Thien Truong, Matthew Page, Sneh Sinha, Markus Kaupa, Mitchell Smith, Jennifer Selvidge, Harvey Guthrey, William Nemeth, San Theingi, Brett Walker, Myles Steiner, Pauls Stradins, Melbs LeMieux, David L. Young
Screen printing using metal particle pastes, the current photovoltaic industry metallization standard, provides fast and reliable metal grids for silicon solar cells. Recently, metal complex or reactive metal inks are attracting research interest due to their significantly low cost and higher performance compared to traditional nanoparticle silver pastes. In this work, we demonstrate, for the first time, screen-printed high-efficiency silicon heterojunction solar cells metallized by silver metal complex inks on industrial G1-size (158.75 × 158.75 mm2) wafers. We demonstrate screen-printed Ag metal complex ink grid patterns with continuous fingers ~100–120 μm wide. The printed Ag grid is very thin (~1 μm), which is an order of magnitude thinner than the current ~20–30 μm fingers printed with low-temperature nanoparticle-based pastes. Double printing allows silicon heterojunction devices with efficiencies >20%. This is the highest efficiency so far, to our knowledge, of industrial solar cell precursors using this metallization technology. Simulation results suggested that increasing the thickness of the metal film does not significantly improve efficiency due to the dense, highly conductive films. So, a single print of ~1 μm finger would be enough to produce cells that perform similarly to a ~20 μm thick nanoparticle paste printed cells. Additionally, solar cells printed on G1 wafers with silver metal complex ink required more than 10 times less silver (~0.03 g) compared to those using silver/copper nanoparticle paste (~0.4 g of Ag). These results indicate that metal complex inks are a very promising replacement for silver nanoparticle pastes for industrial-scale metallization in an age of resource scarcity and high costs of noble metals.
{"title":"Low-Cost, Screen-Printed Silver Metal Complex Inks for Silicon Heterojunction Solar Cells","authors":"Thien Truong, Matthew Page, Sneh Sinha, Markus Kaupa, Mitchell Smith, Jennifer Selvidge, Harvey Guthrey, William Nemeth, San Theingi, Brett Walker, Myles Steiner, Pauls Stradins, Melbs LeMieux, David L. Young","doi":"10.1002/eem2.70076","DOIUrl":"https://doi.org/10.1002/eem2.70076","url":null,"abstract":"<p>Screen printing using metal particle pastes, the current photovoltaic industry metallization standard, provides fast and reliable metal grids for silicon solar cells. Recently, metal complex or reactive metal inks are attracting research interest due to their significantly low cost and higher performance compared to traditional nanoparticle silver pastes. In this work, we demonstrate, for the first time, screen-printed high-efficiency silicon heterojunction solar cells metallized by silver metal complex inks on industrial G1-size (158.75 × 158.75 mm<sup>2</sup>) wafers. We demonstrate screen-printed Ag metal complex ink grid patterns with continuous fingers ~100–120 μm wide. The printed Ag grid is very thin (~1 μm), which is an order of magnitude thinner than the current ~20–30 μm fingers printed with low-temperature nanoparticle-based pastes. Double printing allows silicon heterojunction devices with efficiencies >20%. This is the highest efficiency so far, to our knowledge, of industrial solar cell precursors using this metallization technology. Simulation results suggested that increasing the thickness of the metal film does not significantly improve efficiency due to the dense, highly conductive films. So, a single print of ~1 μm finger would be enough to produce cells that perform similarly to a ~20 μm thick nanoparticle paste printed cells. Additionally, solar cells printed on G1 wafers with silver metal complex ink required more than 10 times less silver (~0.03 g) compared to those using silver/copper nanoparticle paste (~0.4 g of Ag). These results indicate that metal complex inks are a very promising replacement for silver nanoparticle pastes for industrial-scale metallization in an age of resource scarcity and high costs of noble metals.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 6","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70076","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145272785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong Yin, Yingqi Cao, Yaru Wang, Bo Xiao, Wei Wang, Zhaohui Hou, Najeeb Lashari, Joao Cunha, Chong Yang, Zhipeng Yu
As the transition to renewable energy accelerates, sodium metal batteries have emerged as a viable and economical substitute for lithium-ion technology. The unstable solid electrolyte interphase on sodium metal anodes continues to provide a significant challenge to attaining long-term cycle stability and safety. Natural solid electrolyte interphase layers frequently demonstrate inadequate mechanical integrity and deficient ionic conductivity, resulting in dendritic formation, diminished Coulombic efficiency, and capacity degradation. Creating artificial solid electrolyte interphases has emerged as an essential remedy to address these restrictions. This review offers an extensive analysis of artificial solid electrolyte interphases techniques for sodium metal batteries, emphasizing their creation mechanisms, material selection, and structural design. The research highlights the significance of fluoride-based materials, multi-layered solid electrolyte interphase structures, and polymer composites in mitigating dendrite development and improving interfacial stability. Advanced characterization techniques, including microscopy and spectroscopy, are emphasized for examining the microstructure and ion transport properties of artificial solid electrolyte interphases layers. Additionally, density functional theory simulations are examined to forecast ideal material compositions and ion migration paths. This study seeks to inform future developments in artificial solid electrolyte interphases engineering to facilitate enhanced performance, safety, and market viability of sodium metal batteries. Artificial solid electrolyte interphases facilitate next-generation sustainable energy storage systems through new interface designs and integrated analysis.
