Muhammad Zubair Asif Bhatti, A. Siddique, Waseem Aslam, Shahid Atiq
This research article presents a comprehensive investigation into the design, optimization, and performance analysis of a hybrid stand-alone microgrid for an industrial facility in Iraq at coordinates 36.51 and 43.99. The system consists of photovoltaic (PV) modules, inverters, a battery energy storage system (BESS), a generator, and AC loads. Leveraging the capabilities of PVsyst version 7.3.1, HOMER Pro version 3.14.2 and SAM version 2022.11.21 software tools, this study assesses the feasibility and functionality of the hybrid stand-alone microgrid. In this study, PVsyst software is used for detailed designing and analysis of a PV plant, and the PVsyst design file is then used in HOMER Pro software to optimize and design the proposed hybrid stand-alone microgrid, and for detailed performance analysis SAM software is employed. This paper also investigates the impact of ground clearance and ground albedo on the annual generation of bifacial PV modules at various tilt angles. Key findings include a promising normalized production rate of 4.53 kWh/kWp/day with a performance ratio of 0.815 and annual energy production estimates of 84.31 MWh (P50), 79.57 MWh (P90), and 78.24 MWh (P95) for monofacial PV modules, highlighting the system’s potential for renewable energy generation. Notably, this research demonstrates the hybrid stand-alone microgrid’s capacity to significantly reduce CO2 emissions, saving approximately 1811.6 tons over a 30-year period, thus contributing to sustainability and environmental conservation goals. Additionally, this study reveals operational challenges during the winter months, necessitating generator support to meet load demands. The successful installation and experimental validation of the hybrid stand-alone microgrid underscore its practical viability and its role in advancing clean energy solutions. This research provides valuable insights into hybrid stand-alone microgrid design, emphasizing its importance in ensuring reliable power supply and environmental stewardship.
本研究文章介绍了对坐标为 36.51 和 43.99 的伊拉克工业设施的混合独立微电网的设计、优化和性能分析的综合研究。该系统由光伏(PV)模块、逆变器、电池储能系统(BESS)、发电机和交流负载组成。本研究利用 PVsyst 7.3.1 版、HOMER Pro 3.14.2 版和 SAM 2022.11.21 版软件工具的功能,评估了混合独立微电网的可行性和功能性。本研究使用 PVsyst 软件对光伏电站进行详细设计和分析,然后在 HOMER Pro 软件中使用 PVsyst 设计文件对拟议的混合独立微电网进行优化和设计,并使用 SAM 软件进行详细的性能分析。本文还研究了不同倾角下地面间隙和地面反照率对双面光伏组件年发电量的影响。主要研究结果包括:单面光伏组件的归一化生产率为 4.53 千瓦时/千瓦时/天,性能比为 0.815;年发电量估计为 84.31 兆瓦时(P50)、79.57 兆瓦时(P90)和 78.24 兆瓦时(P95),凸显了该系统在可再生能源发电方面的潜力。值得注意的是,本研究证明了混合独立微电网能够显著减少二氧化碳排放,在 30 年内可节省约 1811.6 吨二氧化碳,从而有助于实现可持续发展和环境保护目标。此外,这项研究还揭示了冬季的运行挑战,需要发电机支持以满足负载需求。混合独立微电网的成功安装和实验验证强调了其实际可行性及其在推进清洁能源解决方案中的作用。这项研究为混合独立微电网设计提供了宝贵的见解,强调了其在确保可靠供电和环境管理方面的重要性。
{"title":"Design and Analysis of a Hybrid Stand-Alone Microgrid","authors":"Muhammad Zubair Asif Bhatti, A. Siddique, Waseem Aslam, Shahid Atiq","doi":"10.3390/en17010200","DOIUrl":"https://doi.org/10.3390/en17010200","url":null,"abstract":"This research article presents a comprehensive investigation into the design, optimization, and performance analysis of a hybrid stand-alone microgrid for an industrial facility in Iraq at coordinates 36.51 and 43.99. The system consists of photovoltaic (PV) modules, inverters, a battery energy storage system (BESS), a generator, and AC loads. Leveraging the capabilities of PVsyst version 7.3.1, HOMER Pro version 3.14.2 and SAM version 2022.11.21 software tools, this study assesses the feasibility and functionality of the hybrid stand-alone microgrid. In this study, PVsyst software is used for detailed designing and analysis of a PV plant, and the PVsyst design file is then used in HOMER Pro software to optimize and design the proposed hybrid stand-alone microgrid, and for detailed performance analysis SAM software is employed. This paper also investigates the impact of ground clearance and ground albedo on the annual generation of bifacial PV modules at various tilt angles. Key findings include a promising normalized production rate of 4.53 kWh/kWp/day with a performance ratio of 0.815 and annual energy production estimates of 84.31 MWh (P50), 79.57 MWh (P90), and 78.24 MWh (P95) for monofacial PV modules, highlighting the system’s potential for renewable energy generation. Notably, this research demonstrates the hybrid stand-alone microgrid’s capacity to significantly reduce CO2 emissions, saving approximately 1811.6 tons over a 30-year period, thus contributing to sustainability and environmental conservation goals. Additionally, this study reveals operational challenges during the winter months, necessitating generator support to meet load demands. The successful installation and experimental validation of the hybrid stand-alone microgrid underscore its practical viability and its role in advancing clean energy solutions. This research provides valuable insights into hybrid stand-alone microgrid design, emphasizing its importance in ensuring reliable power supply and environmental stewardship.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"73 6","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139146555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giuseppe Di Luca, G. Di Blasio, A. Gimelli, D. Misul
