Y. Wan, He Sun, Zhiduo Zhu, Wangwen Huo, Chen Zhang
Shield-out synchronous grouting is a new technology used to temporarily fill shield-out spaces between strata and the shield when creating subterraneous tunnels. The grouting materials are called ‘clay shock,’ which are soft, plastic, sticky, and easily dispersed via a pressurized jet. This study analyzes the mixing process of clay shock and backfill grouting material (inert slurry), and investigates the influence of clay shock on the inert slurry through laboratory testing. The findings show that the fluidity and bleeding rate of the inert slurry continuously decreases with the clay shock volume. The unconfined compressive strength (UCS) and flexural strength of the inert slurry increase initially before decreasing with the clay shock volume ratio. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results reveal that the alkalinity of the clay shock initiates an alkali excitation reaction, which generates more gelling products and increases the strength of the inert slurry. Excessive clay shock causes the inert slurry to retain a loose and porous structure, which then decreases its strength. To ensure the effect of the inert slurry on settlement control, the grouting volume of the clay shock should not exceed 1/4 of the inert slurry volume.
{"title":"Research on the influence of clay shock on inert slurry in shield tunneling construction","authors":"Y. Wan, He Sun, Zhiduo Zhu, Wangwen Huo, Chen Zhang","doi":"10.1680/jemmr.22.00173","DOIUrl":"https://doi.org/10.1680/jemmr.22.00173","url":null,"abstract":"Shield-out synchronous grouting is a new technology used to temporarily fill shield-out spaces between strata and the shield when creating subterraneous tunnels. The grouting materials are called ‘clay shock,’ which are soft, plastic, sticky, and easily dispersed via a pressurized jet. This study analyzes the mixing process of clay shock and backfill grouting material (inert slurry), and investigates the influence of clay shock on the inert slurry through laboratory testing. The findings show that the fluidity and bleeding rate of the inert slurry continuously decreases with the clay shock volume. The unconfined compressive strength (UCS) and flexural strength of the inert slurry increase initially before decreasing with the clay shock volume ratio. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results reveal that the alkalinity of the clay shock initiates an alkali excitation reaction, which generates more gelling products and increases the strength of the inert slurry. Excessive clay shock causes the inert slurry to retain a loose and porous structure, which then decreases its strength. To ensure the effect of the inert slurry on settlement control, the grouting volume of the clay shock should not exceed 1/4 of the inert slurry volume.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44277413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study investigates the influence of randomness on getting multi-mode broadband and narrowband absorption of graphene-embedded photonic structures. In the first proposed photonic configuration, with the change in randomness parameter, it is possible to get single, multi-mode broadband absorption up to 0.8. This value was further enhanced up to 0.99 by varying the Fermi-level to −0.9 eV. The position of absorption peaks can be tuned by varying thickness of the silicon carbide layer. Further, an investigation is carried out on the influence of adding a defective periodic PC to the first photonic configuration, which provided a multi-mode narrowband absorption with a value up to 0.99 and the strength and location of absorption peaks can be altered to the desired value by changing the graphene’s Fermi level and thickness of the silicon carbide layer. Finally, the authors also survey the influence of magnetic field B on the absorption behaviour of LCP and RCP waves. The results indicate that the FWHM of absorption peaks expanded with applying a positive magnetic field for LCP waves, whereas it shrinks for RCP waves. It has applications in the design of tunable broadband, narrowband absorbers, and sensors.