{"title":"Artificial Solid Electrolyte Interphase for Sodium Metal Batteries: Mechanistic Insights and Design Strategies","authors":"Hong Yin, Yingqi Cao, Yaru Wang, Bo Xiao, Wei Wang, Zhaohui Hou, Najeeb Lashari, Joao Cunha, Chong Yang, Zhipeng Yu","doi":"10.1002/eem2.70077","DOIUrl":"https://doi.org/10.1002/eem2.70077","url":null,"abstract":"<p>As the transition to renewable energy accelerates, sodium metal batteries have emerged as a viable and economical substitute for lithium-ion technology. The unstable solid electrolyte interphase on sodium metal anodes continues to provide a significant challenge to attaining long-term cycle stability and safety. Natural solid electrolyte interphase layers frequently demonstrate inadequate mechanical integrity and deficient ionic conductivity, resulting in dendritic formation, diminished Coulombic efficiency, and capacity degradation. Creating artificial solid electrolyte interphases has emerged as an essential remedy to address these restrictions. This review offers an extensive analysis of artificial solid electrolyte interphases techniques for sodium metal batteries, emphasizing their creation mechanisms, material selection, and structural design. The research highlights the significance of fluoride-based materials, multi-layered solid electrolyte interphase structures, and polymer composites in mitigating dendrite development and improving interfacial stability. Advanced characterization techniques, including microscopy and spectroscopy, are emphasized for examining the microstructure and ion transport properties of artificial solid electrolyte interphases layers. Additionally, density functional theory simulations are examined to forecast ideal material compositions and ion migration paths. This study seeks to inform future developments in artificial solid electrolyte interphases engineering to facilitate enhanced performance, safety, and market viability of sodium metal batteries. Artificial solid electrolyte interphases facilitate next-generation sustainable energy storage systems through new interface designs and integrated analysis.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 6","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70077","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145272784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weicheng Hua, Per Erik Vullum, Kristianne Nilsen-Nygaard Hjelseng, Johan Hamonnet, Pedro Alonso-Sánchez, Jiefang Zhu, Zoltan Hegedüs, Juan Rubio Zuazo, Federico Cova, Ann Mari Svensson, Maria Valeria Blanco
Silica (SiO2) anodes are promising candidates for enhancing the energy density of next-generation Li-ion batteries, offering a compelling combination of high storage capacity, stable cycling performance, low cost, and sustainability. This performance stems from SiO2 unique lithiation mechanism, which involves its conversion to electroactive silicon (Si) and electrochemically inactive species. However, widespread adoption of SiO2 anodes is hindered by their slow initial lithiation. To address this, research has focused on developing electrochemical “activation protocols” that involve prolonged low-potential holding steps to promote SiO2 conversion. Despite these efforts, the complex and multi-pathway nature of SiO2 lithiation process remains poorly understood, impeding the rational design of effective activation strategies. By introducing a multi-probe characterization approach, this study reveals that, contrary to the previously proposed reaction mechanism of SiO2 anodes, the lithiation process initiates at low potentials with the direct formation of Li4SiO4 and LixSi. Electrochemical activation potential was found to significantly influence the degree of conversion, with 10 mV identified as the optimal cut-off potential for maximizing SiO2 utilization. These findings provide key enablers to unlock the full potential of SiO2 anodes for battery technology.
