of roots, and removal of specific plants. The results showed that the strength and direction of priority effects were influenced by arrival order, root interactions, asymmetric competition among species, and their interactions. The identities of early and late-sown species also determined the magnitude of priority effects. The priority effects were stronger in grass-first (24.76%) and legume-first communities (24.48%) than in forb-first communities. The pot biomass of the different priority treatments was highest in grass-first (5.85 g), followed by legume-first (3.94 g) and forb-first (2.48 g). The order of arrival in the mixture significantly affected the net biodiversity effects (P < 0.001), which were driven by dominance effects. The community had lower overall biomass when forbs were sown first, whereas the species grown later had fewer costs with an increased overall net benefit for the resulting community. Our results emphasize that root interactions and asymmetric competition are vital determinants of order-specific priority effects in community assemblies. In addition, the importance of the priority effect of forbs sown first is related to community assembly, which may be a key determinant in successfully establishing a highly diverse community in the early stages of restoration. Species with weak competition should be considered in the early stage of community assembly. The rational use of the priority effect is conducive to improving the quality and efficiency of ecological restoration efforts.
{"title":"Priority effects of forbs arriving early: the role of root interaction and asymmetric competition","authors":"Xiaohong Yan, Xiliang Li, Ke Jin","doi":"10.1186/s13717-024-00483-y","DOIUrl":"https://doi.org/10.1186/s13717-024-00483-y","url":null,"abstract":"The priority effect of plant arrival is a key driver of community assembly and ecosystem succession during the restoration of degraded plant communities. However, the significance of the arrival order of different plant functional groups and their interactions with community assemblies remains unclear. Using a phytotron experiment with three fully crossed factors, we investigated the underlying mechanisms of priority effects and their relationships with the biomass and biodiversity effects in mixed plant communities by manipulating the order of arrival of species, isolation of roots, and removal of specific plants. The results showed that the strength and direction of priority effects were influenced by arrival order, root interactions, asymmetric competition among species, and their interactions. The identities of early and late-sown species also determined the magnitude of priority effects. The priority effects were stronger in grass-first (24.76%) and legume-first communities (24.48%) than in forb-first communities. The pot biomass of the different priority treatments was highest in grass-first (5.85 g), followed by legume-first (3.94 g) and forb-first (2.48 g). The order of arrival in the mixture significantly affected the net biodiversity effects (P < 0.001), which were driven by dominance effects. The community had lower overall biomass when forbs were sown first, whereas the species grown later had fewer costs with an increased overall net benefit for the resulting community. Our results emphasize that root interactions and asymmetric competition are vital determinants of order-specific priority effects in community assemblies. In addition, the importance of the priority effect of forbs sown first is related to community assembly, which may be a key determinant in successfully establishing a highly diverse community in the early stages of restoration. Species with weak competition should be considered in the early stage of community assembly. The rational use of the priority effect is conducive to improving the quality and efficiency of ecological restoration efforts.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"14 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139469075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-09DOI: 10.1186/s13717-023-00469-2
Yuxin Zhang, Shan Gao, Hongtao Jia, Tao Sun, Shunan Zheng, Shihang Wu, Yuebing Sun
Cadmium (Cd) pollution in agricultural soils has become a priority environmental concern globally. A reasonable application of passivators is critical to address the problem. In this study, we examined the remediation effects of rice husk biochar (rBC) and sepiolite (Sep) as single and combined (rBC + Sep) treatments on Cd pollution in a weakly alkaline soil using three maize cultivars (Liyu 16, Zhengdan 958, and Sanbei 218) as test crops. We also explained the mechanisms involved in the remediation effects. The pseudo-second-order kinetic equation and Langmuir model could well describe the adsorption process of rBC + Sep for Cd2+. Compared with the control treatment (CK), soil available Cd concentration decreased by 29.51–36.34% under rBC + Sep treatment (p< 0.05) and the Cd concentrations in maize grains of Liyu 16, Zhengdan 958, and Sanbei 218 decreased by 38.08–47.85%, 37.25–45.61%, and 33.96–46.15%, respectively (p< 0.05). Following passivation treatment, soil available Cd concentration decreased and gradually changed from the exchangeable and carbonate binding forms to the Fe/Mn oxide and residual forms. The bioconcentration factors of Liyu 16 (0.05–0.09) and Sanbei 218 (0.05–0.09) were lower than those of Zhengdan 958 (0.07–0.13). In addition, rBC +Sep treatment increased soil pH and soil electrical conductivity, but the differences were not significant (p> 0.05). The application of 0.2% rBC + 0.5% Sep composite passivation material to weakly alkaline Cd-contaminated soil can effectively reduce the Cd concentration of soil and maize.