The transport sector is tackling the challenge of reducing vehicle pollutant emissions and carbon footprints by means of a shift to electrified powertrains, i.e., battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). However, electrified vehicles pose new issues associated with the design and energy management for the efficient use of onboard energy storage systems (ESSs). Thus, strong attention should be devoted to ensuring the safety and efficient operation of the ESSs. In this framework, a dedicated battery management system (BMS) is required to contemporaneously optimize the battery’s state of charge (SoC) and to increase the battery’s lifespan through tight control of its state of health (SoH). Despite the advancements in the modern onboard BMS, more detailed data-driven algorithms for SoC, SoH, and fault diagnosis cannot be implemented due to limited computing capabilities. To overcome such limitations, the conceptualization and/or implementation of BMS in-cloud applications are under investigation. The present study hence aims to produce a new and comprehensive review of the advancements in battery management solutions in terms of functionality, usability, and drawbacks, with specific attention to cloud-based BMS solutions as well as SoC and SoH prediction and estimation. Current gaps and challenges are addressed considering V2X connectivity to fully exploit the latest cloud-based solutions.
{"title":"Review on Battery State Estimation and Management Solutions for Next-Generation Connected Vehicles","authors":"Giuseppe Di Luca, G. Di Blasio, A. Gimelli, D. Misul","doi":"10.3390/en17010202","DOIUrl":"https://doi.org/10.3390/en17010202","url":null,"abstract":"The transport sector is tackling the challenge of reducing vehicle pollutant emissions and carbon footprints by means of a shift to electrified powertrains, i.e., battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). However, electrified vehicles pose new issues associated with the design and energy management for the efficient use of onboard energy storage systems (ESSs). Thus, strong attention should be devoted to ensuring the safety and efficient operation of the ESSs. In this framework, a dedicated battery management system (BMS) is required to contemporaneously optimize the battery’s state of charge (SoC) and to increase the battery’s lifespan through tight control of its state of health (SoH). Despite the advancements in the modern onboard BMS, more detailed data-driven algorithms for SoC, SoH, and fault diagnosis cannot be implemented due to limited computing capabilities. To overcome such limitations, the conceptualization and/or implementation of BMS in-cloud applications are under investigation. The present study hence aims to produce a new and comprehensive review of the advancements in battery management solutions in terms of functionality, usability, and drawbacks, with specific attention to cloud-based BMS solutions as well as SoC and SoH prediction and estimation. Current gaps and challenges are addressed considering V2X connectivity to fully exploit the latest cloud-based solutions.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" 15","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139143347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the continuous promotion of digital transformation in the field of power transformation, the diversification of application scenarios, and the scale of pilot construction, the real-time, concurrency, and security requirements for data fusion and application support of the power monitoring system, management information system, and other business platforms are getting higher and higher, and this paper puts forward a high concurrency and availability “cloud-side-end collaboration” based on edge computing. This paper proposes a high concurrency and availability “cloud, edge and end collaboration” architecture based on edge computing for substation operation support systems. First, this paper summarizes the development status of domestic substation operation support systems and analyzes the advantages and disadvantages of various technical architectures. Then, a “cloud-side-end cooperative” substation operation support system architecture with “high real-time, high concurrency, high security and high stability” is proposed, which focuses on remote inspection, remote operation, and remote safety control of substation businesses from the perspective of engineering applications. It realizes transparent monitoring of equipment operation, unified management of operation data, and integration of production command and decision-making; solves the problems of dispersed coexistence of multiple systems for dispatching, monitoring, analysis, management, and other businesses, switching between multiple systems, and insufficient real-time and stability of the system; and controls the risks of the grid, reduces the potential safety hazards, and solves the contradiction between the continuous growth of the grid equipment and the shortage of production personnel. The results of engineering application examples show that the proposed architecture compared with the existing system architecture has greater advantages and can meet the requirements of large-scale access to the substation, with feasible popularization and application.
