Juhyoung Kim, Woonghee Choi, Seong-Ju Hwang, Dong Wook Kim
Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries. The high ion conductivity, mechanical characteristics, and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes. However, the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries. Particularly, the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode, comprising various materials. In this study, carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes. Several instruments, including electrochemical spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy, confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes. Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.
{"title":"Incorporation of Ionic Conductive Polymers into Sulfide Electrolyte-Based Solid-State Batteries to Enhance Electrochemical Stability and Cycle Life","authors":"Juhyoung Kim, Woonghee Choi, Seong-Ju Hwang, Dong Wook Kim","doi":"10.1002/eem2.12776","DOIUrl":"10.1002/eem2.12776","url":null,"abstract":"<p>Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries. The high ion conductivity, mechanical characteristics, and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes. However, the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries. Particularly, the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode, comprising various materials. In this study, carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes. Several instruments, including electrochemical spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy, confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes. Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12776","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A commentary on pressure-induced pre-lithiation towards Si anodes in all-solid-state Li-ion batteries (ASSLIBs) using sulfide electrolytes (SEs) is presented. First, feasible pre-lithiation technologies for Si anodes in SE-based ASSLIBs especially the significant pressure-induced pre-lithiation strategies are briefly reviewed. Then, a recent achievement by Meng et al. in this field is elaborated in detail. Finally, the significance of Meng's work is discussed.
{"title":"Pressure-Induced Pre-Lithiation Enables High-Performing Si Anodes in All-Solid-State Batteries","authors":"Weifei Hu, Yuanyuan Li, Jinping Liu","doi":"10.1002/eem2.12786","DOIUrl":"10.1002/eem2.12786","url":null,"abstract":"<p>A commentary on pressure-induced pre-lithiation towards Si anodes in all-solid-state Li-ion batteries (ASSLIBs) using sulfide electrolytes (SEs) is presented. First, feasible pre-lithiation technologies for Si anodes in SE-based ASSLIBs especially the significant pressure-induced pre-lithiation strategies are briefly reviewed. Then, a recent achievement by Meng et al. in this field is elaborated in detail. Finally, the significance of Meng's work is discussed.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12786","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyesun Yoo, Hoang Van Quy, Inpyo Lee, Seung Taek Jo, Tae Ei Hong, JunHo Kim, Dae-Hwang Yoo, Jinwook Shin, Walter Commerell, Dae-Hwan Kim, Jong Wook Roh
The relation between the structure of the silver network electrodes and the properties of Cu(In,Ga)Se2 (CIGS) solar cells is systemically investigated. The Ag network electrode is deposited onto an Al:ZnO (AZO) thin film, employing a self-forming cracked template. Precise control over the cracked template's structure is achieved through careful adjustment of temperature and humidity. The Ag network electrodes with different coverage areas and network densities are systemically applied to the CIGS solar cells. It is revealed that predominant fill factor (FF) is influenced by the figure of merit of transparent conducting electrodes, rather than sheet resistance, particularly when the coverage area falls within the range of 1.3–5%. Furthermore, a higher network density corresponds to an enhanced FF when the coverage areas of the Ag networks are similar. When utilizing a thinner AZO film, CIGS solar cells with a surface area of 1.0609 cm2 exhibit a notable performance improvement, with efficiency increasing from 10.48% to 11.63%. This enhancement is primarily attributed to the increase in FF from 45% to 65%. These findings underscore the considerable potential for reducing the thickness of the transparent conductive oxide (TCO) in CIGS modules with implications for practical applications in photovoltaic technology.