{"title":"Impact of truncation on absorption spectra in graphene-based random photonic crystal","authors":"Pulimi Mahesh, C. Nayak, Damodar Panigrahy","doi":"10.1680/jemmr.22.00087","DOIUrl":"https://doi.org/10.1680/jemmr.22.00087","url":null,"abstract":"The present study investigates the influence of randomness on getting multi-mode broadband and narrowband absorption of graphene-embedded photonic structures. In the first proposed photonic configuration, with the change in randomness parameter, it is possible to get single, multi-mode broadband absorption up to 0.8. This value was further enhanced up to 0.99 by varying the Fermi-level to −0.9 eV. The position of absorption peaks can be tuned by varying thickness of the silicon carbide layer. Further, an investigation is carried out on the influence of adding a defective periodic PC to the first photonic configuration, which provided a multi-mode narrowband absorption with a value up to 0.99 and the strength and location of absorption peaks can be altered to the desired value by changing the graphene’s Fermi level and thickness of the silicon carbide layer. Finally, the authors also survey the influence of magnetic field B on the absorption behaviour of LCP and RCP waves. The results indicate that the FWHM of absorption peaks expanded with applying a positive magnetic field for LCP waves, whereas it shrinks for RCP waves. It has applications in the design of tunable broadband, narrowband absorbers, and sensors.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48310367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Flake shaped ZnFe2O4 nanoparticles have successfully been prepared by co-precipitation method. The phase and crystallinity of the synthesised ZnFe2O4 nanoparticles were studied by XRD. The SEM result reveals that the flake shaped entities are formed by the combination of rod-shaped nanomaterial. The band gap of the synthesised ZnFe2O4 nanoparticles is found to be ∼ 2.14 eV by UV-Vis DRS measurements indicating thereby that this material absorbs visible light (λmax = 579.37 nm). The ferrite nanoparticles were successfully employed as a photocatalytic materials for the degradation of the dye Malachite green (MG) in aqueous medium with ∼ 99% efficiency under visible light irradiation.
{"title":"Flake shaped ZnFe2O4 nanoparticles: synthesis, characterization and visible light induced photocatalytic study","authors":"J. P. Dhal, Amit Sahoo, A. Acharya","doi":"10.1680/jemmr.22.00184","DOIUrl":"https://doi.org/10.1680/jemmr.22.00184","url":null,"abstract":"Flake shaped ZnFe2O4 nanoparticles have successfully been prepared by co-precipitation method. The phase and crystallinity of the synthesised ZnFe2O4 nanoparticles were studied by XRD. The SEM result reveals that the flake shaped entities are formed by the combination of rod-shaped nanomaterial. The band gap of the synthesised ZnFe2O4 nanoparticles is found to be ∼ 2.14 eV by UV-Vis DRS measurements indicating thereby that this material absorbs visible light (λmax = 579.37 nm). The ferrite nanoparticles were successfully employed as a photocatalytic materials for the degradation of the dye Malachite green (MG) in aqueous medium with ∼ 99% efficiency under visible light irradiation.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48601545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Given the non-uniform melting of the end face of the joint and the local non-fusion of the joint in large-diameter hollow stud welding, to research the law of arc motion, the joint forming quality, the weld microstructure and mechanical properties, in the process of hollow stud welding propelled by the longitudinal magnetic field in this paper. The results reveal that under the influence of the longitudinal magnetic field, the arc on the end of stud is affected by Lorentz force and spirals downward. In the welding process, with the increase of magnetic field intensity, the arc uniformly burns the stud end face, preventing local non-fusion and resulting in a well-shaped joint. Under the action of magnetic field stirring, the eutectoid ferrite is broken, the content of eutectoid ferrite and bainite is diminished, the nucleation barrier is reduced and the grain is refined. Under the action of the longitudinal magnetic field, the shear strength of the hollow stud welded joint is raised to 312 MPa, surpassing the strength of a joint welded without a magnetic field.
