Mosquito-borne diseases contribute substantially to the global burden of disease, and are strongly influenced by environmental conditions. Ongoing and rapid environmental change necessitates improved understanding of the response of mosquito-borne diseases to environmental factors like temperature, and novel approaches to mapping and monitoring risk. Recent development of trait-based mechanistic models has improved understanding of the temperature dependence of transmission, but model predictions remain challenging to validate in the field. Using West Nile virus (WNV) as a case study, we illustrate the use of a novel remote sensing-based approach to mapping temperature-dependent mosquito and viral traits at high spatial resolution and across the diurnal cycle. We validate the approach using mosquito and WNV surveillance data controlling for other key factors in the ecology of WNV, finding strong agreement between temperature-dependent traits and field-based metrics of risk. Moreover, we find that WNV infection rate in mosquitos exhibits a unimodal relationship with temperature, peaking at ~24.6–25.2°C, in the middle of the 95% credible interval of optimal temperature for transmission of WNV predicted by trait-based mechanistic models. This study represents one of the highest resolution validations of trait-based model predictions, and illustrates the utility of a novel remote sensing approach to predicting mosquito-borne disease risk.
The evolutionary processes that underlie variation in plant genome size have been much debated. Abiotic factors are thought to have played an important role, with negative and positive correlations between genome size and seasonal or stressful climatic conditions being reported in several systems. In turn, variation in genome size may influence plant traits which affect interactions with other organisms, such as herbivores. The mechanisms underlying evolutionary linkages between plant genome size and biotic and abiotic factors nonetheless remain poorly understod. To address this gap, we conducted phylogenetically controlled analyses testing for associations between genome size, climatic variables, plant traits (defenses and nutrients), and herbivory across 29 oak (Quercus) species. Genome size is significantly associated with both temperature and precipitation seasonality, whereby oak species growing in climates with lower and less variable temperatures but more variable rainfall had larger genomes. In addition, we found a negative association between genome size and leaf nutrient concentration (found to be the main predictor of herbivory), which in turn led to an indirect effect on herbivory. A follow-up test suggested that the association between genome size and leaf nutrients influencing herbivory was mediated by variation in plant growth, whereby species with larger genomes have slower growth rates, which in turn are correlated with lower nutrients. Collectively, these findings reveal novel associations between plant genome size and biotic and abiotic factors that may influence life history evolution and ecological dynamics in this widespread tree genus.
Like alien plant invasion, range expansion of native plants may threaten biodiversity and economies, rendering them native invaders. Variation in abiotic and biotic conditions across a large geographic scale greatly affects variation in traits and interactions with herbivores of native plant invaders, which is an interesting yet mostly unexplored issue. We used a common garden experiment to compare defensive/nutritional traits and palatability to generalist herbivores of 20 native (23.64° N–30.18° N) and introduced range (31.58° N–36.87° N) populations of Reynoutria japonica, which is a native invader following range expansion in China. We analyzed the relationships among herbivore pressure, climate, plant chloroplast haplotypes, leaf traits, and herbivore performance. Of the 16 variables tested, we observed range differences in 11 variables and latitudinal clines in nine variables. In general, herbivores performed better on the introduced plants than on the native plants, and better on the high-latitude plants than on the low-latitude plants within the introduced populations. Three key traits (leaf thickness, specific leaf area, and carbon-to-nitrogen [C:N] ratio) determined palatability to herbivores and were significantly associated with temperature and/or precipitation of plant provenance as well as with plant haplotypes but not with herbivore pressure. Our results revealed a causal sequence from plant-range-based environmental forces and genetic context to plant quality and palatability to herbivores in R. japonica. These findings suggest a post-introduction evolution of R. japonica, which may partly explain the colonization success of this important native, but invasive plant.
Plant resource allocation strategies are thought to be largely a consequence of changing abiotic conditions and evolutionary history. However, biotic interactions also influence how a plant allocates resources. As a result, plants mediate indirect interactions between organisms above- and belowground through resource allocation. Neighboring plants can influence plant fitness directly through competition for resources, and indirectly by altering associated community interactions (associational effects), such as pollination, herbivory, and a suite of belowground interactions. Given the importance of community interactions for plant success, and the known ability for plant neighbors to change these interactions, the goal of this “pandemic project” was to understand how heterospecific plant neighbors alter plant resource allocation, whether this occurred through above- or belowground mechanisms, and whether this in turn alters biotic interactions and the relationship between a focal plant and its herbivore and soil community interactions. To do so, we established a common garden experiment, manipulating plant neighbor identity and the extent of interaction among neighbors (aboveground only, vs. above- and belowground interactions, using customized pot types), and measured changes to a focal plant and its biotic interactions over two growing seasons. We found evidence of both neighbor effects and pot type, showing that neighbor interactions affect a focal plant through both above- and belowground processes, and how the focal plant is affected depends on neighbor identity. Though neighbors did not directly alter herbivory or most soil microbial interactions, they did alter the relationship between belowground microbial communities and a plant response trait (specific leaf area). Plant resource allocation responses were reduced with time, showing the importance of extending experiments beyond a single growing season, and are an important consideration when making predictions about plant responses to changing conditions. This study contributes to a growing body of work showing how community contexts affect the above- and belowground interactions of a plant through plant resource allocation strategies.