{"title":"Passivation remediation of weakly alkaline Cd-contaminated soils using combined treatments of biochar and sepiolite","authors":"Yuxin Zhang, Shan Gao, Hongtao Jia, Tao Sun, Shunan Zheng, Shihang Wu, Yuebing Sun","doi":"10.1186/s13717-023-00469-2","DOIUrl":"https://doi.org/10.1186/s13717-023-00469-2","url":null,"abstract":"Cadmium (Cd) pollution in agricultural soils has become a priority environmental concern globally. A reasonable application of passivators is critical to address the problem. In this study, we examined the remediation effects of rice husk biochar (rBC) and sepiolite (Sep) as single and combined (rBC + Sep) treatments on Cd pollution in a weakly alkaline soil using three maize cultivars (Liyu 16, Zhengdan 958, and Sanbei 218) as test crops. We also explained the mechanisms involved in the remediation effects. The pseudo-second-order kinetic equation and Langmuir model could well describe the adsorption process of rBC + Sep for Cd2+. Compared with the control treatment (CK), soil available Cd concentration decreased by 29.51–36.34% under rBC + Sep treatment (p< 0.05) and the Cd concentrations in maize grains of Liyu 16, Zhengdan 958, and Sanbei 218 decreased by 38.08–47.85%, 37.25–45.61%, and 33.96–46.15%, respectively (p< 0.05). Following passivation treatment, soil available Cd concentration decreased and gradually changed from the exchangeable and carbonate binding forms to the Fe/Mn oxide and residual forms. The bioconcentration factors of Liyu 16 (0.05–0.09) and Sanbei 218 (0.05–0.09) were lower than those of Zhengdan 958 (0.07–0.13). In addition, rBC +Sep treatment increased soil pH and soil electrical conductivity, but the differences were not significant (p> 0.05). The application of 0.2% rBC + 0.5% Sep composite passivation material to weakly alkaline Cd-contaminated soil can effectively reduce the Cd concentration of soil and maize.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"254 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139412696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-08DOI: 10.1186/s13717-023-00479-0
Verónica Loewe-Muñoz, Rodrigo del Río Millar, Claudia Delard Rodriguez, Mónica Balzarini
Stone pine (Pinus pinea), a drought-resistant species, has significant socio-economic benefits and increasing interest for the establishment of productive plantations in several countries, especially in a climate change context. Monitoring hourly stem diameter variations contributes to the understanding of the tree-growth response to changes in environmental conditions and management. By monitoring the diameter expansion of tree stems, high-resolution band dendrometers were used to study the development of adult trees growing in a semi-arid coastal environment of central Chile under fertilized and non-fertilized soil conditions through the span of a year. Short cycles (< 21 h) were few in fertilized and non-fertilized trees (6 and 4, respectively), whereas long cycles (> 28 h) occurred at a higher frequency in fertilized trees (16 vs 6). Most of the circadian cycles were regular (24 ± 3 h). The longest cycle duration (59 h) was observed in fertilized trees during spring. In all seasons, each phase of the circadian cycle, especially during the stem diameter increment phase (P3, irreversible growth), started earlier in fertilized than in control trees. P3 duration was significantly longer in fertilized than in control trees in springtime. The maximum shrinkage (P1) was observed in summer for both treatments. Stem diameter increased faster in fertilized than in control trees throughout the year, with the highest accumulation occurring in spring and the lowest in autumn. The daily variability pattern showed lower growth under high temperature across seasons. This study highlights the importance of fertilization in enhancing stone pine diameter growth. This cultural practice should be further explored to contribute to the mitigation of climate change effects in semi-arid environments.