{"title":"Research on Edge-Computing-Based High Concurrency and Availability “Cloud, Edge, and End Collaboration” Substation Operation Support System and Applications","authors":"Yun Long, Yude Bao, Linjun Zeng","doi":"10.3390/en17010194","DOIUrl":"https://doi.org/10.3390/en17010194","url":null,"abstract":"With the continuous promotion of digital transformation in the field of power transformation, the diversification of application scenarios, and the scale of pilot construction, the real-time, concurrency, and security requirements for data fusion and application support of the power monitoring system, management information system, and other business platforms are getting higher and higher, and this paper puts forward a high concurrency and availability “cloud-side-end collaboration” based on edge computing. This paper proposes a high concurrency and availability “cloud, edge and end collaboration” architecture based on edge computing for substation operation support systems. First, this paper summarizes the development status of domestic substation operation support systems and analyzes the advantages and disadvantages of various technical architectures. Then, a “cloud-side-end cooperative” substation operation support system architecture with “high real-time, high concurrency, high security and high stability” is proposed, which focuses on remote inspection, remote operation, and remote safety control of substation businesses from the perspective of engineering applications. It realizes transparent monitoring of equipment operation, unified management of operation data, and integration of production command and decision-making; solves the problems of dispersed coexistence of multiple systems for dispatching, monitoring, analysis, management, and other businesses, switching between multiple systems, and insufficient real-time and stability of the system; and controls the risks of the grid, reduces the potential safety hazards, and solves the contradiction between the continuous growth of the grid equipment and the shortage of production personnel. The results of engineering application examples show that the proposed architecture compared with the existing system architecture has greater advantages and can meet the requirements of large-scale access to the substation, with feasible popularization and application.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"160 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139145783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Increasing energy security is a crucial component of achieving the Sustainable Development Goals (SDGs). Three main factors influence energy security: (1) the efficiency of resource use in energy production, (2) the extent of energy losses, and (3) the use of new energy sources. Novel food products can impact these factors, and this paper explores whether they are being studied in the context of reducing energy consumption. Specifically, we investigate the role of technical progress and know-how in the creation and development of novel food products and whether novel methods of food production using artificial intelligence aim to reduce energy expenditures while improving product quality, variety, and the use of new energy sources. This paper seeks to examine the impact determinants of novel foods on energy security, considering economic, technological, social, and environmental aspects of knowledge about new food. To implement the study, the relevant international literature published in the past ten years have been reviewed and methods of modeling, visualization, and descriptive statistics applied. The review is structured into three sections: the first section presents ways to save energy and other resources in the food production chain through the intensive use of artificial intelligence tools; the second section presents the development of novel food products; and the last section presents marketing challenges for novel foods. The findings show that the topic addressed by this paper is currently critical, with many authorities, research centers, food producers, and energy producers interested. However, the research problem remains open, as a systematic review of secondary sources revealed little knowledge of the topic under study, and each author’s study presents a new solution. The conclusion is that utilizing new foods and innovative production techniques that require less energy not only enhances production diversity but also improves its quality.