{"title":"Understanding of the Relationship between the Properties of Cu(In,Ga)Se2 Solar Cells and the Structure of Ag Network Electrodes","authors":"Hyesun Yoo, Hoang Van Quy, Inpyo Lee, Seung Taek Jo, Tae Ei Hong, JunHo Kim, Dae-Hwang Yoo, Jinwook Shin, Walter Commerell, Dae-Hwan Kim, Jong Wook Roh","doi":"10.1002/eem2.12765","DOIUrl":"10.1002/eem2.12765","url":null,"abstract":"<p>The relation between the structure of the silver network electrodes and the properties of Cu(In,Ga)Se<sub>2</sub> (CIGS) solar cells is systemically investigated. The Ag network electrode is deposited onto an Al:ZnO (AZO) thin film, employing a self-forming cracked template. Precise control over the cracked template's structure is achieved through careful adjustment of temperature and humidity. The Ag network electrodes with different coverage areas and network densities are systemically applied to the CIGS solar cells. It is revealed that predominant fill factor (FF) is influenced by the figure of merit of transparent conducting electrodes, rather than sheet resistance, particularly when the coverage area falls within the range of 1.3–5%. Furthermore, a higher network density corresponds to an enhanced FF when the coverage areas of the Ag networks are similar. When utilizing a thinner AZO film, CIGS solar cells with a surface area of 1.0609 cm<sup>2</sup> exhibit a notable performance improvement, with efficiency increasing from 10.48% to 11.63%. This enhancement is primarily attributed to the increase in FF from 45% to 65%. These findings underscore the considerable potential for reducing the thickness of the transparent conductive oxide (TCO) in CIGS modules with implications for practical applications in photovoltaic technology.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12765","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141531296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An Zhong MSc, Congzhen Xie PhD, Bin Gou MSc, Jiangang Zhou MSc, Huasong Xu MSc, Song Yu MSc, Daoming Zhang MSc, Chunhui Bi MSc, Hangchuan Cai MSc, Licheng Li PhD, Rui Wang PhD
Epoxy resin, characterized by prominent mechanical and electric-insulation properties, is the preferred material for packaging power electronic devices. Unfortunately, the efficient recycling and reuse of epoxy materials with thermally cross-linked molecular structures has become a daunting challenge. Here, we propose an economical and operable recycling strategy to regenerate waste epoxy resin into a high-performance material. Different particle size of waste epoxy micro-spheres (100–600 μm) with core-shell structure is obtained through simple mechanical crushing and boron nitride surface treatment. By using smattering epoxy monomer as an adhesive, an eco-friendly composite material with a “brick-wall structure” can be formed. The continuous boron nitride pathway with efficient thermal conductivity endows eco-friendly composite materials with a preeminent thermal conductivity of 3.71 W m−1 K−1 at a low content of 8.5 vol% h-BN, superior to pure epoxy resin (0.21 W m−1 K−1). The composite, after secondary recycling and reuse, still maintains a thermal conductivity of 2.12 W m−1 K−1 and has mechanical and insulation properties comparable to the new epoxy resin (energy storage modulus of 2326.3 MPa and breakdown strength of 40.18 kV mm−1). This strategy expands the sustainable application prospects of thermosetting polymers, offering extremely high economic and environmental value.