{"title":"Effects of fertilization on radial growth of Pinus pinea explored hourly using dendrometers","authors":"Verónica Loewe-Muñoz, Rodrigo del Río Millar, Claudia Delard Rodriguez, Mónica Balzarini","doi":"10.1186/s13717-023-00479-0","DOIUrl":"https://doi.org/10.1186/s13717-023-00479-0","url":null,"abstract":"Stone pine (Pinus pinea), a drought-resistant species, has significant socio-economic benefits and increasing interest for the establishment of productive plantations in several countries, especially in a climate change context. Monitoring hourly stem diameter variations contributes to the understanding of the tree-growth response to changes in environmental conditions and management. By monitoring the diameter expansion of tree stems, high-resolution band dendrometers were used to study the development of adult trees growing in a semi-arid coastal environment of central Chile under fertilized and non-fertilized soil conditions through the span of a year. Short cycles (< 21 h) were few in fertilized and non-fertilized trees (6 and 4, respectively), whereas long cycles (> 28 h) occurred at a higher frequency in fertilized trees (16 vs 6). Most of the circadian cycles were regular (24 ± 3 h). The longest cycle duration (59 h) was observed in fertilized trees during spring. In all seasons, each phase of the circadian cycle, especially during the stem diameter increment phase (P3, irreversible growth), started earlier in fertilized than in control trees. P3 duration was significantly longer in fertilized than in control trees in springtime. The maximum shrinkage (P1) was observed in summer for both treatments. Stem diameter increased faster in fertilized than in control trees throughout the year, with the highest accumulation occurring in spring and the lowest in autumn. The daily variability pattern showed lower growth under high temperature across seasons. This study highlights the importance of fertilization in enhancing stone pine diameter growth. This cultural practice should be further explored to contribute to the mitigation of climate change effects in semi-arid environments.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"21 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139398114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-05DOI: 10.1186/s13717-023-00474-5
Pablo L. Peri, Juan Gaitán, Matías Mastrangelo, Marcelo Nosetto, Pablo E. Villagra, Ezequiel Balducci, Martín Pinazo, Roxana P. Eclesia, Alejandra Von Wallis, Sebastián Villarino, Francisco Alaggia, Marina González Polo, Silvina Manrique, Pablo A. Meglioli, Julián Rodríguez-Souilla, Martín Mónaco, Jimena E. Chaves, Ariel Medina, Ignacio Gasparri, Eugenio Alvarez Arnesi, María Paula Barral, Axel von Müller, Norberto M. Pahr, Josefina Uribe Echevarria, Pedro Fernández, Marina Morsucci, Dardo López, Juan Manuel Cellini, Leandro Alvarez, Ignacio Barberis, Hernán Colomb, Ludmila La Manna, Sebastián Barbaro, Cecilia Blundo, Ximena Sirimarco, Laura Cavallero, Gualberto Zalazar, Guillermo Martínez Pastur
The nationally determined contribution (NDC) presented by Argentina within the framework of the Paris Agreement is aligned with the decisions made in the context of the United Nations Framework Convention on Climate Change (UNFCCC) on the reduction of emissions derived from deforestation and forest degradation, as well as forest carbon conservation (REDD+). In addition, climate change constitutes one of the greatest threats to forest biodiversity and ecosystem services. However, the soil organic carbon (SOC) stocks of native forests have not been incorporated into the Forest Reference Emission Levels calculations and for conservation planning under climate variability due to a lack of information. The objectives of this study were: (i) to model SOC stocks to 30 cm of native forests at a national scale using climatic, topographic and vegetation as predictor variables, and (ii) to relate SOC stocks with spatial–temporal remotely sensed indices to determine biodiversity conservation concerns due to threats from high inter-annual climate variability. We used 1040 forest soil samples (0–30 cm) to generate spatially explicit estimates of SOC native forests in Argentina at a spatial resolution of approximately 200 m. We selected 52 potential predictive environmental covariates, which represent key factors for the spatial distribution of SOC. All covariate maps were uploaded to the Google Earth Engine cloud-based computing platform for subsequent modelling. To determine the biodiversity threats from high inter-annual climate variability, we employed the spatial–temporal satellite-derived indices based on Enhanced Vegetation Index (EVI) and land surface temperature (LST) images from Landsat imagery. SOC model (0–30 cm depth) prediction accounted for 69% of the variation of this soil property across the whole native forest coverage in Argentina. Total mean SOC stock reached 2.81 Pg C (2.71–2.84 Pg C with a probability of 90%) for a total area of 460,790 km2, where Chaco forests represented 58.4% of total SOC stored, followed by Andean Patagonian forests (16.7%) and Espinal forests (10.0%). SOC stock model was fitted as a function of regional climate, which greatly influenced forest ecosystems, including precipitation (annual mean precipitation and precipitation of warmest quarter) and temperature (day land surface temperature, seasonality, maximum temperature of warmest month, month of maximum temperature, night land surface temperature, and monthly minimum temperature). Biodiversity was influenced by the SOC levels and the forest regions. In the framework of the Kyoto Protocol and REDD+, information derived in the present work from the estimate of SOC in native forests can be incorporated into the annual National Inventory Report of Argentina to assist forest management proposals. It also gives insight into how native forests can be more resilient to reduce the impact of biodiversity loss.