{"title":"New Foods as a Factor in Enhancing Energy Security","authors":"E. Skawińska, R. Zalewski","doi":"10.3390/en17010192","DOIUrl":"https://doi.org/10.3390/en17010192","url":null,"abstract":"Increasing energy security is a crucial component of achieving the Sustainable Development Goals (SDGs). Three main factors influence energy security: (1) the efficiency of resource use in energy production, (2) the extent of energy losses, and (3) the use of new energy sources. Novel food products can impact these factors, and this paper explores whether they are being studied in the context of reducing energy consumption. Specifically, we investigate the role of technical progress and know-how in the creation and development of novel food products and whether novel methods of food production using artificial intelligence aim to reduce energy expenditures while improving product quality, variety, and the use of new energy sources. This paper seeks to examine the impact determinants of novel foods on energy security, considering economic, technological, social, and environmental aspects of knowledge about new food. To implement the study, the relevant international literature published in the past ten years have been reviewed and methods of modeling, visualization, and descriptive statistics applied. The review is structured into three sections: the first section presents ways to save energy and other resources in the food production chain through the intensive use of artificial intelligence tools; the second section presents the development of novel food products; and the last section presents marketing challenges for novel foods. The findings show that the topic addressed by this paper is currently critical, with many authorities, research centers, food producers, and energy producers interested. However, the research problem remains open, as a systematic review of secondary sources revealed little knowledge of the topic under study, and each author’s study presents a new solution. The conclusion is that utilizing new foods and innovative production techniques that require less energy not only enhances production diversity but also improves its quality.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" 35","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139142338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi-ming Yan, Jiangfeng Wang, Jianying Lan, Keyu Li
The efficiency of supersonic combustion is largely dependent on inlet and injection parameters. Additional energy input is required in some off-design conditions, and nanosecond discharge actuation can be a solution. In the present study, a phenomenological model of a nanosecond-pulsed surface dielectric barrier discharge (NS-SDBD) actuator was developed to analyze the combustion enhancement effect for a supersonic combustor with transverse H2 injection. A seven-reaction H2–air combustion model was adopted for the numerical simulation. Dynamic mode decomposition (DMD) was employed to acquire temperature perturbation in spatial and temporal domains. The results show that the actuator provides additional temperature-increment and species transportation through compression waves. The combustion enhancement effect is mainly attributed to the flow perturbation in the shear layer, which promotes the turbulent diffusion of fuel. Given the same power input, the combustion efficiency at the shockwave reflection point is increased by 17.5%, and the flame height is increased by 15.4% at its maximum.
{"title":"A Numerical Investigation of Supersonic Combustion Flow Control by Nanosecond-Pulsed Actuations","authors":"Yi-ming Yan, Jiangfeng Wang, Jianying Lan, Keyu Li","doi":"10.3390/en17010201","DOIUrl":"https://doi.org/10.3390/en17010201","url":null,"abstract":"The efficiency of supersonic combustion is largely dependent on inlet and injection parameters. Additional energy input is required in some off-design conditions, and nanosecond discharge actuation can be a solution. In the present study, a phenomenological model of a nanosecond-pulsed surface dielectric barrier discharge (NS-SDBD) actuator was developed to analyze the combustion enhancement effect for a supersonic combustor with transverse H2 injection. A seven-reaction H2–air combustion model was adopted for the numerical simulation. Dynamic mode decomposition (DMD) was employed to acquire temperature perturbation in spatial and temporal domains. The results show that the actuator provides additional temperature-increment and species transportation through compression waves. The combustion enhancement effect is mainly attributed to the flow perturbation in the shear layer, which promotes the turbulent diffusion of fuel. Given the same power input, the combustion efficiency at the shockwave reflection point is increased by 17.5%, and the flame height is increased by 15.4% at its maximum.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"104 s1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139147095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The most recent sustainability policies of each region of the world conjointly define that economic activities shall follow the principles of natural resource use minimisation, as well as eco-efficiency and circular economy promotion, in addition to the specific objectives defined in each policy. Most recently, a group of researchers has proposed innovative conceptual systems designated Water and Energy Integration Systems (WEIS) for issues related to water and energy use (two prominent categories of natural resources). These are based on engineering projects encompassing a multitude of processes and technologies. In this work, an assessment based on the determination of several sustainability and strategic-aims-related indicators is performed for two WEIS case studies set in the Portuguese process industry (in this case, a ceramic plant). Such an assessment serves as an expansion of previously performed studies on the economic and environmental viability associated with the installation of this type of system with the ultimate goal of proving the effective compliance of water- and energy-use-reduction-related results with sustainability and strategic aims (namely, the ones associated with the most recent policies and aspects associated with the social, economic, and environmental pillars of sustainability). The results for the overall assessment proved that the conceptualised WEIS are robust in terms of eco-efficiency, circular economy potential, and strategic objective achievement potential (with a 6.46% and 4.00% improvement for the aggregated eco-efficiency indicator having been obtained for, respectively, case studies 1 and 2, a null water discharge for both case studies, and a level of 8.58% and 6.69% of recirculated heat over total energy consumption, respectively). The obtained results prove the sustainability promotion effectiveness of the WEIS as conceptual systems. The overall set of indicators defined in this work are part of a methodology that may be used and adapted for further studies considering the innovative WEIS approach, with the specific results obtained in this work presented with the aim of their being used for comparison.