{"title":"Unlocking the Electrochemical Activation of Diatomaceous Earth SiO2 Anodes for Next-Generation Li-Ion Batteries","authors":"Weicheng Hua, Per Erik Vullum, Kristianne Nilsen-Nygaard Hjelseng, Johan Hamonnet, Pedro Alonso-Sánchez, Jiefang Zhu, Zoltan Hegedüs, Juan Rubio Zuazo, Federico Cova, Ann Mari Svensson, Maria Valeria Blanco","doi":"10.1002/eem2.70074","DOIUrl":"https://doi.org/10.1002/eem2.70074","url":null,"abstract":"<p>Silica (SiO<sub>2</sub>) anodes are promising candidates for enhancing the energy density of next-generation Li-ion batteries, offering a compelling combination of high storage capacity, stable cycling performance, low cost, and sustainability. This performance stems from SiO<sub>2</sub> unique lithiation mechanism, which involves its conversion to electroactive silicon (Si) and electrochemically inactive species. However, widespread adoption of SiO<sub>2</sub> anodes is hindered by their slow initial lithiation. To address this, research has focused on developing electrochemical “activation protocols” that involve prolonged low-potential holding steps to promote SiO<sub>2</sub> conversion. Despite these efforts, the complex and multi-pathway nature of SiO<sub>2</sub> lithiation process remains poorly understood, impeding the rational design of effective activation strategies. By introducing a multi-probe characterization approach, this study reveals that, contrary to the previously proposed reaction mechanism of SiO<sub>2</sub> anodes, the lithiation process initiates at low potentials with the direct formation of Li<sub>4</sub>SiO<sub>4</sub> and Li<sub>x</sub>Si. Electrochemical activation potential was found to significantly influence the degree of conversion, with 10 mV identified as the optimal cut-off potential for maximizing SiO<sub>2</sub> utilization. These findings provide key enablers to unlock the full potential of SiO<sub>2</sub> anodes for battery technology.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 6","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70074","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145272475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanlin Yao, Xinyu You, Songqi Wu, Yunhao Wang, Di Hu, Yongsheng Ma, Jun Luo, Jie Qiu, Lihua Zhou
Chronic wounds resulting from diabetes are among the most common complications in diabetic patients. Attributable to poor local blood circulation and an increased risk of infection, these wounds heal slowly and are difficult to treat, posing a significant global health challenge. Herein, we achieved the green valorization of waste liquid from the natural clay-derived zeolite synthesis process and utilized it to fabricate metal-loaded aluminosilicate dressings with pronounced wrinkled structures (wrinkled Cu–AS, Ga–AS, and Ce–AS) through simple procedures. Wrinkled Cu–AS and Ce–AS exhibited strong antibacterial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans, with wrinkled Ce–AS demonstrating notable antibiotic-like effects against C. albicans. Moreover, wrinkled Ce–AS enhanced hemostatic capability, promoted blood cell aggregation and activation, downregulated inflammatory markers (IL-6/TNFα), stimulated angiogenesis (VEGF), and shifted macrophage polarization toward the M2 phenotype, thereby facilitating rapid wound healing. Sprague–Dawley rats tolerated intraperitoneal administration well, with no observable toxicity as well as satisfactory hemolysis and cell compatibility. Notably, in the context of growing demand for natural clay utilization and zeolite production, this work presents a unique green approach for the efficient reuse of zeolite synthesis waste liquid, offering both environmental sustainability and commercial viability. This expands the repertoire of biomedical materials available for treating chronic diabetic wounds.