环氧树脂具有突出的机械和电气绝缘性能,是封装电力电子设备的首选材料。遗憾的是,如何有效回收和再利用具有热交联分子结构的环氧树脂材料已成为一项艰巨的挑战。在此,我们提出了一种经济、可操作的回收策略,将废弃环氧树脂再生为高性能材料。通过简单的机械粉碎和氮化硼表面处理,可获得不同粒径的具有核壳结构的废环氧微球(100-600 μm)。使用分散环氧单体作为粘合剂,可形成具有 "砖墙结构 "的环保型复合材料。具有高效导热性能的连续氮化硼通路使环保型复合材料在 8.5 vol% h-BN 低含量时的导热性能达到 3.71 W m-1 K-1,优于纯环氧树脂(0.21 W m-1 K-1)。经过二次回收和再利用后,该复合材料的导热系数仍保持在 2.12 W m-1 K-1 的水平,其机械和绝缘性能与新型环氧树脂相当(储能模量为 2326.3 兆帕,击穿强度为 40.18 千伏毫米-1)。这一战略拓展了热固性聚合物的可持续应用前景,具有极高的经济和环境价值。
{"title":"Recyclable Technology of Thermosetting Resins for High Thermal Conductivity Materials Based on Physical Crushing","authors":"An Zhong MSc, Congzhen Xie PhD, Bin Gou MSc, Jiangang Zhou MSc, Huasong Xu MSc, Song Yu MSc, Daoming Zhang MSc, Chunhui Bi MSc, Hangchuan Cai MSc, Licheng Li PhD, Rui Wang PhD","doi":"10.1002/eem2.12762","DOIUrl":"10.1002/eem2.12762","url":null,"abstract":"<p>Epoxy resin, characterized by prominent mechanical and electric-insulation properties, is the preferred material for packaging power electronic devices. Unfortunately, the efficient recycling and reuse of epoxy materials with thermally cross-linked molecular structures has become a daunting challenge. Here, we propose an economical and operable recycling strategy to regenerate waste epoxy resin into a high-performance material. Different particle size of waste epoxy micro-spheres (100–600 μm) with core-shell structure is obtained through simple mechanical crushing and boron nitride surface treatment. By using smattering epoxy monomer as an adhesive, an eco-friendly composite material with a “brick-wall structure” can be formed. The continuous boron nitride pathway with efficient thermal conductivity endows eco-friendly composite materials with a preeminent thermal conductivity of 3.71 W m<sup>−1</sup> K<sup>−1</sup> at a low content of 8.5 vol% h-BN, superior to pure epoxy resin (0.21 W m<sup>−1</sup> K<sup>−1</sup>). The composite, after secondary recycling and reuse, still maintains a thermal conductivity of 2.12 W m<sup>−1</sup> K<sup>−1</sup> and has mechanical and insulation properties comparable to the new epoxy resin (energy storage modulus of 2326.3 MPa and breakdown strength of 40.18 kV mm<sup>−1</sup>). This strategy expands the sustainable application prospects of thermosetting polymers, offering extremely high economic and environmental value.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12762","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Sun, Qinping Jian, Bin Liu, Pengzhu Lin, Tianshou Zhao
Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety, cost-effectiveness, and high capacity. However, the service life of zinc metal anodes is severely constrained by critical challenges, including dendrites, water-induced hydrogen evolution, and passivation. In this study, a protective two-dimensional metal–organic framework interphase is in situ constructed on the zinc anode surface with a novel gel vapor deposition method. The ultrathin interphase layer (~1 μm) is made of layer-stacking 2D nanosheets with angstrom-level pores of around 2.1 Å, which serves as an ion sieve to reject large solvent–ion pairs while homogenizes the transport of partially desolvated zinc ions, contributing to a uniform and highly reversible zinc deposition. With the shielding of the interphase layer, an ultra-stable zinc plating/stripping is achieved in symmetric cells with cycling over 1000 h at 0.5 mA cm−2 and ~700 h at 1 mA cm−2, far exceeding that of the bare zinc anodes (250 and 70 h). Furthermore, as a proof-of-concept demonstration, the full cell paired with MnO2 cathode demonstrates improved rate performances and stable cycling (1200 cycles at 1 A g−1). This work provides fresh insights into interphase design to promote the performance of zinc metal anodes.