{"title":"Effect of longitudinal magnetic field on arc motion and joint structure of hollow stud","authors":"Deku Zhang, Mengyu Duan, Xinkai Zhu, Hongyu Zhang, Chonglin Wu, Kehong Wang","doi":"10.1680/jemmr.22.00221","DOIUrl":"https://doi.org/10.1680/jemmr.22.00221","url":null,"abstract":"Given the non-uniform melting of the end face of the joint and the local non-fusion of the joint in large-diameter hollow stud welding, to research the law of arc motion, the joint forming quality, the weld microstructure and mechanical properties, in the process of hollow stud welding propelled by the longitudinal magnetic field in this paper. The results reveal that under the influence of the longitudinal magnetic field, the arc on the end of stud is affected by Lorentz force and spirals downward. In the welding process, with the increase of magnetic field intensity, the arc uniformly burns the stud end face, preventing local non-fusion and resulting in a well-shaped joint. Under the action of magnetic field stirring, the eutectoid ferrite is broken, the content of eutectoid ferrite and bainite is diminished, the nucleation barrier is reduced and the grain is refined. Under the action of the longitudinal magnetic field, the shear strength of the hollow stud welded joint is raised to 312 MPa, surpassing the strength of a joint welded without a magnetic field.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44034322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Alsukaibi, Mohd A. Khan, Ahmed M. Al-Otaibi, A. Alshamari, Eida Mohammad Alshammari, L. Mechi, F. Alimi, S. Khan
The continuous and unchecked discharge of effluents by the dyeing industry in water bodies, have lead to the rising importance of water treatment. This study focusses on the successful abatement of Auramine O (AM) dye in the aqueous system by a heterogeneous Fenton process using ultrasonication. Zinc oxide (ZnO) nanoparticles (NPs) were obtained by a straightforward precipitation method and then modified by glycine (M-ZnO). The NPs size sharply decreased upon modification with glycine. Light absorbing capacity and band gap were determined by Ultra Violet (UV) visible spectrophotometry. X-ray diffraction (XRD) was used to determine the basic crystal properties, such as crystallinity. Changes in crystal size and morphology were determined by scanning electron microscopy (SEM), while high-resolution transmission electron microscopy (HRTEM) provide more information on the shape and size of NPs. It was observed that the size of NPs sharply decreased from 24.6 nm (pure ZnO) to 17.3 nm upon modification of ZnO with glycine. A bandgap of 3.4 eV was determined for M-ZnO using UV-visible spectrophotometer. Fourier transform infrared (FTIR) spectroscopy was used to find different functional groups along with the presence of ZnO, which further confirmed the modification of ZnO with glycine. Thermal gravimetric analysis revealed the excellent thermal stability of M-ZnO compared with ZnO. The catalytic activity for AM abatement was determined using a Fenton process at pH 6. Detoxification assays showed pure H2O2 or pure ZnO exhibited 38% and 37% AM dye degradation respectively. However, M-ZnO showed 97% of AM dye degradation in 240 min. A plausible mechanism has been proposed for AM abatement using ZnO.
{"title":"Modified ZnO mediated dye detoxification by a heterogeneous Fenton process","authors":"A. Alsukaibi, Mohd A. Khan, Ahmed M. Al-Otaibi, A. Alshamari, Eida Mohammad Alshammari, L. Mechi, F. Alimi, S. Khan","doi":"10.1680/jemmr.22.00151","DOIUrl":"https://doi.org/10.1680/jemmr.22.00151","url":null,"abstract":"The continuous and unchecked discharge of effluents by the dyeing industry in water bodies, have lead to the rising importance of water treatment. This study focusses on the successful abatement of Auramine O (AM) dye in the aqueous system by a heterogeneous Fenton process using ultrasonication. Zinc oxide (ZnO) nanoparticles (NPs) were obtained by a straightforward precipitation method and then modified by glycine (M-ZnO). The NPs size sharply decreased upon modification with glycine. Light absorbing capacity and band gap were determined by Ultra Violet (UV) visible spectrophotometry. X-ray diffraction (XRD) was used to determine the basic crystal properties, such as crystallinity. Changes in crystal size and morphology were determined by scanning electron microscopy (SEM), while high-resolution transmission electron microscopy (HRTEM) provide more information on the shape and size of NPs. It was observed that the size of NPs sharply decreased from 24.6 nm (pure ZnO) to 17.3 nm upon modification of ZnO with glycine. A bandgap of 3.4 eV was determined for M-ZnO using UV-visible spectrophotometer. Fourier transform infrared (FTIR) spectroscopy was used to find different functional groups along with the presence of ZnO, which further confirmed the modification of ZnO with glycine. Thermal gravimetric analysis revealed the excellent thermal stability of M-ZnO compared with ZnO. The catalytic activity for AM abatement was determined using a Fenton process at pH 6. Detoxification assays showed pure H2O2 or pure ZnO exhibited 38% and 37% AM dye degradation respectively. However, M-ZnO showed 97% of AM dye degradation in 240 min. A plausible mechanism has been proposed for AM abatement using ZnO.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49010211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Al-Yousef, M. Atta, E. Abdeltwab, A. Atta, M. Abdel-Hamid