{"title":"Remolding Waste Liquid From the Zeolite Synthesis Process Into Wrinkled Dressings for Diabetic Wound Therapeutics With Immunomodulation","authors":"Hanlin Yao, Xinyu You, Songqi Wu, Yunhao Wang, Di Hu, Yongsheng Ma, Jun Luo, Jie Qiu, Lihua Zhou","doi":"10.1002/eem2.70072","DOIUrl":"https://doi.org/10.1002/eem2.70072","url":null,"abstract":"<p>Chronic wounds resulting from diabetes are among the most common complications in diabetic patients. Attributable to poor local blood circulation and an increased risk of infection, these wounds heal slowly and are difficult to treat, posing a significant global health challenge. Herein, we achieved the green valorization of waste liquid from the natural clay-derived zeolite synthesis process and utilized it to fabricate metal-loaded aluminosilicate dressings with pronounced wrinkled structures (wrinkled Cu–AS, Ga–AS, and Ce–AS) through simple procedures. Wrinkled Cu–AS and Ce–AS exhibited strong antibacterial activity against <i>Escherichia coli</i>, <i>Staphylococcus aureus</i>, and <i>Candida albicans</i>, with wrinkled Ce–AS demonstrating notable antibiotic-like effects against <i>C. albicans</i>. Moreover, wrinkled Ce–AS enhanced hemostatic capability, promoted blood cell aggregation and activation, downregulated inflammatory markers (IL-6/TNFα), stimulated angiogenesis (VEGF), and shifted macrophage polarization toward the M2 phenotype, thereby facilitating rapid wound healing. Sprague–Dawley rats tolerated intraperitoneal administration well, with no observable toxicity as well as satisfactory hemolysis and cell compatibility. Notably, in the context of growing demand for natural clay utilization and zeolite production, this work presents a unique green approach for the efficient reuse of zeolite synthesis waste liquid, offering both environmental sustainability and commercial viability. This expands the repertoire of biomedical materials available for treating chronic diabetic wounds.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 6","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145272457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lifei Liu, Chao Wu, Jie Chen, Yali Jiang, Juan Li, Heng Zhang, Chang Ming Li
Sluggish electrode kinetics and polysulfide dissolution severely hinder room-temperature sodium-sulfur batteries (RT Na-S) from achieving high-theoretical capacity and low cost. Metal-based catalysts are often used to absorb polysulfide intermediates against the shuttle effect in Na-S batteries, but rationalization of an electrode pore structure to improve battery performance is ignored. Herein, a rational micropore/mesopore network structure of macadamia nut shell-derived carbon is constructed as a carbon/sulfur cathode by tuning the ratio of micro to mesopore. The cathode simultaneously boosts mass transport for high-rate performance while confining the shuttle effect for long cycles, thus delivering excellent Na-storage performance with high capacities of 912 mAh g−1 at 0.1 A g−1 and 360 mAh g−1 at 5 A g−1, ranking the best among all reported plain carbon-based sodium-sulfur electrodes. This work holds great promise for biomass-derived inexpensive plain carbon-based electrodes in practical high-rate applications, while shedding light on the fundamentals of pore structure effects of a carbon electrode on high-performance batteries, thus possessing universal significance in the designs of rational pore structures in energy conversions.
缓慢的电极动力学和多硫化物溶解严重阻碍了室温钠硫电池(RT Na-S)实现高理论容量和低成本。在Na-S电池中,金属基催化剂通常用于吸收多硫化物中间体以对抗穿梭效应,但忽略了电极孔隙结构的合理化以提高电池性能。本文通过调节微孔与中孔的比例,构建了一种合理的澳洲坚果壳衍生碳微孔/介孔网络结构作为碳/硫阴极。该阴极在保证高倍率性能的同时,还限制了长周期的穿梭效应,从而提供了优异的na存储性能,在0.1 A g−1和5 A g−1时的高容量分别为912 mAh g−1和360 mAh g−1,是所有报道的普通碳基钠硫电极中最好的。这项工作为生物质来源的廉价普通碳基电极在实际高速率应用中提供了巨大的希望,同时揭示了碳电极在高性能电池上的孔结构效应的基本原理,因此在设计能量转换中的合理孔结构方面具有普遍意义。
{"title":"Tuning Rational Micropore/Mesopores Network Structure of Biomass-Derived Carbon/Sulfur Cathode for High-Performance Na-S Batteries","authors":"Lifei Liu, Chao Wu, Jie Chen, Yali Jiang, Juan Li, Heng Zhang, Chang Ming Li","doi":"10.1002/eem2.70081","DOIUrl":"https://doi.org/10.1002/eem2.70081","url":null,"abstract":"<p>Sluggish electrode kinetics and polysulfide dissolution severely hinder room-temperature sodium-sulfur batteries (RT Na-S) from achieving high-theoretical capacity and low cost. Metal-based catalysts are often used to absorb polysulfide intermediates against the shuttle effect in Na-S batteries, but rationalization of an electrode pore structure to improve battery performance is ignored. Herein, a rational micropore/mesopore network structure of macadamia nut shell-derived carbon is constructed as a carbon/sulfur cathode by tuning the ratio of micro to mesopore. The