锌金属阳极因其高度安全性、成本效益和高容量而在水电化学储能系统中越来越受欢迎。然而,锌金属阳极的使用寿命受到枝晶、水诱导的氢演化和钝化等关键挑战的严重制约。本研究采用新型凝胶气相沉积法在锌阳极表面原位构建了二维金属有机框架保护性相间层。超薄相间层(约 1 μm)由层层堆叠的二维纳米片组成,具有约 2.1 埃的埃级孔隙,可作为离子筛网阻挡大的溶剂离子对,同时均匀地传输部分脱溶的锌离子,有助于锌的均匀和高度可逆沉积。在相间层的屏蔽作用下,对称电池实现了超稳定的锌电镀/剥离,在 0.5 mA cm-2 下循环时间超过 1000 小时,在 1 mA cm-2 下循环时间约 700 小时,远远超过裸锌阳极的循环时间(250 小时和 70 小时)。此外,作为概念验证,与二氧化锰阴极配对的完整电池显示出更高的速率性能和稳定的循环(在 1 A g-1 下循环 1200 次)。这项研究为提高锌金属阳极性能的相间设计提供了新的见解。
{"title":"In Situ Growth of 2D Metal–Organic Framework Ion Sieve Interphase for Reversible Zinc Anodes","authors":"Jing Sun, Qinping Jian, Bin Liu, Pengzhu Lin, Tianshou Zhao","doi":"10.1002/eem2.12769","DOIUrl":"10.1002/eem2.12769","url":null,"abstract":"<p>Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety, cost-effectiveness, and high capacity. However, the service life of zinc metal anodes is severely constrained by critical challenges, including dendrites, water-induced hydrogen evolution, and passivation. In this study, a protective two-dimensional metal–organic framework interphase is in situ constructed on the zinc anode surface with a novel gel vapor deposition method. The ultrathin interphase layer (~1 μm) is made of layer-stacking 2D nanosheets with angstrom-level pores of around 2.1 Å, which serves as an ion sieve to reject large solvent–ion pairs while homogenizes the transport of partially desolvated zinc ions, contributing to a uniform and highly reversible zinc deposition. With the shielding of the interphase layer, an ultra-stable zinc plating/stripping is achieved in symmetric cells with cycling over 1000 h at 0.5 mA cm<sup>−2</sup> and ~700 h at 1 mA cm<sup>−2</sup>, far exceeding that of the bare zinc anodes (250 and 70 h). Furthermore, as a proof-of-concept demonstration, the full cell paired with MnO<sub>2</sub> cathode demonstrates improved rate performances and stable cycling (1200 cycles at 1 A g<sup>−1</sup>). This work provides fresh insights into interphase design to promote the performance of zinc metal anodes.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12769","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joonhee Ma, Jin Hyuk Cho, Chaehyeon Lee, Moon Sung Kang, Sungkyun Choi, Ho Won Jang, Sang Hyun Ahn, Seoin Back, Soo Young Kim
The development of cost-effective, highly efficient, and durable electrocatalysts has been a paramount pursuit for advancing the hydrogen evolution reaction (HER). Herein, a simplified synthesis protocol was designed to achieve a self-standing electrode, composed of activated carbon paper embedded with Ru single-atom catalysts and Ru nanoclusters (ACP/RuSAC+C) via acid activation, immersion, and high-temperature pyrolysis. Ab initio molecular dynamics (AIMD) calculations are employed to gain a more profound understanding of the impact of acid activation on carbon paper. Furthermore, the coexistence states of the Ru atoms are confirmed via aberration-corrected scanning transmission electron microscopy (AC-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). Experimental measurements and theoretical calculations reveal that introducing a Ru single-atom site adjacent to the Ru nanoclusters induces a synergistic effect, tuning the electronic structure and thereby significantly enhancing their catalytic performance. Notably, the ACP/RuSAC+C exhibits a remarkable turnover frequency (TOF) of 18 s−1 and an exceptional mass activity (MA) of 2.2 A mg−1, surpassing the performance of conventional Pt electrodes. The self-standing electrode, featuring harmoniously coexisting Ru states, stands out as a prospective choice for advancing HER catalysts, enhancing energy efficiency, productivity, and selectivity.