A home-made plasma source with a Langmuir electrical probe was built for this work in order to create a plasma beam that could be utilized successfully in a range of uses. By modifying the operational parameters, including the discharging voltage, cathode-anode spacing, as well as argon (Ar) pressure, a steady discharging media was achieved. Additionally, a locally design electrical probe is introduced into the discharging plasma to monitor the current-voltage (I-V) characteristics curve in order to assign plasma properties. The probe is moved to any intended destination in the plasma volume and has the following dimensions: 1 mm in length, 0.5 mm in diameter. The gas pressure as well as probe-cathode separation are modified to record the plasma characteristics including electron density and electron temperature. As the pressure rises from 0.15 up to 0.3 Torr, it was found that the electron temperature Te varies 4.66*104 to 2.91*104 eV. By subjecting PET polymeric film to Ar plasma beams, its surface wettability is altered. By increasing the plasma period from 0 to 8 minutes, the overall surfaces free energy is raised from 32.2 to 67.7 mJ/m2. Additionally, the developed plasma source is highly efficient and tailored to satisfy the needs of applications like polymeric-surface modifications.
{"title":"Effects of modified argon glow plasma source on PET polymeric surface properties","authors":"H. Al-Yousef, M. Atta, E. Abdeltwab, A. Atta, M. Abdel-Hamid","doi":"10.1680/jemmr.22.00199","DOIUrl":"https://doi.org/10.1680/jemmr.22.00199","url":null,"abstract":"A home-made plasma source with a Langmuir electrical probe was built for this work in order to create a plasma beam that could be utilized successfully in a range of uses. By modifying the operational parameters, including the discharging voltage, cathode-anode spacing, as well as argon (Ar) pressure, a steady discharging media was achieved. Additionally, a locally design electrical probe is introduced into the discharging plasma to monitor the current-voltage (I-V) characteristics curve in order to assign plasma properties. The probe is moved to any intended destination in the plasma volume and has the following dimensions: 1 mm in length, 0.5 mm in diameter. The gas pressure as well as probe-cathode separation are modified to record the plasma characteristics including electron density and electron temperature. As the pressure rises from 0.15 up to 0.3 Torr, it was found that the electron temperature Te varies 4.66*104 to 2.91*104 eV. By subjecting PET polymeric film to Ar plasma beams, its surface wettability is altered. By increasing the plasma period from 0 to 8 minutes, the overall surfaces free energy is raised from 32.2 to 67.7 mJ/m2. Additionally, the developed plasma source is highly efficient and tailored to satisfy the needs of applications like polymeric-surface modifications.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48847846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rishabh Nigam, Vedasri Bai Khavala, Khushbu Dash, Nachiketa Mishra
Deep learning (DL) method consisting of Convolutional Neural Network (CNN) was employed to automate the task of microstructural recognition and classification to identify dendritic characteristics in metallic microstructures. The dendrites are an important feature which decide the mechanical properties of an alloy, further the dendritic arm spacing is critical in ascertaining the values of strength and ductility. The current work has been divided into two tasks i.e., classification of microstructures into dendritic and non-dendritic (Task 1) and further classifying the dendritic microstructures into longitudinal and cross-sectional view (Task 2). The data set comprising of micrographs from experimental and online sources covering a broad range of alloy compositions, micrograph magnifications and orientations. The tasks were achieved by employing a 4 layered CNN to yield an accuracy of 97.17±0.64% for Task 1 and 87.86±1.07% for Task 2 independently. The employment of deep learning model for classification of microstructures circumvents the feature extraction step while ensuring high accuracy. This work reduces dependency on skilled and experienced researchers and expedites the material development cycle.