cathode simultaneously boosts mass transport for high-rate performance while confining the shuttle effect for long cycles, thus delivering excellent Na-storage performance with high capacities of 912 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> and 360 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>, ranking the best among all reported plain carbon-based sodium-sulfur electrodes. This work holds great promise for biomass-derived inexpensive plain carbon-based electrodes in practical high-rate applications, while shedding light on the fundamentals of pore structure effects of a carbon electrode on high-performance batteries, thus possessing universal significance in the designs of rational pore structures in energy conversions.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 6","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145272477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiajian Wang, Yanmei Li, Tongda Liu, Weibing Xue, Hongxing Yang, Chunyan Yin, Rong Liu, Guanben Du, Wenshuai Chen, Long Yang
Biomass structural materials can effectively address the issues of high energy consumption and environmental degradation brought by traditional engineering structural materials. However, natural structural materials often suffer from drawbacks such as low mechanical performance and flammability. Therefore, this study has developed an ultra-strong fire-resistant bamboo composite (UFBC). Natural bamboo (NB) was used as the raw material. After delignification treatment, bamboo fibers are grafted with epoxy groups through in-situ chemical bonding. Subsequently, polymer chains underwent in-situ chemical cross-linking within the bamboo fiber framework, combined with reinforcement from nano silica, resulting in strengthened cell walls. In addition, the softened and expanded cell walls can facilitate the deposition of phosphate and borate salt on the cell walls, forming an N-P-B flame-retardant system within the system. The tensile strength (463 MPa vs NB 112 MPa) and flexural strength (655 MPa vs NB 157 MPa) of UFBC increased fourfold, with a Limiting Oxygen Index (LOI) of 54.4%. Compared to similar bamboo-based composite materials, UFBC exhibits superior environmental friendliness and sustainability throughout its lifecycle, with all 18 environmental factors being optimized (up to a 92% reduction). This study provides an important reference for the application of high-performance biomass structural materials in construction and industry.
生物质结构材料可以有效解决传统工程结构材料带来的高能耗和环境退化问题。然而,天然结构材料往往存在机械性能低、易燃性差等缺点。因此,本研究开发了一种超强耐火竹复合材料(UFBC)。采用天然竹(NB)为原料。竹纤维经去木质素处理后,通过原位化学键接枝环氧基。随后,聚合物链在竹纤维框架内进行原位化学交联,与纳米二氧化硅的增强相结合,从而增强了细胞壁。此外,软化和膨胀的细胞壁可以促进磷酸盐和硼酸盐在细胞壁上的沉积,在体系内形成N-P-B阻燃体系。UFBC的抗拉强度(463 MPa vs NB 112 MPa)和抗折强度(655 MPa vs NB 157 MPa)提高了4倍,极限氧指数(LOI)为54.4%。与类似的竹基复合材料相比,UFBC在其整个生命周期中表现出卓越的环境友好性和可持续性,所有18个环境因素都得到了优化(最多减少92%)。本研究为高性能生物质结构材料在建筑和工业中的应用提供了重要参考。
{"title":"Ultra-Strong, Fire-Resistant and Eco-Friendly Bamboo Composites Based on Cell Wall Polymer Decoration Engineering","authors":"Jiajian Wang, Yanmei Li, Tongda Liu, Weibing Xue, Hongxing Yang, Chunyan Yin, Rong Liu, Guanben Du, Wenshuai Chen, Long Yang","doi":"10.1002/eem2.70087","DOIUrl":"https://doi.org/10.1002/eem2.70087","url":null,"abstract":"<p>Biomass structural materials can effectively address the issues of high energy consumption and environmental degradation brought by traditional engineering structural materials. However, natural structural materials often suffer from drawbacks such as low mechanical performance and flammability. Therefore, this study has developed an ultra-strong fire-resistant bamboo composite (UFBC). Natural bamboo (NB) was used as the raw material. After delignification treatment, bamboo fibers are grafted with epoxy groups through in-situ chemical bonding. Subsequently, polymer chains underwent in-situ chemical cross-linking within the bamboo fiber framework, combined with reinforcement from nano silica, resulting in strengthened cell walls. In addition, the softened and expanded cell walls can facilitate the deposition of phosphate and borate salt on the cell walls, forming an N-P-B flame-retardant system within the system. The tensile strength (463 MPa vs NB 112 MPa) and flexural strength (655 MPa vs NB 157 MPa) of UFBC increased fourfold, with a Limiting Oxygen Index (LOI) of 54.4%. Compared to similar bamboo-based composite materials, UFBC exhibits superior environmental friendliness and sustainability throughout its lifecycle, with all 18 environmental factors being optimized (up to a 92% reduction). This study provides an important reference for the application of high-performance biomass structural materials in construction and industry.