{"title":"Sustainability and Strategic Assessment of Water and Energy Integration Systems: Case Studies of the Process Industry in Portugal","authors":"Miguel Castro Oliveira, Henrique A. Matos","doi":"10.3390/en17010195","DOIUrl":"https://doi.org/10.3390/en17010195","url":null,"abstract":"The most recent sustainability policies of each region of the world conjointly define that economic activities shall follow the principles of natural resource use minimisation, as well as eco-efficiency and circular economy promotion, in addition to the specific objectives defined in each policy. Most recently, a group of researchers has proposed innovative conceptual systems designated Water and Energy Integration Systems (WEIS) for issues related to water and energy use (two prominent categories of natural resources). These are based on engineering projects encompassing a multitude of processes and technologies. In this work, an assessment based on the determination of several sustainability and strategic-aims-related indicators is performed for two WEIS case studies set in the Portuguese process industry (in this case, a ceramic plant). Such an assessment serves as an expansion of previously performed studies on the economic and environmental viability associated with the installation of this type of system with the ultimate goal of proving the effective compliance of water- and energy-use-reduction-related results with sustainability and strategic aims (namely, the ones associated with the most recent policies and aspects associated with the social, economic, and environmental pillars of sustainability). The results for the overall assessment proved that the conceptualised WEIS are robust in terms of eco-efficiency, circular economy potential, and strategic objective achievement potential (with a 6.46% and 4.00% improvement for the aggregated eco-efficiency indicator having been obtained for, respectively, case studies 1 and 2, a null water discharge for both case studies, and a level of 8.58% and 6.69% of recirculated heat over total energy consumption, respectively). The obtained results prove the sustainability promotion effectiveness of the WEIS as conceptual systems. The overall set of indicators defined in this work are part of a methodology that may be used and adapted for further studies considering the innovative WEIS approach, with the specific results obtained in this work presented with the aim of their being used for comparison.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" 80","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139144818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Yang, Qiheng Yuan, Yongli Wang, Fei Zheng, Xin Shi, Yi Li
With the increasing prominence of the global carbon emission problem, the accurate prediction of carbon emissions has become an increasingly urgent need. Existing carbon emission prediction methods have the problems of slow calculation speed, inaccurate prediction, and insufficient deep mining of influencing factors when dealing with large-scale data. In this study, a comprehensive carbon emission prediction method is proposed. Firstly, multiple influencing factors including economic factors and demographic factors are considered, and a pathway analysis method is introduced to mine the long-term relationship between these factors and carbon emissions. Then, indirect influence terms are added to the multiple regression equation, and the variable is used to represent the indirect influence relationship. Finally, this study proposes the PCA-PA-MBGD method, which applies the results of principal component analysis to the pathway analysis. By reducing the data dimensions and extracting the main influencing factors, and optimizing the carbon emission prediction model by using a mini-batch stochastic gradient descent algorithm, the results show that this method can process a large amount of data quickly and efficiently, and realize an accurate prediction of carbon emissions. This provides strong support for solving the carbon emission problem and offers new ideas and methods for future related research.
