Boluwatife Igbaroola, Yassine Eddahani, Patrick Howlett, Maria Forsyth, Luke O'Dell, Nicolas Dupré, Jean Le Bideau
The search for safer next-generation lithium-ion batteries (LIBs) has driven significant research on non-toxic, non-flammable solid electrolytes. However, their electrochemical performance often falls short. This work presents a simple, one-step photopolymerization process for synthesizing biphasic liquid–solid ionogel electrolytes using acrylic acid monomer and P111i4FSI ionic liquid. We investigated the impact of lithium salt concentration and temperature on ion diffusion, particularly lithium-ion (Li+) mobility, within these ionogels. Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) revealed enhanced Li+ diffusion in the acrylic acid (AA)-based ionogels compared to their non-confined ionic liquid counterparts. Remarkably, Li+ diffusion remained favorable in the ionogels regardless of salt concentration. These AA-based ionogels demonstrate very good ionic conductivity (>1 mS cm−1 at room temperature) and a wide electrochemical window (up to 5.3 V vs Li+/Li0). These findings suggest significant promise for AA-based ionogels as polymer solid electrolytes in future solid-state battery applications.
为了寻找更安全的下一代锂离子电池(LIB),人们对无毒、不易燃的固体电解质进行了大量研究。然而,它们的电化学性能往往不尽如人意。本研究采用丙烯酸单体和 P111i4FSI 离子液体合成双相液固离子凝胶电解质的简单、一步法光聚合工艺。我们研究了锂盐浓度和温度对这些离子凝胶中离子扩散,尤其是锂离子(Li+)迁移率的影响。脉冲场梯度核磁共振(PFG-NMR)显示,与未封闭的离子液体相比,基于丙烯酸(AA)的离子凝胶中的 Li+ 扩散增强了。值得注意的是,无论盐浓度如何,离子凝胶中的 Li+ 扩散都保持良好。这些基于 AA 的离子凝胶具有非常好的离子导电性(室温下为 1 mS cm-1)和宽广的电化学窗口(对 Li+/Li0 的电压可达 5.3 V)。这些发现表明,在未来的固态电池应用中,AA 基离子凝胶作为聚合物固体电解质大有可为。
{"title":"Lithium Diffusion-Efficient Ionogels as Polymer Solid Electrolyte for Next-Gen Lithium-Ion Batteries","authors":"Boluwatife Igbaroola, Yassine Eddahani, Patrick Howlett, Maria Forsyth, Luke O'Dell, Nicolas Dupré, Jean Le Bideau","doi":"10.1002/eem2.12811","DOIUrl":"https://doi.org/10.1002/eem2.12811","url":null,"abstract":"The search for safer next-generation lithium-ion batteries (LIBs) has driven significant research on non-toxic, non-flammable solid electrolytes. However, their electrochemical performance often falls short. This work presents a simple, one-step photopolymerization process for synthesizing biphasic liquid–solid ionogel electrolytes using acrylic acid monomer and P<sub>111i4</sub>FSI ionic liquid. We investigated the impact of lithium salt concentration and temperature on ion diffusion, particularly lithium-ion (Li<sup>+</sup>) mobility, within these ionogels. Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) revealed enhanced Li<sup>+</sup> diffusion in the acrylic acid (AA)-based ionogels compared to their non-confined ionic liquid counterparts. Remarkably, Li<sup>+</sup> diffusion remained favorable in the ionogels regardless of salt concentration. These AA-based ionogels demonstrate very good ionic conductivity (>1 mS cm<sup>−1</sup> at room temperature) and a wide electrochemical window (up to 5.3 V vs Li<sup>+</sup>/Li<sup>0</sup>). These findings suggest significant promise for AA-based ionogels as polymer solid electrolytes in future solid-state battery applications.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"70 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huiryung Heo, Jeong-un Jang, Euna Jeong, Hyung-Ju Kim, Young Jin Kim, Chan Woo Park, Jungseob So, Dong-Yeun Koh
Water often presents significant challenges in catalysts by deactivating active sites, poisoning the reaction, and even degrading composite structure. These challenges are amplified when the water participates as a reactant and is fed as a liquid phase, such as trickle bed-type reactors in a hydrogen-water isotope exchange (HIE) reaction. The key balance in such multiphase reactions is the precise control of catalyst design to repel bulk liquid water while diffusing water vapor. Herein, a platinum-incorporated metal-organic framework (MIL-101) based bifunctional hydrophobic catalyst functionalized with long alkyl chains (C12, dodecylamine) and further manufactured with poly(vinylidene fluoride), Pt@MIL-101-12/PVDF, has been developed which can show dramatically improved catalytic activity under multi-phase reactions involving hydrogen gas and liquid water. Pt@MIL-101-12/PVDF demonstrates enhanced macroscopic water-blocking properties, with a notable reduction of over 65% in water adsorption capacity and newly introduced liquid water repellency, while exhibiting a negligible increase in mass transfer resistance, i.e., bifunctional hydrophobicity. Excellent catalytic activity, evaluated via HIE reaction, and its durability underscore the impact of bifunctional hydrophobicity. In situ DRIFTS analysis elucidates water adsorption/desorption dynamics within the catalyst composite, highlighting reinforced water diffusion at the microscopic level, affirming the catalyst's bifunctionality in different length scales. With demonstrated radiation resistance, Pt@MIL-101-12/PVDF emerges as a promising candidate for isotope exchange reactions.