{"title":"Image-driven deep learning enabled automatic microstructural recognition","authors":"Rishabh Nigam, Vedasri Bai Khavala, Khushbu Dash, Nachiketa Mishra","doi":"10.1680/jemmr.22.00010","DOIUrl":"https://doi.org/10.1680/jemmr.22.00010","url":null,"abstract":"Deep learning (DL) method consisting of Convolutional Neural Network (CNN) was employed to automate the task of microstructural recognition and classification to identify dendritic characteristics in metallic microstructures. The dendrites are an important feature which decide the mechanical properties of an alloy, further the dendritic arm spacing is critical in ascertaining the values of strength and ductility. The current work has been divided into two tasks i.e., classification of microstructures into dendritic and non-dendritic (Task 1) and further classifying the dendritic microstructures into longitudinal and cross-sectional view (Task 2). The data set comprising of micrographs from experimental and online sources covering a broad range of alloy compositions, micrograph magnifications and orientations. The tasks were achieved by employing a 4 layered CNN to yield an accuracy of 97.17±0.64% for Task 1 and 87.86±1.07% for Task 2 independently. The employment of deep learning model for classification of microstructures circumvents the feature extraction step while ensuring high accuracy. This work reduces dependency on skilled and experienced researchers and expedites the material development cycle.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44786148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The interaction and adsorption of pristine and Cu-doped ZnO nanoparticles of ethanol (C2H6O) and several other gases are calculated. These gases include carbon dioxide (CO2), carbon monoxide (CO), ammonia (NH3), ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2). Most of these gases are air pollutants. ZnO wurtzoid clusters are used to represent ZnO nanoparticles. Gibbs free energy and enthalpy of reactions are evaluated. Evans–Polanyi principle is used to evaluate the activation energy that gives the best fit to the Arrhenius equation of the reaction. The results of solving the reaction rate equations are used to compare with experimental findings. The reaction of gases with the air before reaching the sensor surface is included. A comparison of calculated response time (10.5 s), recovery time (470 s), and reaction rate with available experimental results is performed (9 and 420 s respectively) for 50 ppm of ethanol at room temperature. From results above, Evans–Polanyi principle combined with Arrhenius equation can give acceptable results. The response time is inversely proportional to gas concentration, while recovery time is linearly proportional to the gas concentration. A correlation factor can relate reaction rate with the response.
{"title":"Reaction mechanisms of pristine and Cu-doped ZnO clusters with ethanol using Evans–Polanyi principle","authors":"M. A. Abdulsattar, H. Abduljalil, H. Abed","doi":"10.1680/jemmr.22.00149","DOIUrl":"https://doi.org/10.1680/jemmr.22.00149","url":null,"abstract":"The interaction and adsorption of pristine and Cu-doped ZnO nanoparticles of ethanol (C2H6O) and several other gases are calculated. These gases include carbon dioxide (CO2), carbon monoxide (CO), ammonia (NH3), ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2). Most of these gases are air pollutants. ZnO wurtzoid clusters are used to represent ZnO nanoparticles. Gibbs free energy and enthalpy of reactions are evaluated. Evans–Polanyi principle is used to evaluate the activation energy that gives the best fit to the Arrhenius equation of the reaction. The results of solving the reaction rate equations are used to compare with experimental findings. The reaction of gases with the air before reaching the sensor surface is included. A comparison of calculated response time (10.5 s), recovery time (470 s), and reaction rate with available experimental results is performed (9 and 420 s respectively) for 50 ppm of ethanol at room temperature. From results above, Evans–Polanyi principle combined with Arrhenius equation can give acceptable results. The response time is inversely proportional to gas concentration, while recovery time is linearly proportional to the gas concentration. A correlation factor can relate reaction rate with the response.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42707360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Di Chen, Q. Pan, Ziqi Liu, Qile Shi, Lin Zhang, Jingguang Peng, Ying Li
In this work, 316L stainless steel samples were prepared by selective laser melting (SLM) and the effects of the bulk laser energy density on the resulting density and mechanical properties were evaluated. The results show that the density and mechanical properties of SLM 316L stainless steel first improved then deteriorated with increasing bulk laser energy density. When the bulk laser energy density was 70.2 J·mm−3, the obtained tensile strength and yield strength vertical to the building direction were 720 and 546 MPa, respectively, which surpass the design requirements for forged 316L stainless steel. The influence of the microstructure on the mechanical properties of SLM 316L stainless steel is also discussed. The purpose of this research was to provide experimental data and a theoretical basis for high-performance 316L stainless steel fabricated by SLM.