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"9 1","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70087","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145730568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review presents a comprehensive overview of recent advances in supercapacitor electrode materials, with a particular emphasis on the synergistic interactions between electrode materials and electrolytes. Beyond the conventional categorization of materials such as carbon-based materials, conducting polymers, and metal oxides, we focus on emerging nanostructured systems including MXenes, transition metal dichalcogenides (TMDs), black phosphorus, and quantum dots. We highlight how engineering the electrode–electrolyte interface—through the use of ionic liquids, gel-based, and solid-state electrolytes—can enhance device performance by expanding voltage windows, improving cycling stability, and suppressing self-discharge. In addition, we discuss recent insights from density functional theory (DFT) and density of states (DOS) analyses that elucidate charge storage mechanisms at the atomic level. By integrating materials selection, interface engineering, and application-oriented design considerations, this review provides a forward-looking perspective on the development of next-generation supercapacitors for use in flexible electronics, electric vehicles, and sustainable energy systems.
{"title":"Recent Developments in Materials Design for Advanced Supercapacitors","authors":"Abhisikta Bhaduri, Chae-Eun Kim, Tae-Jun Ha","doi":"10.1002/eem2.70070","DOIUrl":"https://doi.org/10.1002/eem2.70070","url":null,"abstract":"<p>This review presents a comprehensive overview of recent advances in supercapacitor electrode materials, with a particular emphasis on the synergistic interactions between electrode materials and electrolytes. Beyond the conventional categorization of materials such as carbon-based materials, conducting polymers, and metal oxides, we focus on emerging nanostructured systems including MXenes, transition metal dichalcogenides (TMDs), black phosphorus, and quantum dots. We highlight how engineering the electrode–electrolyte interface—through the use of ionic liquids, gel-based, and solid-state electrolytes—can enhance device performance by expanding voltage windows, improving cycling stability, and suppressing self-discharge. In addition, we discuss recent insights from density functional theory (DFT) and density of states (DOS) analyses that elucidate charge storage mechanisms at the atomic level. By integrating materials selection, interface engineering, and application-oriented design considerations, this review provides a forward-looking perspective on the development of next-generation supercapacitors for use in flexible electronics, electric vehicles, and sustainable energy systems.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 6","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145272211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sb-Ge chalcogenides are known as effective phase change materials, making them ideal for optical data storage applications, detectors, and sensors. However, there have been no photovoltaic devices developed using these materials to date. In this work, Sb-Ge-Se crystalline thin films with different [Sb]/[Ge] atomic ratios are successfully grown for the first time through the selenization of co-evaporated Sb and Ge layers. The impact of the Se addition and temperature during the selenization process on the composition, structural, morphological, vibrational, and optical properties of the Sb-Ge-Se layers is investigated. The coexistence of Sb2Se3 and GeSe2 has been confirmed using various characterization techniques, including Grazing Incidence X-ray diffraction, Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and Raman spectroscopy. Additionally, Scanning Transmission Electron Microscopy has revealed Ge-enrichment regions surrounding the Sb2Se3 crystals. The composition of the co-evaporated film and final Ge content in the chalcogenide film govern the band gap energy, increasing from 1.41 to 1.83 eV. We present the inaugural operational SLG/Mo/Sb-Ge-Se/CdS/ZnO/ITO photovoltaic devices with a total efficiency of 1.34%. The primary factors limiting the device performance are the significant CdS diffusion into the active layer and the high defect density, as determined by Capacitance-Voltage and Drive-Level Capacitance Profiling. The devices exhibit excellent stability after 1 year of storage in ambient air. These first prototypes of Sb-Ge-Se crystalline thin films pave the way for advancement in the development of sustainable and stable photovoltaic devices.