水通常会使活性位点失活、毒化反应,甚至破坏复合结构,从而给催化剂带来巨大挑战。当水作为反应物参与反应并以液相形式进入催化剂时,例如在氢水同位素交换(HIE)反应的涓流床型反应器中,这些挑战就会变得更加严峻。此类多相反应的关键平衡点在于精确控制催化剂的设计,以便在扩散水蒸气的同时排斥大量液态水。在此,我们开发了一种基于铂掺杂金属有机框架(MIL-101)的双功能疏水催化剂,该催化剂由长烷基链(C12,十二烷基胺)功能化,并进一步与聚(偏氟乙烯)制成,即 Pt@MIL-101-12/PVDF,在涉及氢气和液态水的多相反应中可显著提高催化活性。Pt@MIL-101-12/PVDF 具有更强的宏观阻水性能,吸水能力显著降低了 65% 以上,并新引入了液态水斥水性,而传质阻力(即双功能疏水性)的增加可忽略不计。通过 HIE 反应评估的出色催化活性及其持久性强调了双功能疏水性的影响。原位 DRIFTS 分析阐明了催化剂复合材料内部的水吸附/解吸动力学,突出了微观层面的强化水扩散,肯定了催化剂在不同长度尺度上的双功能性。Pt@MIL-101-12/PVDF 具有明显的耐辐射性,有望成为同位素交换反应的候选催化剂。
{"title":"Bifunctionally Hydrophobic MOF-Supported Platinum Catalyst for the Removal of Ultralow Concentration Hydrogen Isotope","authors":"Huiryung Heo, Jeong-un Jang, Euna Jeong, Hyung-Ju Kim, Young Jin Kim, Chan Woo Park, Jungseob So, Dong-Yeun Koh","doi":"10.1002/eem2.12815","DOIUrl":"https://doi.org/10.1002/eem2.12815","url":null,"abstract":"Water often presents significant challenges in catalysts by deactivating active sites, poisoning the reaction, and even degrading composite structure. These challenges are amplified when the water participates as a reactant and is fed as a liquid phase, such as trickle bed-type reactors in a hydrogen-water isotope exchange (HIE) reaction. The key balance in such multiphase reactions is the precise control of catalyst design to repel bulk liquid water while diffusing water vapor. Herein, a platinum-incorporated metal-organic framework (MIL-101) based bifunctional hydrophobic catalyst functionalized with long alkyl chains (C<sub>12</sub>, dodecylamine) and further manufactured with poly(vinylidene fluoride), Pt@MIL-101-12/PVDF, has been developed which can show dramatically improved catalytic activity under multi-phase reactions involving hydrogen gas and liquid water. Pt@MIL-101-12/PVDF demonstrates enhanced macroscopic water-blocking properties, with a notable reduction of over 65% in water adsorption capacity and newly introduced liquid water repellency, while exhibiting a negligible increase in mass transfer resistance, i.e., bifunctional hydrophobicity. Excellent catalytic activity, evaluated via HIE reaction, and its durability underscore the impact of bifunctional hydrophobicity. In situ DRIFTS analysis elucidates water adsorption/desorption dynamics within the catalyst composite, highlighting reinforced water diffusion at the microscopic level, affirming the catalyst's bifunctionality in different length scales. With demonstrated radiation resistance, Pt@MIL-101-12/PVDF emerges as a promising candidate for isotope exchange reactions.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"298 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study introduces a cut-to-fit methodology for customizing bulk aramid aerogels into form factors suitable for wearable energy storage. Owing to strong intercomponent bonds within aramid-based building blocks, it is possible to delaminate layered bulk aerogel into flexible and thinner sheets, enabling efficient mass production. This process allows for precise customization of aerogel dimensions, shape, and elasticity, ensuring high resilience to deformation along with excellent thermal and impact resistance. Incorporation of conductive carbon nanotubes on the surface significantly enhances electrical conductivity and multi-catalytic activity while retaining the inherent advantages of aramids. These advancements facilitate the use of flexible and conductive electrodes as air cathodes in solid-state zinc–air batteries (ZABs), which demonstrate superior cyclic performance and lifecycles exceeding 160 h. Furthermore, aramid-based packaging provides superior protection for pouch-type ZABs, ensuring a consistent power supply even in severe conditions. These batteries are capable of withstanding structural deformations and absorbing physical and thermal shocks, such as impacts and exposure to fire. Moreover, the innovative reassembly of custom-cut single-pouch cells into battery modules allows for enhanced power output, tailored to wearable applications. This highlights the potential of the technology for a wide array of wearable devices requiring dependable energy sources in demanding environments.