{"title":"Soil organic carbon stocks in native forest of Argentina: a useful surrogate for mitigation and conservation planning under climate variability","authors":"Pablo L. Peri, Juan Gaitán, Matías Mastrangelo, Marcelo Nosetto, Pablo E. Villagra, Ezequiel Balducci, Martín Pinazo, Roxana P. Eclesia, Alejandra Von Wallis, Sebastián Villarino, Francisco Alaggia, Marina González Polo, Silvina Manrique, Pablo A. Meglioli, Julián Rodríguez-Souilla, Martín Mónaco, Jimena E. Chaves, Ariel Medina, Ignacio Gasparri, Eugenio Alvarez Arnesi, María Paula Barral, Axel von Müller, Norberto M. Pahr, Josefina Uribe Echevarria, Pedro Fernández, Marina Morsucci, Dardo López, Juan Manuel Cellini, Leandro Alvarez, Ignacio Barberis, Hernán Colomb, Ludmila La Manna, Sebastián Barbaro, Cecilia Blundo, Ximena Sirimarco, Laura Cavallero, Gualberto Zalazar, Guillermo Martínez Pastur","doi":"10.1186/s13717-023-00474-5","DOIUrl":"https://doi.org/10.1186/s13717-023-00474-5","url":null,"abstract":"The nationally determined contribution (NDC) presented by Argentina within the framework of the Paris Agreement is aligned with the decisions made in the context of the United Nations Framework Convention on Climate Change (UNFCCC) on the reduction of emissions derived from deforestation and forest degradation, as well as forest carbon conservation (REDD+). In addition, climate change constitutes one of the greatest threats to forest biodiversity and ecosystem services. However, the soil organic carbon (SOC) stocks of native forests have not been incorporated into the Forest Reference Emission Levels calculations and for conservation planning under climate variability due to a lack of information. The objectives of this study were: (i) to model SOC stocks to 30 cm of native forests at a national scale using climatic, topographic and vegetation as predictor variables, and (ii) to relate SOC stocks with spatial–temporal remotely sensed indices to determine biodiversity conservation concerns due to threats from high inter-annual climate variability. We used 1040 forest soil samples (0–30 cm) to generate spatially explicit estimates of SOC native forests in Argentina at a spatial resolution of approximately 200 m. We selected 52 potential predictive environmental covariates, which represent key factors for the spatial distribution of SOC. All covariate maps were uploaded to the Google Earth Engine cloud-based computing platform for subsequent modelling. To determine the biodiversity threats from high inter-annual climate variability, we employed the spatial–temporal satellite-derived indices based on Enhanced Vegetation Index (EVI) and land surface temperature (LST) images from Landsat imagery. SOC model (0–30 cm depth) prediction accounted for 69% of the variation of this soil property across the whole native forest coverage in Argentina. Total mean SOC stock reached 2.81 Pg C (2.71–2.84 Pg C with a probability of 90%) for a total area of 460,790 km2, where Chaco forests represented 58.4% of total SOC stored, followed by Andean Patagonian forests (16.7%) and Espinal forests (10.0%). SOC stock model was fitted as a function of regional climate, which greatly influenced forest ecosystems, including precipitation (annual mean precipitation and precipitation of warmest quarter) and temperature (day land surface temperature, seasonality, maximum temperature of warmest month, month of maximum temperature, night land surface temperature, and monthly minimum temperature). Biodiversity was influenced by the SOC levels and the forest regions. In the framework of the Kyoto Protocol and REDD+, information derived in the present work from the estimate of SOC in native forests can be incorporated into the annual National Inventory Report of Argentina to assist forest management proposals. It also gives insight into how native forests can be more resilient to reduce the impact of biodiversity loss.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"10 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139103291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.1186/s13717-023-00478-1
Silvana María José Sione, Marcelo Germán Wilson, Silvia Gabriela Ledesma, Emmanuel Adrián Gabioud, José Daniel Oszust, Leandro Javier Rosenberger
The conversion of forests into agricultural lands can be a threat because the forests carbon stored could be a source of emissions. The capacity to improve the predictions on the consequences of land use change depends on the identification of factors that influence carbon pools. We investigated the key driving factors of tree biomass and soil carbon pools in xerophytic forests in northeastern Argentina. Based on analyses of forest structure variables and abiotic factors (topography and soil properties) from 18 mature forests, we evaluated carbon pools using uni- and multivariate (redundancy analysis) methods. The total carbon pool was estimated at 102.4 ± 24.0 Mg ha−1. Soil organic carbon storage is the single largest carbon pool relative to tree biomass, representing 73.1% of total carbon. Tree canopy cover and basal area were positively correlated with biomass carbon pool (r = 0.77 and r = 0.73, p < 0.001, respectively), proving to be significant drivers of carbon storage in this compartment. Slope, soil clay content and cation-exchange capacity had a better explanation for the variability in soil carbon pools, and all showed significant positive correlations with soil carbon pools (r = 0.64, 0.60 and 0.50; p < 0.05, respectively). The vertisols showed a 27.8% higher soil carbon stock than alfisols. The relevance of our study stems from a dearth of information on carbon pools and their drivers in xerophytic forests, and in particular, the importance of this ecosystems’ type for Argentina, because they cover 81.9% of native forest area. Basal area and tree canopy cover exert a strong effect on the carbon pool in tree biomass but not in the soil. The results suggests that there is a potentially major SOC accumulation in forests located in slightly sloping areas and soils with higher topsoil clay content, such as vertisols. This could provide an important reference for implementing forestry carbon sink projects.