{"title":"Growth and Properties of Sb-Ge-Se Thin Films: A Promising Material for Sustainable Photovoltaic Devices Development","authors":"Víctor Bonal, Samira Khelifi, Sanja Djurdjić Mijin, Beatriz Galiana, Yudania Sánchez, Marina García-Pardo, Antonio Arranz, Nazaret Ruíz-Marín, Snežana Lazić, Rosalia Serna, Raquel Caballero","doi":"10.1002/eem2.70059","DOIUrl":"https://doi.org/10.1002/eem2.70059","url":null,"abstract":"<p>Sb-Ge chalcogenides are known as effective phase change materials, making them ideal for optical data storage applications, detectors, and sensors. However, there have been no photovoltaic devices developed using these materials to date. In this work, Sb-Ge-Se crystalline thin films with different [Sb]/[Ge] atomic ratios are successfully grown for the first time through the selenization of co-evaporated Sb and Ge layers. The impact of the Se addition and temperature during the selenization process on the composition, structural, morphological, vibrational, and optical properties of the Sb-Ge-Se layers is investigated. The coexistence of Sb<sub>2</sub>Se<sub>3</sub> and GeSe<sub>2</sub> has been confirmed using various characterization techniques, including Grazing Incidence X-ray diffraction, Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and Raman spectroscopy. Additionally, Scanning Transmission Electron Microscopy has revealed Ge-enrichment regions surrounding the Sb<sub>2</sub>Se<sub>3</sub> crystals. The composition of the co-evaporated film and final Ge content in the chalcogenide film govern the band gap energy, increasing from 1.41 to 1.83 eV. We present the inaugural operational SLG/Mo/Sb-Ge-Se/CdS/ZnO/ITO photovoltaic devices with a total efficiency of 1.34%. The primary factors limiting the device performance are the significant CdS diffusion into the active layer and the high defect density, as determined by Capacitance-Voltage and Drive-Level Capacitance Profiling. The devices exhibit excellent stability after 1 year of storage in ambient air. These first prototypes of Sb-Ge-Se crystalline thin films pave the way for advancement in the development of sustainable and stable photovoltaic devices.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 6","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145273057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica Barichello, Peyman Amiri, Sebastiano Bellani, Cosimo Anichini, Marilena Isabella Zappia, Luca Gabatel, Paolo Mariani, Farshad Jafarzadeh, Francesco Bonaccorso, Francesca Brunetti, Matthias Auf der Maur, Giuseppe Calogero, Aldo Di Carlo, Fabio Matteocci
Beyond traditional rooftop and building-integrated photovoltaics (BIPV), photovoltaic (PV) devices find applications in agrivoltaics, space, and indoor settings. However, the underwater (UW) environment remains largely unexplored. Below 50 m, the solar spectrum shifts dramatically, with only blue-green light (400–600 nm) available. Perovskite solar cells (PSCs), known for their high-power conversion efficiencies (PCEs) and tunable bandgaps, offer potential for this environment. Initially, simulations compared the intensity of the solar radiation based on three models, each based on a different water body, down to a depth of 10 m. The trend of maximum theoretical performance, ranging from 1.5 to 3 eV band gap, was analyzed with respect to depth. In this pioneering study, a wide bandgap PSC, based on FaPbBr3, has been selected to operate underwater. Results were achieved through a complete in-house process encompassing fabrication, encapsulation, and underwater measurement. A 10-day saltwater submersion test of a damaged device confirmed minimal lead release, meeting stringent legal standards for lead in potable water. PV performance was evaluated UW, demonstrating an enhanced conversion efficiency within the first centimeters of water. This enhancement is due to water's optical and cooling properties. This work opens new frontiers for exploration, both for perovskites, traditionally considered unsuitable for humid environments, and for the increasingly human-occupied underwater realm, which is seeing the development of activities such as wine aging and plant cultivation.