{"title":"Mass Produced Flexible Aramid Electrodes Via Delamination of Layered Aerogels for Cut-to-Fit Wearable Zinc–Air Batteries Encased in Aramid Protection","authors":"Seung Hee Park, Sin Yeong Jang, Sung Hoon Ahn","doi":"10.1002/eem2.12804","DOIUrl":"https://doi.org/10.1002/eem2.12804","url":null,"abstract":"This study introduces a cut-to-fit methodology for customizing bulk aramid aerogels into form factors suitable for wearable energy storage. Owing to strong intercomponent bonds within aramid-based building blocks, it is possible to delaminate layered bulk aerogel into flexible and thinner sheets, enabling efficient mass production. This process allows for precise customization of aerogel dimensions, shape, and elasticity, ensuring high resilience to deformation along with excellent thermal and impact resistance. Incorporation of conductive carbon nanotubes on the surface significantly enhances electrical conductivity and multi-catalytic activity while retaining the inherent advantages of aramids. These advancements facilitate the use of flexible and conductive electrodes as air cathodes in solid-state zinc–air batteries (ZABs), which demonstrate superior cyclic performance and lifecycles exceeding 160 h. Furthermore, aramid-based packaging provides superior protection for pouch-type ZABs, ensuring a consistent power supply even in severe conditions. These batteries are capable of withstanding structural deformations and absorbing physical and thermal shocks, such as impacts and exposure to fire. Moreover, the innovative reassembly of custom-cut single-pouch cells into battery modules allows for enhanced power output, tailored to wearable applications. This highlights the potential of the technology for a wide array of wearable devices requiring dependable energy sources in demanding environments.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"10 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francisco Bernal-Texca, Emmanouela Andrioti, Jordi Martorell, Carles Ros
This study first demonstrates the potential of organic photoabsorbing blends in overcoming a critical limitation of metal oxide photoanodes in tandem modules: insufficient photogenerated current. Various organic blends, including PTB7-Th:FOIC, PTB7-Th:O6T-4F, PM6:Y6, and PM6:FM, were systematically tested. When coupled with electron transport layer (ETL) contacts, these blends exhibit exceptional charge separation and extraction, with PM6:Y6 achieving saturation photocurrents up to 16.8 mA cm−2 at 1.23 VRHE (oxygen evolution thermodynamic potential). For the first time, a tandem structure utilizing organic photoanodes has been computationally designed and fabricated and the implementation of a double PM6:Y6 photoanode/photovoltaic structure resulted in photogenerated currents exceeding 7 mA cm−2 at 0 VRHE (hydrogen evolution thermodynamic potential) and anodic current onset potentials as low as −0.5 VRHE. The herein-presented organic-based approach paves the way for further exploration of different blend combinations to target specific oxidative reactions by selecting precise donor/acceptor candidates among the multiple existing ones.
本研究首次证明了有机光吸收混合物在克服串联模块中金属氧化物光阳极的一个关键局限性--光生电流不足--方面的潜力。研究系统地测试了各种有机混合物,包括 PTB7-Th:FOIC、PTB7-Th:O6T-4F、PM6:Y6 和 PM6:FM。当与电子传输层(ETL)接触时,这些混合物表现出卓越的电荷分离和萃取能力,其中 PM6:Y6 在 1.23 VRHE(氧进化热力学电位)条件下的饱和光电流高达 16.8 mA cm-2。利用有机光阳极串联结构的计算设计和制造尚属首次,双 PM6:Y6 光阳极/光伏结构的实施使得在 0 VRHE(氢演化热力学电位)条件下的光生电流超过 7 mA cm-2,阳极电流起始电位低至 -0.5 VRHE。本文介绍的基于有机物的方法为进一步探索不同的混合组合铺平了道路,通过在现有的多种候选供体/受体中选择精确的候选供体/受体,从而实现特定的氧化反应。
{"title":"Harnessing the Power of PM6:Y6 Semitransparent Photoanodes by Computational Balancement of Photon Absorption in Photoanode/Photovoltaic Organic Tandems: >7 mA cm−2 Solar Synthetic Fuels Production at Bias-Free Potentials","authors":"Francisco Bernal-Texca, Emmanouela Andrioti, Jordi Martorell, Carles Ros","doi":"10.1002/eem2.12809","DOIUrl":"https://doi.org/10.1002/eem2.12809","url":null,"abstract":"This study first demonstrates the potential of organic photoabsorbing blends in overcoming a critical limitation of metal oxide photoanodes in tandem modules: insufficient photogenerated current. Various organic blends, including PTB7-Th:FOIC, PTB7-Th:O6T-4F, PM6:Y6, and PM6:FM, were systematically tested. When coupled with electron transport layer (ETL) contacts, these blends exhibit exceptional charge separation and extraction, with PM6:Y6 achieving saturation photocurrents up to 16.8 mA cm<sup>−2</sup> at 1.23 V<sub>RHE</sub> (oxygen evolution thermodynamic potential). For the first time, a tandem structure utilizing organic photoanodes has been computationally designed and fabricated and the implementation of a double PM6:Y6 photoanode/photovoltaic structure resulted in photogenerated currents exceeding 7 mA cm<sup>−2</sup> at 0 V<sub>RHE</sub> (hydrogen evolution thermodynamic potential) and anodic current onset potentials as low as −0.5 V<sub>RHE</sub>. The herein-presented organic-based approach paves the way for further exploration of different blend combinations to target specific oxidative reactions by selecting precise donor/acceptor candidates among the multiple existing ones.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"15 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ye-Wan Yoo, Chea-Yun Kang, Hyun-Kyung Kim, Jong-Kyu Lee, Ramachandran Vasant Kumar, Kyong-Nam Kim, Jung-Rag Yoon, Seung-Hwan Lee