{"title":"Driving factors of tree biomass and soil carbon pool in xerophytic forests of northeastern Argentina","authors":"Silvana María José Sione, Marcelo Germán Wilson, Silvia Gabriela Ledesma, Emmanuel Adrián Gabioud, José Daniel Oszust, Leandro Javier Rosenberger","doi":"10.1186/s13717-023-00478-1","DOIUrl":"https://doi.org/10.1186/s13717-023-00478-1","url":null,"abstract":"The conversion of forests into agricultural lands can be a threat because the forests carbon stored could be a source of emissions. The capacity to improve the predictions on the consequences of land use change depends on the identification of factors that influence carbon pools. We investigated the key driving factors of tree biomass and soil carbon pools in xerophytic forests in northeastern Argentina. Based on analyses of forest structure variables and abiotic factors (topography and soil properties) from 18 mature forests, we evaluated carbon pools using uni- and multivariate (redundancy analysis) methods. The total carbon pool was estimated at 102.4 ± 24.0 Mg ha−1. Soil organic carbon storage is the single largest carbon pool relative to tree biomass, representing 73.1% of total carbon. Tree canopy cover and basal area were positively correlated with biomass carbon pool (r = 0.77 and r = 0.73, p < 0.001, respectively), proving to be significant drivers of carbon storage in this compartment. Slope, soil clay content and cation-exchange capacity had a better explanation for the variability in soil carbon pools, and all showed significant positive correlations with soil carbon pools (r = 0.64, 0.60 and 0.50; p < 0.05, respectively). The vertisols showed a 27.8% higher soil carbon stock than alfisols. The relevance of our study stems from a dearth of information on carbon pools and their drivers in xerophytic forests, and in particular, the importance of this ecosystems’ type for Argentina, because they cover 81.9% of native forest area. Basal area and tree canopy cover exert a strong effect on the carbon pool in tree biomass but not in the soil. The results suggests that there is a potentially major SOC accumulation in forests located in slightly sloping areas and soils with higher topsoil clay content, such as vertisols. This could provide an important reference for implementing forestry carbon sink projects.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"38 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138824058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.1186/s13717-023-00475-4
Alejandro Baladrón, María Dolores Bejarano, Isabel Boavida
Hydropeaking, which refers to rising or falling discharges caused by the turning on or off of hydro-turbines to generate electricity, is a topic of growing interest due to its impact on fluvial ecosystems. To date, most hydropeaking studies have focused on the impact of peak fluctuations on invertebrate and fish communities, but little attention has been paid to its impact on riverine plants and how functional traits may make them resistant to hydropeaking. We performed a review to assess how a set of 32 plant functional traits can be expressed in riverine plant species, and found evidence of how such expression affects their capacity to cope with common sources of hydropeaking disturbance (i.e., inundation, fast water drawdown, and rapid water fluctuations linked to up-ramping and down-ramping hydropeaking operations). The information here presented can simplify the evaluation of impacts on riverine plant communities worldwide, as well as to detect suitable species to successfully restore rivers affected by hydropower production.
{"title":"Functional traits: the pathways to riverine plant resistance in times of hydropeaking","authors":"Alejandro Baladrón, María Dolores Bejarano, Isabel Boavida","doi":"10.1186/s13717-023-00475-4","DOIUrl":"https://doi.org/10.1186/s13717-023-00475-4","url":null,"abstract":"Hydropeaking, which refers to rising or falling discharges caused by the turning on or off of hydro-turbines to generate electricity, is a topic of growing interest due to its impact on fluvial ecosystems. To date, most hydropeaking studies have focused on the impact of peak fluctuations on invertebrate and fish communities, but little attention has been paid to its impact on riverine plants and how functional traits may make them resistant to hydropeaking. We performed a review to assess how a set of 32 plant functional traits can be expressed in riverine plant species, and found evidence of how such expression affects their capacity to cope with common sources of hydropeaking disturbance (i.e., inundation, fast water drawdown, and rapid water fluctuations linked to up-ramping and down-ramping hydropeaking operations). The information here presented can simplify the evaluation of impacts on riverine plant communities worldwide, as well as to detect suitable species to successfully restore rivers affected by hydropower production.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"67 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138818447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Terrestrial ecosystems contain significant carbon storage, vital to the global carbon cycle and climate change. Alterations in human production activities and environmental factors affect the stability of carbon storage in soil. Carbon sequestration in plant phytoliths offers a sustainable method for long-term carbon stabilization. Carbon occluded in phytoliths (PhytOC) is a kind of carbon that can be stable and not decomposed for a long time, so it is crucial to conduct more in-depth research on it. We undertook a meta-analysis on PhytOC across global terrestrial ecosystems, analyzing 60 articles, encapsulating 534 observations. We observed notable differences in phytolith and PhytOC contents across various ecosystems. Bamboo forest ecosystems exhibited the highest vegetation phytolith and PhytOC content, while soil phytolith content was most prominent in bamboo forests and PhytOC content in croplands. Human activities, such as grassland grazing, had a lesser impact on soil PhytOC transport than actions like cutting and tillage in croplands and forests. Our study separated bamboo ecosystems, analyzing their PhytOC content and revealing an underestimation of their carbon sink capacity. Notwithstanding our findings, phytoliths’ intricate environmental interactions warrant further exploration, crucial for refining ecosystem management and accurately estimating PhytOC stocks. This deepened understanding lays the foundation for studying phytoliths and the carbon sink dynamics.