{"title":"Microstructure and mechanical properties of SS316L prepared by selective laser melting","authors":"Di Chen, Q. Pan, Ziqi Liu, Qile Shi, Lin Zhang, Jingguang Peng, Ying Li","doi":"10.1680/jemmr.22.00139","DOIUrl":"https://doi.org/10.1680/jemmr.22.00139","url":null,"abstract":"In this work, 316L stainless steel samples were prepared by selective laser melting (SLM) and the effects of the bulk laser energy density on the resulting density and mechanical properties were evaluated. The results show that the density and mechanical properties of SLM 316L stainless steel first improved then deteriorated with increasing bulk laser energy density. When the bulk laser energy density was 70.2 J·mm−3, the obtained tensile strength and yield strength vertical to the building direction were 720 and 546 MPa, respectively, which surpass the design requirements for forged 316L stainless steel. The influence of the microstructure on the mechanical properties of SLM 316L stainless steel is also discussed. The purpose of this research was to provide experimental data and a theoretical basis for high-performance 316L stainless steel fabricated by SLM.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42548608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao-pin Ma, Jun Shen, Hao Li, C. Zeng, Fuxing Xie
Nowadays, Resistance spot welding is a common welding method used in automobiles and other industries, and 7000 series Al alloy has become a very common industrial material because of its high strength and easy machinability. Scandium (Sc) is often used for alloy strengthening, however, there are few studies on resistance spot welding joint of Al alloy containing Sc. Here, 7075-T6 alloys containinga small amount of Sc were obtained to investigate the joint of resistance spot weldability. The simulation shows that the effective contact area between the Al sheet surface is about 19.5%, which is an important factor in nucleation. It has been found that the average grain size of the nugget decreased from 51.51 ± 5.74 μm to 8.15 ± 1.09 μm when Sc was added from 0 to 0.4 wt%, which is mainly due to the Al3Sc particles acting as the heterogeneous nucleus in the melt. The test results show that the tensile shear strength of welded joints with 0.4 wt% Sc addition is 29.2% higher than that of the joints without Sc because of grain refine strengthening.
{"title":"Research on microstructure and mechanical properties of RSW joints of 7075T-6 alloy containing Sc","authors":"Chao-pin Ma, Jun Shen, Hao Li, C. Zeng, Fuxing Xie","doi":"10.1680/jemmr.21.00142","DOIUrl":"https://doi.org/10.1680/jemmr.21.00142","url":null,"abstract":"Nowadays, Resistance spot welding is a common welding method used in automobiles and other industries, and 7000 series Al alloy has become a very common industrial material because of its high strength and easy machinability. Scandium (Sc) is often used for alloy strengthening, however, there are few studies on resistance spot welding joint of Al alloy containing Sc. Here, 7075-T6 alloys containinga small amount of Sc were obtained to investigate the joint of resistance spot weldability. The simulation shows that the effective contact area between the Al sheet surface is about 19.5%, which is an important factor in nucleation. It has been found that the average grain size of the nugget decreased from 51.51 ± 5.74 μm to 8.15 ± 1.09 μm when Sc was added from 0 to 0.4 wt%, which is mainly due to the Al3Sc particles acting as the heterogeneous nucleus in the melt. The test results show that the tensile shear strength of welded joints with 0.4 wt% Sc addition is 29.2% higher than that of the joints without Sc because of grain refine strengthening.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67477657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}