Arising from the increasing demand for electric vehicles (EVs), Ni-rich LiNixCoyMnzO2 (NCM, x + y + z = 1, x ≥ 0.8) cathode with greatly increased energy density are being researched and commercialized for lithium-ion batteries (LIBs). However, parasitic crack formation during the discharge–charge cycling process remains as a major degradation mechanism. Cracking leads to increase in the specific surface area, loss of electrical contact between the primary particles, and facilitates liquid electrolyte infiltration into the cathode active material, accelerating capacity fading and decrease in lifetime. In contrast, Ni-rich NCM when used as a single crystal exhibits superior cycling performances due to its rigid mechanical property that resists cracking during long charge–discharge process even under harsh conditions. In this paper, we present comparative investigation between single crystal Ni-rich LiNi0.92Co0.04Mn0.04O2 (SC) and polycrystalline Ni-rich LiNi0.92Co0.04Mn0.04O2 (PC). The relatively improved cycling performances of SC are attributed to smaller anisotropic volume change, higher reversibility of phase transition, and resistance to crack formation. The superior properties of SC are demonstrated by in situ characterization and battery tests. Consequently, it is inferred from the results obtained that optimization of preparation conditions can be regarded as a key approach to obtain well crystallized and superior electrochemical performances.
随着电动汽车(EV)需求的不断增长,能量密度大大提高的富镍钴锰酸锂(NCM,x + y + z = 1,x ≥ 0.8)正极正被用于锂离子电池(LIB)的研究和商业化。然而,在放电-充电循环过程中形成的寄生裂纹仍然是一个主要的降解机制。裂纹会导致比表面积增大、原生颗粒之间失去电接触,并促使液态电解质渗入正极活性材料,从而加速容量衰减并缩短使用寿命。相比之下,富含镍的 NCM 作为单晶体使用时,由于其坚硬的机械性能,即使在恶劣的条件下,也能在长时间充放电过程中防止开裂,从而表现出卓越的循环性能。本文对单晶富镍钴锰酸锂 0.92Co0.04Mn0.04O2(SC)和多晶富镍钴锰酸锂 0.92Co0.04Mn0.04O2(PC)进行了比较研究。SC 的循环性能相对较好,这归功于较小的各向异性体积变化、较高的相变可逆性和抗裂纹形成能力。原位表征和电池测试证明了 SC 的优越性能。因此,从获得的结果中可以推断出,优化制备条件是获得良好结晶和优异电化学性能的关键方法。
{"title":"Enhanced Structure/Interfacial Properties of Single-Crystal Ni-Rich LiNi0.92Co0.04Mn0.04O2 Cathodes Synthesized Via LiCl-NaCl Molten-Salt Method","authors":"Ye-Wan Yoo, Chea-Yun Kang, Hyun-Kyung Kim, Jong-Kyu Lee, Ramachandran Vasant Kumar, Kyong-Nam Kim, Jung-Rag Yoon, Seung-Hwan Lee","doi":"10.1002/eem2.12778","DOIUrl":"https://doi.org/10.1002/eem2.12778","url":null,"abstract":"Arising from the increasing demand for electric vehicles (EVs), Ni-rich LiNi<sub>x</sub>Co<sub>y</sub>Mn<sub>z</sub>O<sub>2</sub> (NCM, <i>x</i> + <i>y</i> + <i>z</i> = 1, <i>x</i> ≥ 0.8) cathode with greatly increased energy density are being researched and commercialized for lithium-ion batteries (LIBs). However, parasitic crack formation during the discharge–charge cycling process remains as a major degradation mechanism. Cracking leads to increase in the specific surface area, loss of electrical contact between the primary particles, and facilitates liquid electrolyte infiltration into the cathode active material, accelerating capacity fading and decrease in lifetime. In contrast, Ni-rich NCM when used as a single crystal exhibits superior cycling performances due to its rigid mechanical property that resists cracking during long charge–discharge process even under harsh conditions. In this paper, we present comparative investigation between single crystal Ni-rich LiNi<sub>0.92</sub>Co<sub>0.04</sub>Mn<sub>0.04</sub>O<sub>2</sub> (SC) and polycrystalline Ni-rich LiNi<sub>0.92</sub>Co<sub>0.04</sub>Mn<sub>0.04</sub>O<sub>2</sub> (PC). The relatively improved cycling performances of SC are attributed to smaller anisotropic volume change, higher reversibility of phase transition, and resistance to crack formation. The superior properties of SC are demonstrated by in situ characterization and battery tests. Consequently, it is inferred from the results obtained that optimization of preparation conditions can be regarded as a key approach to obtain well crystallized and superior electrochemical performances.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"1127 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soyeon Ko, UnJin Ryu, Ho Yeon Yoo, Jeeyoung Shin, Kyung Min Choi, Dong Gyu Park, Won Ho Choi