开发具有成本效益、高效且耐用的电催化剂一直是推进氢气进化反应(HER)的首要任务。本文设计了一种简化的合成方案,通过酸活化、浸泡和高温热解,实现了由嵌入 Ru 单原子催化剂和 Ru 纳米团簇(ACP/RuSAC+C)的活性碳纸组成的自立电极。为了更深入地了解酸活化对碳纸的影响,该研究采用了 Ab initio 分子动力学(AIMD)计算。此外,还通过像差校正扫描透射电子显微镜(AC-STEM)、X 射线光电子能谱(XPS)和 X 射线吸收光谱(XAS)证实了 Ru 原子的共存状态。实验测量和理论计算显示,在 Ru 纳米团簇附近引入 Ru 单原子位点会产生协同效应,调整电子结构,从而显著提高催化性能。值得注意的是,ACP/RuSAC+C 的翻转频率(TOF)高达 18 s-1,质量活度(MA)达到 2.2 A mg-1,超过了传统铂电极的性能。这种自立电极具有和谐共存的 Ru 状态,是开发 HER 催化剂、提高能效、生产率和选择性的理想选择。
{"title":"Unraveling the Harmonious Coexistence of Ruthenium States on a Self-Standing Electrode for Enhanced Hydrogen Evolution Reaction","authors":"Joonhee Ma, Jin Hyuk Cho, Chaehyeon Lee, Moon Sung Kang, Sungkyun Choi, Ho Won Jang, Sang Hyun Ahn, Seoin Back, Soo Young Kim","doi":"10.1002/eem2.12766","DOIUrl":"10.1002/eem2.12766","url":null,"abstract":"<p>The development of cost-effective, highly efficient, and durable electrocatalysts has been a paramount pursuit for advancing the hydrogen evolution reaction (HER). Herein, a simplified synthesis protocol was designed to achieve a self-standing electrode, composed of activated carbon paper embedded with Ru single-atom catalysts and Ru nanoclusters (ACP/Ru<sub>SAC+C</sub>) <i>via</i> acid activation, immersion, and high-temperature pyrolysis. Ab initio molecular dynamics (AIMD) calculations are employed to gain a more profound understanding of the impact of acid activation on carbon paper. Furthermore, the coexistence states of the Ru atoms are confirmed <i>via</i> aberration-corrected scanning transmission electron microscopy (AC-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). Experimental measurements and theoretical calculations reveal that introducing a Ru single-atom site adjacent to the Ru nanoclusters induces a synergistic effect, tuning the electronic structure and thereby significantly enhancing their catalytic performance. Notably, the ACP/Ru<sub>SAC+C</sub> exhibits a remarkable turnover frequency (TOF) of 18 s<sup>−1</sup> and an exceptional mass activity (MA) of 2.2 A mg<sup>−1</sup>, surpassing the performance of conventional Pt electrodes. The self-standing electrode, featuring harmoniously coexisting Ru states, stands out as a prospective choice for advancing HER catalysts, enhancing energy efficiency, productivity, and selectivity.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12766","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingdan Huang, Yang Bai, Han Luo, Yikai Jia, Chao Zhang
In challenging operational environments, Lithium-ion batteries (LIBs) inevitably experience mechanical stresses, including impacts and extrusion, which can lead to battery damage, failure, and even the occurrence of fire and explosion incidents. Consequently, it is imperative to investigate the safety performance of LIBs under mechanical loads. This study is grounded in a more realistic coupling scenario consisting of electrochemical cycling and low-velocity impact. We systematically and experimentally uncovered the mechanical, electrochemical, and thermal responses, damage behavior, and corresponding mechanisms under various conditions. Our study demonstrates that higher impact energy results in increased structural stiffness, maximum temperature, and maximum voltage drop. Furthermore, heightened impact energy significantly influences the electrical resistance parameters within the internal resistance. We also examined the effects of State of Charge (SOC) and C-rates. The methodology and experimental findings will offer insights for enhancing the safety design, conducting risk assessments, and enabling the cascading utilization of energy storage systems based on LIBs.