{"title":"The phytolith carbon sequestration in terrestrial ecosystems: the underestimated potential of bamboo forest","authors":"Xuekun Cheng, Huiru Lv, Shuhan Liu, Chong Li, Pingheng Li, Yufeng Zhou, Yongjun Shi, Guomo Zhou","doi":"10.1186/s13717-023-00476-3","DOIUrl":"https://doi.org/10.1186/s13717-023-00476-3","url":null,"abstract":"Terrestrial ecosystems contain significant carbon storage, vital to the global carbon cycle and climate change. Alterations in human production activities and environmental factors affect the stability of carbon storage in soil. Carbon sequestration in plant phytoliths offers a sustainable method for long-term carbon stabilization. Carbon occluded in phytoliths (PhytOC) is a kind of carbon that can be stable and not decomposed for a long time, so it is crucial to conduct more in-depth research on it. We undertook a meta-analysis on PhytOC across global terrestrial ecosystems, analyzing 60 articles, encapsulating 534 observations. We observed notable differences in phytolith and PhytOC contents across various ecosystems. Bamboo forest ecosystems exhibited the highest vegetation phytolith and PhytOC content, while soil phytolith content was most prominent in bamboo forests and PhytOC content in croplands. Human activities, such as grassland grazing, had a lesser impact on soil PhytOC transport than actions like cutting and tillage in croplands and forests. Our study separated bamboo ecosystems, analyzing their PhytOC content and revealing an underestimation of their carbon sink capacity. Notwithstanding our findings, phytoliths’ intricate environmental interactions warrant further exploration, crucial for refining ecosystem management and accurately estimating PhytOC stocks. This deepened understanding lays the foundation for studying phytoliths and the carbon sink dynamics.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"28 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138818632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clarifying the enrichment and response processes of triclosan (TCS) in hydrophytes is crucial for assessing the ecological risk of TCS in aquatic environments. This study delves into the chronic toxic effects of TCS in floating plant Eichhornia crassipes (Mart.) Solms and submerged plant Hydrilla verticillata (L. f.) Royle exposed to TCS sediments through hydroponic experiments. The absorption abilities of hydrophytes to TCS were species-dependent. The concentration of TCS in the roots of E. crassipes was significantly higher than that in its leaves, while the absorption capacities of the leaves of H. verticillata to TCS were stronger than that in its roots. Furthermore, the physiological indexes, including chlorophyll concentration, soluble protein concentration, and antioxidant enzyme activities, showed a significant decrease with the exposure concentration and time of TCS. Although the chlorophyll and soluble protein concentrations and the antioxidant enzyme activities in the leaves were initially increased at a low concentration of TCS (at 7 days of exposure), they decreased significantly over time. Compared to the leaves, the physiological indexes of the roots were more sensitive to the ecotoxicological effects of TCS. The inhibition effects of TCS on H. verticillata were significantly higher than those on E. crassipes, which may be associated with the absorbing abilities of TCS and the growth characteristics of the plants. Pearson’s correlation analysis found a significant negative correlation between the TCS concentrations and the antioxidant enzyme activities in the plants. This study highlighted the differences in the uptake and enrichment process and toxic effects of TCS by different aquatic plants. Compared with E. crassipes, H. verticillata is more sensitive to TCS toxicity.