Homogeneous films with tailored microporous structures are crucial for several applications; however, fabricating such films presents significant challenges. This is primarily because most microporous materials have crystal sizes in the nano- and micrometer ranges, which inevitably generates intergranular spaces in the films, thereby complicating the fabrication of these thin films. In this study, functionalized metal–organic polyhedra (MOPs) are used as discrete microporous units and assembled into homogenous microporous films. The generation of intergranular spaces is avoided while controlling packing parameters and film thicknesses. Initially, the MOP units, influenced by van der Waals forces between carbon chains of functionalized adipic acids, display an affinity to form spindle-shaped blocks and islands. As the MOP concentration increases, these structures self-assembled into a hexagonally packed structure with an in-plane orientation and a maximum stacking of two layers of MOPs. By contrast, un-functionalized MOPs form a disordered film structure owing to random agglomeration. Evidently, functionalized adipic acid influences the orientation of the MOP network films with uniformly distributed micropores, effectively preventing the formation of intergranular spaces. Additionally, formaldehyde adsorption and desorption experiments revealed that the MOP network films possess superior adsorption and desorption capacities. The proposed approach signifies a breakthrough in the fabrication of homogenous microporous films.
{"title":"Homogenous Microporous Thin Films Assembled Using Discrete Metal–Organic Polyhedra","authors":"Soyeon Ko, UnJin Ryu, Ho Yeon Yoo, Jeeyoung Shin, Kyung Min Choi, Dong Gyu Park, Won Ho Choi","doi":"10.1002/eem2.12805","DOIUrl":"https://doi.org/10.1002/eem2.12805","url":null,"abstract":"Homogeneous films with tailored microporous structures are crucial for several applications; however, fabricating such films presents significant challenges. This is primarily because most microporous materials have crystal sizes in the nano- and micrometer ranges, which inevitably generates intergranular spaces in the films, thereby complicating the fabrication of these thin films. In this study, functionalized metal–organic polyhedra (MOPs) are used as discrete microporous units and assembled into homogenous microporous films. The generation of intergranular spaces is avoided while controlling packing parameters and film thicknesses. Initially, the MOP units, influenced by van der Waals forces between carbon chains of functionalized adipic acids, display an affinity to form spindle-shaped blocks and islands. As the MOP concentration increases, these structures self-assembled into a hexagonally packed structure with an in-plane orientation and a maximum stacking of two layers of MOPs. By contrast, un-functionalized MOPs form a disordered film structure owing to random agglomeration. Evidently, functionalized adipic acid influences the orientation of the MOP network films with uniformly distributed micropores, effectively preventing the formation of intergranular spaces. Additionally, formaldehyde adsorption and desorption experiments revealed that the MOP network films possess superior adsorption and desorption capacities. The proposed approach signifies a breakthrough in the fabrication of homogenous microporous films.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"175 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cheol Shin, WonJo Jeong, Ezgi Darici Lee, Jong Baek Park, Hyungju Ahn, Seyeon Baek, Myeong In Kim, Dae Sung Chung, Kang-Il Seo, In Hwan Jung
Various novel conjugated polymers (CPs) have been developed for organic photodetectors (OPDs), but their application to practical image sensors such as X-ray, R/G/B, and fingerprint sensors is rare. In this article, we report the entire process from the synthesis and molecular engineering of novel CPs to the development of OPDs and fingerprint image sensors. We synthesized six benzo[1,2-d:4,5-d']bis(oxazole) (BBO)-based CPs by modifying the alkyl side chains of the CPs. Several relationships between the molecular structure and the OPD performance were revealed, and increasing the number of linear octyl side chains on the conjugated backbone was the best way to improve Jph and reduce Jd in the OPDs. The optimized CP demonstrated promising OPD performance with a responsivity (R) of 0.22 A/W, specific detectivity (D*) of 1.05 × 1013 Jones at a bias of −1 V, rising/falling response time of 2.9/6.9 μs, and cut-off frequency (f-3dB) of 134 kHz under collimated 530 nm LED irradiation. Finally, a fingerprint image sensor was fabricated by stacking the POTB1-based OPD layer on the organic thin-film transistors (318 ppi). The image contrast caused by the valleys and ridges in the fingerprints was obtained as a digital signal.