在具有挑战性的运行环境中,锂离子电池(LIB)不可避免地会承受机械应力,包括冲击和挤压,这可能会导致电池损坏、失效,甚至发生火灾和爆炸事故。因此,研究机械负载下锂离子电池的安全性能势在必行。本研究立足于由电化学循环和低速冲击组成的更真实的耦合场景。我们通过实验系统地揭示了各种条件下的机械、电化学和热反应、损伤行为以及相应的机制。我们的研究表明,较高的冲击能量会导致结构刚度、最高温度和最大电压降的增加。此外,冲击能量的增加会对内阻中的电阻参数产生重大影响。我们还研究了充电状态(SOC)和 C 速率的影响。这些方法和实验结果将为加强安全设计、进行风险评估以及实现基于 LIB 的储能系统的级联利用提供启示。
{"title":"Dynamic Multi-Physics Behaviors and Performance Loss of Cylindrical Batteries Upon Low-Velocity Impact Loading","authors":"Qingdan Huang, Yang Bai, Han Luo, Yikai Jia, Chao Zhang","doi":"10.1002/eem2.12771","DOIUrl":"10.1002/eem2.12771","url":null,"abstract":"<p>In challenging operational environments, Lithium-ion batteries (LIBs) inevitably experience mechanical stresses, including impacts and extrusion, which can lead to battery damage, failure, and even the occurrence of fire and explosion incidents. Consequently, it is imperative to investigate the safety performance of LIBs under mechanical loads. This study is grounded in a more realistic coupling scenario consisting of electrochemical cycling and low-velocity impact. We systematically and experimentally uncovered the mechanical, electrochemical, and thermal responses, damage behavior, and corresponding mechanisms under various conditions. Our study demonstrates that higher impact energy results in increased structural stiffness, maximum temperature, and maximum voltage drop. Furthermore, heightened impact energy significantly influences the electrical resistance parameters within the internal resistance. We also examined the effects of State of Charge (SOC) and C-rates. The methodology and experimental findings will offer insights for enhancing the safety design, conducting risk assessments, and enabling the cascading utilization of energy storage systems based on LIBs.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12771","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Li, Gang Wang, Jin Hu, Jun Li, Jiaxu Huang, Shaolin Xu
The practical application of lithium (Li) metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites. To address this challenge, this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper (Cu) current collectors. Specifically, this approach enhances the prevalence of Cu (100) facets within the grooves, effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition. Unlike approaches that modify the entire surface of collectors, our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics. The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42% over 350 cycles at 1 mA cm−2. The symmetric cell can cycle stably for 1600 h at 0.5 mA cm−2. Furthermore, when integrated with LiFePO4 cathodes, the full-cell configuration demonstrates outstanding capacity retention of 92.39% after 400 cycles at a 1C discharge rate. This study introduces a novel technique for fabricating selective lithiophilic three-dimensional (3D) Cu current collectors, thereby enhancing the performance of Li metal batteries. The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures.