{"title":"Enrichment and toxic effects of triclosan on aquatic macrophytes Eichhornia crassipes and Hydrilla verticillata exposed to triclosan in sediments","authors":"Xiuxiu Yan, Fangyu Hu, Jing An, Yongchao Yin, Lingyan Zhang, Shuhe Wei","doi":"10.1186/s13717-023-00471-8","DOIUrl":"https://doi.org/10.1186/s13717-023-00471-8","url":null,"abstract":"Clarifying the enrichment and response processes of triclosan (TCS) in hydrophytes is crucial for assessing the ecological risk of TCS in aquatic environments. This study delves into the chronic toxic effects of TCS in floating plant Eichhornia crassipes (Mart.) Solms and submerged plant Hydrilla verticillata (L. f.) Royle exposed to TCS sediments through hydroponic experiments. The absorption abilities of hydrophytes to TCS were species-dependent. The concentration of TCS in the roots of E. crassipes was significantly higher than that in its leaves, while the absorption capacities of the leaves of H. verticillata to TCS were stronger than that in its roots. Furthermore, the physiological indexes, including chlorophyll concentration, soluble protein concentration, and antioxidant enzyme activities, showed a significant decrease with the exposure concentration and time of TCS. Although the chlorophyll and soluble protein concentrations and the antioxidant enzyme activities in the leaves were initially increased at a low concentration of TCS (at 7 days of exposure), they decreased significantly over time. Compared to the leaves, the physiological indexes of the roots were more sensitive to the ecotoxicological effects of TCS. The inhibition effects of TCS on H. verticillata were significantly higher than those on E. crassipes, which may be associated with the absorbing abilities of TCS and the growth characteristics of the plants. Pearson’s correlation analysis found a significant negative correlation between the TCS concentrations and the antioxidant enzyme activities in the plants. This study highlighted the differences in the uptake and enrichment process and toxic effects of TCS by different aquatic plants. Compared with E. crassipes, H. verticillata is more sensitive to TCS toxicity.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"198 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138742017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-18DOI: 10.1186/s13717-023-00477-2
Jiangzhou Xia, Yang Chen, Wenping Yuan, Ying-Ping Wang
The allocation of photosynthate among the parts of plants (e.g., leaves, wood tissues and roots) strongly regulates their growth, and this conditions the terrestrial carbon cycle. Recent studies have shown that atmospheric CO2 and climate change dominate the changes in carbon allocation in plants, but the magnitude and mechanism of its effects remain unclear. The Community Atmosphere Biosphere Land Exchange (CABLE) model can accurately simulate the responses of carbon allocation to environmental changes. This study quantifies the contributions of four environmental factors—atmospheric CO2, temperature, precipitation, and radiation—on resource availability and carbon allocation from 1979 to 2014 by using the CABLE model. The results of the CABLE model showed that rising CO2 significantly reduced carbon allocation to the leaves of plants at a global scale, but the other three environmental factors exhibited contrasting effects that dominated the rise in carbon allocation to the leaves. The increased precipitation and CO2 significantly reduced the light availability and increased carbon allocation to the wooden parts of plants. By contrast, the rising temperature reduced the water availability, resulting in a decrease in carbon allocation to the wooden parts. All four environmental factors consistently exhibited negative effects on carbon allocation to the roots, with rising precipitation causing the largest reduction in carbon allocation to them. Moreover, except for CO2, the effects of the other three environmental factors were heterogeneous owing to their variable interactions in different regions. The CABLE model can accurately represent the mechanisms of response of resource availability and carbon allocation to environmental changes. Our study highlights the substantial environmental regulation of global carbon allocation. The responses of carbon allocation to global environmental changes need to be extensively studied through ecosystem models based on different hypotheses.
{"title":"The effects of multiple environmental factors on global carbon allocation","authors":"Jiangzhou Xia, Yang Chen, Wenping Yuan, Ying-Ping Wang","doi":"10.1186/s13717-023-00477-2","DOIUrl":"https://doi.org/10.1186/s13717-023-00477-2","url":null,"abstract":"The allocation of photosynthate among the parts of plants (e.g., leaves, wood tissues and roots) strongly regulates their growth, and this conditions the terrestrial carbon cycle. Recent studies have shown that atmospheric CO2 and climate change dominate the changes in carbon allocation in plants, but the magnitude and mechanism of its effects remain unclear. The Community Atmosphere Biosphere Land Exchange (CABLE) model can accurately simulate the responses of carbon allocation to environmental changes. This study quantifies the contributions of four environmental factors—atmospheric CO2, temperature, precipitation, and radiation—on resource availability and carbon allocation from 1979 to 2014 by using the CABLE model. The results of the CABLE model showed that rising CO2 significantly reduced carbon allocation to the leaves of plants at a global scale, but the other three environmental factors exhibited contrasting effects that dominated the rise in carbon allocation to the leaves. The increased precipitation and CO2 significantly reduced the light availability and increased carbon allocation to the wooden parts of plants. By contrast, the rising temperature reduced the water availability, resulting in a decrease in carbon allocation to the wooden parts. All four environmental factors consistently exhibited negative effects on carbon allocation to the roots, with rising precipitation causing the largest reduction in carbon allocation to them. Moreover, except for CO2, the effects of the other three environmental factors were heterogeneous owing to their variable interactions in different regions. The CABLE model can accurately represent the mechanisms of response of resource availability and carbon allocation to environmental changes. Our study highlights the substantial environmental regulation of global carbon allocation. The responses of carbon allocation to global environmental changes need to be extensively studied through ecosystem models based on different hypotheses.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"29 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138715351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12DOI: 10.1186/s13717-023-00473-6