{"title":"Molecular Engineering of Benzobisoxazole-Based Conjugated Polymers for High-Performance Organic Photodetectors and Fingerprint Image Sensors","authors":"Cheol Shin, WonJo Jeong, Ezgi Darici Lee, Jong Baek Park, Hyungju Ahn, Seyeon Baek, Myeong In Kim, Dae Sung Chung, Kang-Il Seo, In Hwan Jung","doi":"10.1002/eem2.12806","DOIUrl":"https://doi.org/10.1002/eem2.12806","url":null,"abstract":"Various novel conjugated polymers (CPs) have been developed for organic photodetectors (OPDs), but their application to practical image sensors such as X-ray, R/G/B, and fingerprint sensors is rare. In this article, we report the entire process from the synthesis and molecular engineering of novel CPs to the development of OPDs and fingerprint image sensors. We synthesized six benzo[1,2-d:4,5-d']bis(oxazole) (BBO)-based CPs by modifying the alkyl side chains of the CPs. Several relationships between the molecular structure and the OPD performance were revealed, and increasing the number of linear octyl side chains on the conjugated backbone was the best way to improve <i>J</i><sub>ph</sub> and reduce <i>J</i><sub>d</sub> in the OPDs. The optimized CP demonstrated promising OPD performance with a responsivity (<i>R</i>) of 0.22 A/W, specific detectivity (<i>D</i>*) of 1.05 × 10<sup>13</sup> Jones at a bias of −1 V, rising/falling response time of 2.9/6.9 μs, and cut-off frequency (<i>f</i><sub>-3dB</sub>) of 134 kHz under collimated 530 nm LED irradiation. Finally, a fingerprint image sensor was fabricated by stacking the POTB1-based OPD layer on the organic thin-film transistors (318 ppi). The image contrast caused by the valleys and ridges in the fingerprints was obtained as a digital signal.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"43 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaihang Zhang, Jiaqi Lu, Xinyu Cai, Muhammad Naeem Shah, Jianhui Wu, Jie Li, Yifan Wu, Chi Zhang, Liangquan Xu, Haoze Kuang, Dinku Hazarika, Binghan Zhou, Zhuo Chen, Zhen Cao, Hao Jin, Shurong Dong, Yuhui Huang, Qilong Zhang, Yongjun Wu, Luigi Giuseppe Occhipinti, Tawfique Hasan, Jikui Luo
Few-layer nanosheets (NSs) of hexagonal boron nitride (h-BN) and molybdenum disulfide (MoS2) display notable piezoelectric properties. Yet, their integration into polymers typically yields non-piezoelectric composites due to NSs' random distribution. We introduce a facile method for fabricating intrinsic piezoelectric composites incorporated with NSs without electric poling. Our innovative process aligns NSs within polyvinyl alcohol polymer, leveraging ice-water interfacial tension, water crystallization thrust, and directional cross-linking during freezing. The resulting PE composites exhibit a maximum piezoelectric coefficient of up to 25.5–28.4 pC N−1, comparable to polyvinylidene difluoride (PVDF), with significant cost-efficiency, safety, and scalability advantages over conventional materials. Using this composite, we develop highly sensitive wearable pressure and strain sensors, and an ultrasound energy harvester. These sensors detect finger bending and differentiate between walking and running, while the harvester generates ~1.18 V/2.31 μA under 1 W cm−2 ultrasound input underwater. This universal method offers a novel manufacturing technique for piezoelectric composites, demonstrating remarkable effectiveness in synthesizing intrinsic piezoelectric composites based on 2D materials. Moreover, its potential extends to applications in wearable electronics and energy harvesting, promising significant advancements in these fields.