{"title":"Laser-Constructing 3D Copper Current Collector with Crystalline Orientation Selectivity for Stable Lithium Metal Batteries","authors":"Hui Li, Gang Wang, Jin Hu, Jun Li, Jiaxu Huang, Shaolin Xu","doi":"10.1002/eem2.12768","DOIUrl":"10.1002/eem2.12768","url":null,"abstract":"<p>The practical application of lithium (Li) metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites. To address this challenge, this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper (Cu) current collectors. Specifically, this approach enhances the prevalence of Cu (100) facets within the grooves, effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition. Unlike approaches that modify the entire surface of collectors, our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics. The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42% over 350 cycles at 1 mA cm<sup>−2</sup>. The symmetric cell can cycle stably for 1600 h at 0.5 mA cm<sup>−2</sup>. Furthermore, when integrated with LiFePO<sub>4</sub> cathodes, the full-cell configuration demonstrates outstanding capacity retention of 92.39% after 400 cycles at a 1C discharge rate. This study introduces a novel technique for fabricating selective lithiophilic three-dimensional (3D) Cu current collectors, thereby enhancing the performance of Li metal batteries. The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12768","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenliang Duan, Pengbo Zhai, Ning Zhao, Xiangxin Guo
High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries. However, the poor structural stability and severe side reactions at the electrode/electrolyte interface result in unsatisfactory cycle performance. Herein, the thin layer of two-dimensional (2D) graphitic carbon-nitride (g-C3N4) is uniformly coated on the LiNi0.8Co0.1Mn0.1O2 (denoted as NCM811@CN) using a facile chemical vaporization-assisted synthesis method. As an ideal protective layer, the g-C3N4 layer effectively avoids direct contact between the NCM811 cathode and the electrolyte, preventing harmful side reactions and inhibiting secondary crystal cracking. Moreover, the unique nanopore structure and abundant nitrogen vacancy edges in g-C3N4 facilitate the adsorption and diffusion of lithium ions, which enhances the lithium deintercalation/intercalation kinetics of the NCM811 cathode. As a result, the NCM811@CN-3wt% cathode exhibits 161.3 mAh g−1 and capacity retention of 84.6% at 0.5 C and 55 °C after 400 cycles and 95.7 mAh g−1 at 10 C, which is greatly superior to the uncoated NCM811 (i.e. 129.3 mAh g−1 and capacity retention of 67.4% at 0.5 C and 55 °C after 220 cycles and 28.8 mAh g−1 at 10 C). The improved cycle performance of the NCM811@CN-3wt% cathode is also applicable to solid–liquid-hybrid cells composed of PVDF:LLZTO electrolyte membranes, which show 163.8 mAh g−1 and the capacity retention of 88.1% at 0.1 C and 30 °C after 200 cycles and 95.3 mAh g−1 at 1 C.
{"title":"Two-Dimensional Graphitic Carbon-Nitride (g-C3N4)-Coated LiNi0.8Co0.1Mn0.1O2 Cathodes for High-Energy-Density and Long-Life Lithium Batteries","authors":"Zhenliang Duan, Pengbo Zhai, Ning Zhao, Xiangxin Guo","doi":"10.1002/eem2.12770","DOIUrl":"10.1002/eem2.12770","url":null,"abstract":"<p>High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries. However, the poor structural stability and severe side reactions at the electrode/electrolyte interface result in unsatisfactory cycle performance. Herein, the thin layer of two-dimensional (2D) graphitic carbon-nitride (g-C<sub>3</sub>N<sub>4</sub>) is uniformly coated on the LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (denoted as NCM811@CN) using a facile chemical vaporization-assisted synthesis method. As an ideal protective layer, the g-C<sub>3</sub>N<sub>4</sub> layer effectively avoids direct contact between the NCM811 cathode and the electrolyte, preventing harmful side reactions and inhibiting secondary crystal cracking. Moreover, the unique nanopore structure and abundant nitrogen vacancy edges in g-C<sub>3</sub>N<sub>4</sub> facilitate the adsorption and diffusion of lithium ions, which enhances the lithium deintercalation/intercalation kinetics of the NCM811 cathode. As a result, the NCM811@CN-3wt% cathode exhibits 161.3 mAh g<sup>−1</sup> and capacity retention of 84.6% at 0.5 C and 55 °C after 400 cycles and 95.7 mAh g<sup>−1</sup> at 10 C, which is greatly superior to the uncoated NCM811 (i.e. 129.3 mAh g<sup>−1</sup> and capacity retention of 67.4% at 0.5 C and 55 °C after 220 cycles and 28.8 mAh g<sup>−1</sup> at 10 C). The improved cycle performance of the NCM811@CN-3wt% cathode is also applicable to solid–liquid-hybrid cells composed of PVDF:LLZTO electrolyte membranes, which show 163.8 mAh g<sup>−1</sup> and the capacity retention of 88.1% at 0.1 C and 30 °C after 200 cycles and 95.3 mAh g<sup>−1</sup> at 1 C.