Tingting Zhang, Nan Du, Zhi Geng, Sikai Wang, Yu Gao, Gang Yang, Xiaorong Huang, Tao Zhang, Ping Zhuang, Feng Zhao
The provision of habitat for fishery species in estuaries is highly valued and represents one of the most challenging ecosystem service values to quantify. However, quantifying this value is challenging due to complex relationships between habitat change, ecological processes, and environmental variations. This study aims to estimate estuarine habitat degradation and its impact on the reproduction process of the crab Eriocheir sinensis by characterizing the changes in breeding habitat and investigating relationships between the species and its habitat in the Yangtze River Estuary. A species distribution model recently developed was applied to estimate the extent and quality of breeding habitat changes from 2014–2021. The intrinsic (physiological) and external (structural) reproductive attributes of the breeding process were measured to assess the effects of habitat change. The relationships among habitat change, reproductive attributes and environmental factors were analyzed to understand the underlying driving forces of habitat degradation for breeding process by multivariate statistical analysis. About 34.24% of essential habitat was lost, mainly in highly suitable areas due to reclamation and waterway construction. Habitat degradation significantly affects female distribution and their reproductive processes, particularly gonad development during the pre-reproductive period and fecundity during the reproductive period, without altering population structure. These results indicated that the main ecological function served by the highly suitable breeding ground was the provision for development of gonad and improvement of fecundity. Increases of salinity and turbidity, caused by hydrodynamic changes from large-scale waterway construction, were identified as the environmental determinants contributing to cumulative habitat degradation. These influences ultimately led to a decrease in the fecundity of E. sinensis. Our research sheds light on the quantification of habitat degradation in the Yangtze River Estuary and its implications for the reproduction process of E. sinensis, which can serve as a foundation for assessing and quantifying the ecosystem service values provided by these breeding grounds. This information is valuable for policymakers and resource managers in making informed decisions regarding habitat conservation and the sustainable utilization of fishery resources.
{"title":"Estimation of estuarine habitat degradation and its influence on the reproduction process of the crab Eriocheir sinensis in the Yangtze River Estuary","authors":"Tingting Zhang, Nan Du, Zhi Geng, Sikai Wang, Yu Gao, Gang Yang, Xiaorong Huang, Tao Zhang, Ping Zhuang, Feng Zhao","doi":"10.1186/s13717-023-00473-6","DOIUrl":"https://doi.org/10.1186/s13717-023-00473-6","url":null,"abstract":"The provision of habitat for fishery species in estuaries is highly valued and represents one of the most challenging ecosystem service values to quantify. However, quantifying this value is challenging due to complex relationships between habitat change, ecological processes, and environmental variations. This study aims to estimate estuarine habitat degradation and its impact on the reproduction process of the crab Eriocheir sinensis by characterizing the changes in breeding habitat and investigating relationships between the species and its habitat in the Yangtze River Estuary. A species distribution model recently developed was applied to estimate the extent and quality of breeding habitat changes from 2014–2021. The intrinsic (physiological) and external (structural) reproductive attributes of the breeding process were measured to assess the effects of habitat change. The relationships among habitat change, reproductive attributes and environmental factors were analyzed to understand the underlying driving forces of habitat degradation for breeding process by multivariate statistical analysis. About 34.24% of essential habitat was lost, mainly in highly suitable areas due to reclamation and waterway construction. Habitat degradation significantly affects female distribution and their reproductive processes, particularly gonad development during the pre-reproductive period and fecundity during the reproductive period, without altering population structure. These results indicated that the main ecological function served by the highly suitable breeding ground was the provision for development of gonad and improvement of fecundity. Increases of salinity and turbidity, caused by hydrodynamic changes from large-scale waterway construction, were identified as the environmental determinants contributing to cumulative habitat degradation. These influences ultimately led to a decrease in the fecundity of E. sinensis. Our research sheds light on the quantification of habitat degradation in the Yangtze River Estuary and its implications for the reproduction process of E. sinensis, which can serve as a foundation for assessing and quantifying the ecosystem service values provided by these breeding grounds. This information is valuable for policymakers and resource managers in making informed decisions regarding habitat conservation and the sustainable utilization of fishery resources.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"187 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138574792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}