六方氮化硼(h-BN)和二硫化钼(MoS2)的几层纳米片(NSs)具有显著的压电特性。然而,由于 NSs 的随机分布,将它们集成到聚合物中通常会产生非压电复合材料。我们介绍了一种无需电极化即可制造含有 NS 的本征压电复合材料的简便方法。我们的创新工艺利用冰-水界面张力、水结晶推力和冷冻过程中的定向交联,将 NSs 排列在聚乙烯醇聚合物中。由此产生的聚乙烯复合材料的最大压电系数高达 25.5-28.4 pC N-1,与聚偏二氟乙烯(PVDF)相当,与传统材料相比,具有显著的成本效益、安全性和可扩展性优势。利用这种复合材料,我们开发出了高灵敏度的可穿戴压力和应变传感器以及超声波能量收集器。这些传感器可检测手指弯曲并区分行走和跑步,而能量收集器可在水下 1 W cm-2 超声波输入条件下产生 ~1.18 V/2.31 μA 电流。这种通用方法为压电复合材料提供了一种新颖的制造技术,在合成基于二维材料的本征压电复合材料方面具有显著效果。此外,该方法还可应用于可穿戴电子设备和能量收集领域,有望在这些领域取得重大进展。
{"title":"Nanosheet-Doped Polymer Composites with High Intrinsic Piezoelectric Properties for Energy Harvesting","authors":"Kaihang Zhang, Jiaqi Lu, Xinyu Cai, Muhammad Naeem Shah, Jianhui Wu, Jie Li, Yifan Wu, Chi Zhang, Liangquan Xu, Haoze Kuang, Dinku Hazarika, Binghan Zhou, Zhuo Chen, Zhen Cao, Hao Jin, Shurong Dong, Yuhui Huang, Qilong Zhang, Yongjun Wu, Luigi Giuseppe Occhipinti, Tawfique Hasan, Jikui Luo","doi":"10.1002/eem2.12789","DOIUrl":"https://doi.org/10.1002/eem2.12789","url":null,"abstract":"Few-layer nanosheets (NSs) of hexagonal boron nitride (h-BN) and molybdenum disulfide (MoS<sub>2</sub>) display notable piezoelectric properties. Yet, their integration into polymers typically yields non-piezoelectric composites due to NSs' random distribution. We introduce a facile method for fabricating intrinsic piezoelectric composites incorporated with NSs without electric poling. Our innovative process aligns NSs within polyvinyl alcohol polymer, leveraging ice-water interfacial tension, water crystallization thrust, and directional cross-linking during freezing. The resulting PE composites exhibit a maximum piezoelectric coefficient of up to 25.5–28.4 pC N<sup>−1</sup>, comparable to polyvinylidene difluoride (PVDF), with significant cost-efficiency, safety, and scalability advantages over conventional materials. Using this composite, we develop highly sensitive wearable pressure and strain sensors, and an ultrasound energy harvester. These sensors detect finger bending and differentiate between walking and running, while the harvester generates ~1.18 V/2.31 μA under 1 W cm<sup>−2</sup> ultrasound input underwater. This universal method offers a novel manufacturing technique for piezoelectric composites, demonstrating remarkable effectiveness in synthesizing intrinsic piezoelectric composites based on 2D materials. Moreover, its potential extends to applications in wearable electronics and energy harvesting, promising significant advancements in these fields.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"5 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huagui Lai, Selina Olthof, Shengqiang Ren, Radha K. Kothandaraman, Matthias Diethelm, Quentin Jeangros, Roland Hany, Ayodhya N. Tiwari, Dewei Zhao, Fan Fu
Tin perovskites are emerging as promising alternatives to their lead-based counterparts for high-performance and flexible perovskite solar cells. However, their rapid crystallization often leads to inadequate film quality and poor device performance. In this study, the role of GeI2 as an additive is investigated for controlling the nucleation and crystallization processes of formamidinium tin triiodide (FASnI3). The findings reveal the preferential formation of a Ge-rich layer at the bottom of the perovskite film upon the introduction of GeI2. It is proposed that the initial formation of the Ge complex acts as a crystallization regulator, promoting oriented growth of subsequent FASnI3 crystals and enhancing overall crystallinity. Through the incorporation of an optimal amount of GeI2, flexible Sn perovskite solar cells with an efficiency of 10.8% were achieved. Furthermore, it was observed that the GeI2 additive ensures a remarkable shelf-life for the devices, with the rigid cells retaining 91% of their initial performance after more than 13 800 h of storage in an N2 gas environment. This study elucidates the mechanistic role of GeI2 in regulating the nucleation and crystallization process of tin perovskites, providing valuable insights into the significance of additive engineering for the development of high-performance flexible tin perovskite solar cells.