Insectivorous predators, including birds and bats, play crucial roles in trophic cascades. However, previous research on these cascades has often relied on permanent predator exclosures, which prevent the isolation of specific effects of birds and bats, given their different activity patterns throughout the day. Moreover, limited knowledge exists regarding the variations in individual effects of these predators under different biotic and abiotic conditions, such as changes in elevation. To address these uncertainties, our study aimed to investigate the distinct effects of bats and birds on arthropod densities in foliage and herbivory damage in lowland and highland rainforests of Papua New Guinea (PNG). Predator exclosures were established for one month to exclude diurnal or nocturnal predators across 120 saplings (ca. 2.5–4 m tall) selected from two lowland and two highland forests (i.e., 30 saplings per study site) along the Mt. Wilhelm transect in PNG. Arthropods were collected and measured, and herbivory damage was analyzed at the end of the experiment. Birds significantly reduced arthropod densities by 30%, particularly in arthropods longer than 10 mm, regardless of elevation. Additionally, both birds and bats appeared to mitigate herbivory damage in highland forests, with protected saplings displaying up to 189% more herbivory. Our results support previous studies that have demonstrated the ability of insectivorous predators to reduce leaf damage through the control of arthropods. Furthermore, our approach highlights the importance and necessity of further research on the role of seasons and elevations in trophic cascades.
Ecological interactions are a key component of biodiversity, essential for understanding ecosystem services and functioning. Recording and quantifying ecological interactions is challenging, frequently requiring complex logistics and substantial effort in the field. Camera traps are routinely used in ecology for various applications, and have proven to be an excellent method for passive and non-invasive sampling of plant–animal interactions. We implemented a standardized camera trap protocol to document vertebrate frugivores-fleshy fruited plants interactions in Doñana National Park, SW Spain, with the central objective of inventorying the diversity of plant–animal ecological interactions providing seed dispersal services. From 2018 to 2023 we recorded pairwise interactions from which we obtained qualitative (presence-absence) and quantitative (frequency of visits) information. Each record in the dataset contains information of a visit by an individual animal to an individual plant, resulting in any form of fleshy-fruit use and provides information on visitation phenology, visit length, and feeding behavior. The dataset presented here includes 10,659 frugivory interaction events for 59 vertebrate species (46 birds, 13 mammals) recorded on 339 plant individuals from 13 different plant species which dominate the fleshy-fruited plant assemblage in the Doñana National Park. The most recorded animal species consuming fruits and playing a legitimate seed dispersal role was Curruca melanocephala (1678 records) among birds and Vulpes vulpes among mammals (751 records). Cervus elaphus, a fruit consumer with a marginal role as legitimate seed disperser, was the most recorded mammal species (1508 records). Avian frugivores, particularly those from the Sylviidae and Turdidae families, are widespread in the region and play a crucial role in maintaining the dispersal service for the fleshy-fruited plant populations in the area. The dataset offers highly versatile quantitative information that can be used to investigate frugivory from the highest resolution scale, the interaction event between pairs of individuals. In addition, other information that can be extracted includes the timing of interactions of animals and plants (their phenological couplings), activity periods of the animals, behavior during the events and preferences for individual plants within populations. There are no copyright restrictions on the data. When using the data from this data paper in publications, we kindly request that you cite the paper accordingly. Additionally, we encourage researchers and educators to inform us about how they are using this data, as we value feedback and would like to be aware of its various applications.
Soil microbes have long been recognized to substantially affect the coexistence of pairwise plant species across terrestrial ecosystems. However, projecting their impacts on the coexistence of multispecies plant systems remains a pressing challenge. To address this challenge, we conducted a greenhouse experiment with 540 seedlings of five tree species in a subtropical forest in China and evaluated microbial effects on multispecies coexistence using the structural method, which quantifies how the structure of species interactions influences the likelihood for multiple species to persist. Specifically, we grew seedlings alone or with competitors in different microbial contexts and fitted individual biomass to a population dynamic model to calculate intra- and interspecific interaction strength with and without soil microbes. We then used these interaction structures to calculate two metrics of multispecies coexistence, structural niche differences (which promote coexistence) and structural fitness differences (which drive exclusion), for all possible communities comprising two to five plant species. We found that soil microbes generally increased both the structural niche and fitness differences across all communities, with a much stronger effect on structural fitness differences. A further examination of functional traits between plant species pairs found that trait differences are stronger predictors of structural niche differences than of structural fitness differences, and that soil microbes have the potential to change trait-mediated plant interactions. Our findings underscore that soil microbes strongly influence the coexistence of multispecies plant systems, and also add to the experimental evidence that the influence is more on fitness differences rather than on niche differences.