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12770","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Luo, Changhong Wang, Yi Duan, Xuyang Zhao, Jiantao Wang, Xueliang Sun
All-solid-state lithium metal batteries (ASSLMBs) featuring sulfide solid electrolytes (SEs) are recognized as the most promising next-generation energy storage technology because of their exceptional safety and much-improved energy density. However, lithium dendrite growth in sulfide SEs and their poor air stability have posed significant obstacles to the advancement of sulfide-based ASSLMBs. Here, a thin layer (approximately 5 nm) of g-C3N4 is coated on the surface of a sulfide SE (Li6PS5Cl), which not only lowers the electronic conductivity of Li6PS5Cl but also achieves remarkable interface stability by facilitating the in situ formation of ion-conductive Li3N at the Li/Li6PS5Cl interface. Additionally, the g-C3N4 coating on the surface can substantially reduce the formation of H2S when Li6PS5Cl is exposed to humid air. As a result, Li–Li symmetrical cells using g-C3N4-coated Li6PS5Cl stably cycle for 1000 h with a current density of 0.2 mA cm−2. ASSLMBs paired with LiNbO3-coated LiNi0.6Mn0.2Co0.2O2 exhibit a capacity of 132.8 mAh g−1 at 0.1 C and a high-capacity retention of 99.1% after 200 cycles. Furthermore, g-C3N4-coated Li6PS5Cl effectively mitigates the self-discharge behavior observed in ASSLMBs. This surface-coating approach for sulfide solid electrolytes opens the door to the practical implementation of sulfide-based ASSLMBs.
{"title":"Surface Coating Enabling Sulfide Solid Electrolytes with Excellent Air Stability and Lithium Compatibility","authors":"Min Luo, Changhong Wang, Yi Duan, Xuyang Zhao, Jiantao Wang, Xueliang Sun","doi":"10.1002/eem2.12753","DOIUrl":"10.1002/eem2.12753","url":null,"abstract":"<p>All-solid-state lithium metal batteries (ASSLMBs) featuring sulfide solid electrolytes (SEs) are recognized as the most promising next-generation energy storage technology because of their exceptional safety and much-improved energy density. However, lithium dendrite growth in sulfide SEs and their poor air stability have posed significant obstacles to the advancement of sulfide-based ASSLMBs. Here, a thin layer (approximately 5 nm) of g-C<sub>3</sub>N<sub>4</sub> is coated on the surface of a sulfide SE (Li<sub>6</sub>PS<sub>5</sub>Cl), which not only lowers the electronic conductivity of Li<sub>6</sub>PS<sub>5</sub>Cl but also achieves remarkable interface stability by facilitating the in situ formation of ion-conductive Li<sub>3</sub>N at the Li/Li<sub>6</sub>PS<sub>5</sub>Cl interface. Additionally, the g-C<sub>3</sub>N<sub>4</sub> coating on the surface can substantially reduce the formation of H<sub>2</sub>S when Li<sub>6</sub>PS<sub>5</sub>Cl is exposed to humid air. As a result, Li–Li symmetrical cells using g-C<sub>3</sub>N<sub>4</sub>-coated Li<sub>6</sub>PS<sub>5</sub>Cl stably cycle for 1000 h with a current density of 0.2 mA cm<sup>−2</sup>. ASSLMBs paired with LiNbO<sub>3</sub>-coated LiNi<sub>0.6</sub>Mn<sub>0.2</sub>Co<sub>0.2</sub>O<sub>2</sub> exhibit a capacity of 132.8 mAh g<sup>−1</sup> at 0.1 C and a high-capacity retention of 99.1% after 200 cycles. Furthermore, g-C<sub>3</sub>N<sub>4</sub>-coated Li<sub>6</sub>PS<sub>5</sub>Cl effectively mitigates the self-discharge behavior observed in ASSLMBs. This surface-coating approach for sulfide solid electrolytes opens the door to the practical implementation of sulfide-based ASSLMBs.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12753","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}