锡包晶石正在成为高性能和柔性包晶石太阳能电池铅基对应物的有前途的替代品。然而,它们的快速结晶往往会导致薄膜质量不佳和设备性能低下。本研究探讨了 GeI2 作为添加剂在控制甲脒锡三碘化物(FASnI3)的成核和结晶过程中的作用。研究结果表明,在引入 GeI2 后,包晶薄膜底部会优先形成富含 Ge 的层。研究认为,最初形成的 Ge 复合物起到了结晶调节器的作用,促进了后续 FASnI3 晶体的定向生长,提高了整体结晶度。通过加入最适量的 GeI2,柔性锡过氧化物太阳能电池的效率达到了 10.8%。此外,研究还发现,GeI2 添加剂可确保器件具有出色的保质期,刚性电池在氮气环境中存放超过 13 800 小时后,其初始性能仍能保持 91%。这项研究阐明了 GeI2 在调节锡包晶石成核和结晶过程中的机理作用,为了解添加剂工程对开发高性能柔性锡包晶石太阳能电池的意义提供了宝贵的见解。
{"title":"Unveiling the GeI2-Assisted Oriented Growth of Perovskite Crystallite for High-Performance Flexible Sn Perovskite Solar Cells","authors":"Huagui Lai, Selina Olthof, Shengqiang Ren, Radha K. Kothandaraman, Matthias Diethelm, Quentin Jeangros, Roland Hany, Ayodhya N. Tiwari, Dewei Zhao, Fan Fu","doi":"10.1002/eem2.12791","DOIUrl":"https://doi.org/10.1002/eem2.12791","url":null,"abstract":"Tin perovskites are emerging as promising alternatives to their lead-based counterparts for high-performance and flexible perovskite solar cells. However, their rapid crystallization often leads to inadequate film quality and poor device performance. In this study, the role of GeI<sub>2</sub> as an additive is investigated for controlling the nucleation and crystallization processes of formamidinium tin triiodide (FASnI<sub>3</sub>). The findings reveal the preferential formation of a Ge-rich layer at the bottom of the perovskite film upon the introduction of GeI<sub>2</sub>. It is proposed that the initial formation of the Ge complex acts as a crystallization regulator, promoting oriented growth of subsequent FASnI<sub>3</sub> crystals and enhancing overall crystallinity. Through the incorporation of an optimal amount of GeI<sub>2</sub>, flexible Sn perovskite solar cells with an efficiency of 10.8% were achieved. Furthermore, it was observed that the GeI<sub>2</sub> additive ensures a remarkable shelf-life for the devices, with the rigid cells retaining 91% of their initial performance after more than 13 800 h of storage in an N<sub>2</sub> gas environment. This study elucidates the mechanistic role of GeI<sub>2</sub> in regulating the nucleation and crystallization process of tin perovskites, providing valuable insights into the significance of additive engineering for the development of high-performance flexible tin perovskite solar cells.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"6 1","pages":""},"PeriodicalIF":15.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141720233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gibeom Lee, Donghyun Lee, Gwang-Bum Im, Younghoon Lee
A touch sensor is an essential component in meeting the growing demand for human-machine interfaces. These sensors have been developed in wearable, attachable, and even implantable forms to acquire a wide range of information from humans. To be applied to the human body, sensors are required to be biocompatible and not restrict the natural movement of the body. Ionic materials are a promising candidate for soft touch sensors due to their outstanding properties, which include high stretchability, transparency, ionic conductivity, and biocompatibility. Here, this review discusses the unique features of soft ionic touch point sensors, focusing on the ionic material and its key role in the sensor. The touch sensing mechanisms include piezocapacitive, piezoresistive, surface capacitive, piezoelectric, and triboelectric and triboresistive sensing. This review analyzes the implementation hurdles and future research directions of the soft ionic touch sensors for their transformative potential.
{"title":"A Review on Soft Ionic Touch Point Sensors","authors":"Gibeom Lee, Donghyun Lee, Gwang-Bum Im, Younghoon Lee","doi":"10.1002/eem2.12794","DOIUrl":"10.1002/eem2.12794","url":null,"abstract":"<p>A touch sensor is an essential component in meeting the growing demand for human-machine interfaces. These sensors have been developed in wearable, attachable, and even implantable forms to acquire a wide range of information from humans. To be applied to the human body, sensors are required to be biocompatible and not restrict the natural movement of the body. Ionic materials are a promising candidate for soft touch sensors due to their outstanding properties, which include high stretchability, transparency, ionic conductivity, and biocompatibility. Here, this review discusses the unique features of soft ionic touch point sensors, focusing on the ionic material and its key role in the sensor. The touch sensing mechanisms include piezocapacitive, piezoresistive, surface capacitive, piezoelectric, and triboelectric and triboresistive sensing. This review analyzes the implementation hurdles and future research directions of the soft ionic touch sensors for their transformative potential.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12794","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141655723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}