{"title":"Beneath the Surface: Investigating Perovskite Solar Cells Under Water","authors":"Jessica Barichello, Peyman Amiri, Sebastiano Bellani, Cosimo Anichini, Marilena Isabella Zappia, Luca Gabatel, Paolo Mariani, Farshad Jafarzadeh, Francesco Bonaccorso, Francesca Brunetti, Matthias Auf der Maur, Giuseppe Calogero, Aldo Di Carlo, Fabio Matteocci","doi":"10.1002/eem2.70069","DOIUrl":"https://doi.org/10.1002/eem2.70069","url":null,"abstract":"<p>Beyond traditional rooftop and building-integrated photovoltaics (BIPV), photovoltaic (PV) devices find applications in agrivoltaics, space, and indoor settings. However, the underwater (UW) environment remains largely unexplored. Below 50 m, the solar spectrum shifts dramatically, with only blue-green light (400–600 nm) available. Perovskite solar cells (PSCs), known for their high-power conversion efficiencies (PCEs) and tunable bandgaps, offer potential for this environment. Initially, simulations compared the intensity of the solar radiation based on three models, each based on a different water body, down to a depth of 10 m. The trend of maximum theoretical performance, ranging from 1.5 to 3 eV band gap, was analyzed with respect to depth. In this pioneering study, a wide bandgap PSC, based on FaPbBr<sub>3</sub>, has been selected to operate underwater. Results were achieved through a complete in-house process encompassing fabrication, encapsulation, and underwater measurement. A 10-day saltwater submersion test of a damaged device confirmed minimal lead release, meeting stringent legal standards for lead in potable water. PV performance was evaluated UW, demonstrating an enhanced conversion efficiency within the first centimeters of water. This enhancement is due to water's optical and cooling properties. This work opens new frontiers for exploration, both for perovskites, traditionally considered unsuitable for humid environments, and for the increasingly human-occupied underwater realm, which is seeing the development of activities such as wine aging and plant cultivation.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 6","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145272922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taeseung Jung, Dohan Kim, Giuk Kim, Seungyeob Kim, Hyojun Choi, Minyoung Jo, Yunjeong Kim, Jinho Ahn, Seong-Ook Jung, Sanghun Jeon
Next-generation artificial tactile systems demand seamless integration with neuromorphic architectures to support on-edge computation and high-fidelity sensory signal processing. Despite significant advancements, current research remains predominantly focused on optimizing individual sensor elements, and systems utilizing single neuromorphic components encounter inherent limitations in enhancing overall functionality. Here, we present a vertically integrated in-sensor processing platform, which combines a three-dimensional antiferroelectric field-effect transistor (AFEFET) device with an aluminum nitride (AlN) piezoelectric sensor. This innovative architecture leverages a Zr-rich, leaky antiferroelectric HZO film—a novel material for physical reservoir computing (PRC) devices capable of responding to external stimuli within the microsecond-to-millisecond range. We further demonstrate the 3D AFEFET's adaptability by tuning its discharge current via structural modifications, enabling sophisticated multilayered processing. As an integrated in-sensor processing unit, the 3D AFEFET and AlN sensor array surpass a comparable 2D configuration in both pattern recognition and information density. Our findings showcase a pioneering prototype for future artificial tactile systems, demonstrating the transformative potential of 3D AFEFET PRC devices for advanced neuromorphic applications.
{"title":"Vertically Integrated In-Sensor Processing System Based on Three-Dimensional Reservoir for Artificial Tactile System","authors":"Taeseung Jung, Dohan Kim, Giuk Kim, Seungyeob Kim, Hyojun Choi, Minyoung Jo, Yunjeong Kim, Jinho Ahn, Seong-Ook Jung, Sanghun Jeon","doi":"10.1002/eem2.70063","DOIUrl":"https://doi.org/10.1002/eem2.70063","url":null,"abstract":"<p>Next-generation artificial tactile systems demand seamless integration with neuromorphic architectures to support on-edge computation and high-fidelity sensory signal processing. Despite significant advancements, current research remains predominantly focused on optimizing individual sensor elements, and systems utilizing single neuromorphic components encounter inherent limitations in enhancing overall functionality. Here, we present a vertically integrated in-sensor processing platform, which combines a three-dimensional antiferroelectric field-effect transistor (AFEFET) device with an aluminum nitride (AlN) piezoelectric sensor. This innovative architecture leverages a Zr-rich, leaky antiferroelectric HZO film—a novel material for physical reservoir computing (PRC) devices capable of responding to external stimuli within the microsecond-to-millisecond range. We further demonstrate the 3D AFEFET's adaptability by tuning its discharge current via structural modifications, enabling sophisticated multilayered processing. As an integrated in-sensor processing unit, the 3D AFEFET and AlN sensor array surpass a comparable 2D configuration in both pattern recognition and information density. Our findings showcase a pioneering prototype for future artificial tactile systems, demonstrating the transformative potential of 3D AFEFET PRC devices for advanced neuromorphic applications.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 6","pages":""},"PeriodicalIF":14.1,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145272872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}