{"title":"Carbon Emission Forecasting Study Based on Influence Factor Mining and Mini-Batch Stochastic Gradient Optimization","authors":"Wei Yang, Qiheng Yuan, Yongli Wang, Fei Zheng, Xin Shi, Yi Li","doi":"10.3390/en17010188","DOIUrl":"https://doi.org/10.3390/en17010188","url":null,"abstract":"With the increasing prominence of the global carbon emission problem, the accurate prediction of carbon emissions has become an increasingly urgent need. Existing carbon emission prediction methods have the problems of slow calculation speed, inaccurate prediction, and insufficient deep mining of influencing factors when dealing with large-scale data. In this study, a comprehensive carbon emission prediction method is proposed. Firstly, multiple influencing factors including economic factors and demographic factors are considered, and a pathway analysis method is introduced to mine the long-term relationship between these factors and carbon emissions. Then, indirect influence terms are added to the multiple regression equation, and the variable is used to represent the indirect influence relationship. Finally, this study proposes the PCA-PA-MBGD method, which applies the results of principal component analysis to the pathway analysis. By reducing the data dimensions and extracting the main influencing factors, and optimizing the carbon emission prediction model by using a mini-batch stochastic gradient descent algorithm, the results show that this method can process a large amount of data quickly and efficiently, and realize an accurate prediction of carbon emissions. This provides strong support for solving the carbon emission problem and offers new ideas and methods for future related research.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"21 16","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139147781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The pressure drop characteristics of subcooled water were experimentally investigated in a circular cooling channel with and without a twisted tape (TT) under high heat fluxes, which was designed for the water-cooling structure of the divertor target in a tokamak device. The working medium was deionized water, and the main parameters were mass flux G = 3000–8000 kg·m−2·s−1, inlet pressure of the test section p = 3, 4.2, 5 MPa, equivalent one-side heating flux qe = 5~10 MW·m−2. The off-center circular channel is electrically heated to simulate the unilateral radiation heating on the divertor target by high-temperature plasma. The pressure drop experiment of vertical upward circular cooling channels under high and unilateral heat flux is carried out. The influences of the TT and system parameters such as qe, G, and p on the pressure drop of the test section (Δp) were discussed in detail. In the single-phase (SP) flow region, Δp is mainly affected by the TT, G, and qe. The pressure drop with a TT is significantly higher than that without a TT, a higher G and a lower qe lead to a greater Δp. In the subcooled boiling (SB) flow region, Δp is correlated with the TT, qe, G, and p: the influence of the TT and G decreases, while the influence of p increases. The higher the qe, the higher the G, and the lower the p, the larger the Δp. The results show that almost all of the SP pressure drop correlations for heated circular channels overestimate the experimental pressure drop coefficient ratio for a given viscosity ratio. According to the test results, a new correlation of SP pressure drop under high and unilateral heat fluxes has been proposed, the average error (AE) and root mean square error (RMSE) of which are 0.26% and 3.17%, respectively.
实验研究了在高热通量条件下,过冷水在带或不带扭曲带(TT)的圆形冷却通道中的压降特性,该冷却通道是为托卡马克装置中分流靶的水冷结构设计的。工作介质为去离子水,主要参数为质量通量 G = 3000-8000 kg-m-2-s-1,试验段入口压力 p = 3、4.2、5 MPa,等效单面加热通量 qe = 5~10 MW-m-2。对偏离中心的圆形通道进行电加热,以模拟高温等离子体对分流靶的单侧辐射加热。进行了高单侧热通量下垂直向上圆形冷却通道的压降实验。详细讨论了 TT 以及 qe、G 和 p 等系统参数对试验段压降(Δp)的影响。在单相(SP)流区域,Δp 主要受 TT、G 和 qe 的影响。带 TT 的压降明显高于不带 TT 的压降,较高的 G 值和较低的 qe 值会导致较大的 Δp。在过冷沸腾 (SB) 流动区域,Δp 与 TT、qe、G 和 p 相关:TT 和 G 的影响减小,而 p 的影响增大。qe 越高,G 越高,p 越低,Δp 越大。结果表明,在给定粘度比的情况下,几乎所有加热圆形通道的 SP 压降相关系数都高估了实验压降系数比。根据试验结果,提出了一种新的高热流量和单侧热流量下的 SP 压降相关性,其平均误差(AE)和均方根误差(RMSE)分别为 0.26% 和 3.17%。
{"title":"Experimental Investigations on Pressure Drop for Subcooled Water in a Circular Channel with a Twisted Tape Insert under One-Side Heating Conditions","authors":"G. Zhu, Ge Mei, Q. Bi, Shujian Tian","doi":"10.3390/en17010193","DOIUrl":"https://doi.org/10.3390/en17010193","url":null,"abstract":"The pressure drop characteristics of subcooled water were experimentally investigated in a circular cooling channel with and without a twisted tape (TT) under high heat fluxes, which was designed for the water-cooling structure of the divertor target in a tokamak device. The working medium was deionized water, and the main parameters were mass flux G = 3000–8000 kg·m−2·s−1, inlet pressure of the test section p = 3, 4.2, 5 MPa, equivalent one-side heating flux qe = 5~10 MW·m−2. The off-center circular channel is electrically heated to simulate the unilateral radiation heating on the divertor target by high-temperature plasma. The pressure drop experiment of vertical upward circular cooling channels under high and unilateral heat flux is carried out. The influences of the TT and system parameters such as qe, G, and p on the pressure drop of the test section (Δp) were discussed in detail. In the single-phase (SP) flow region, Δp is mainly affected by the TT, G, and qe. The pressure drop with a TT is significantly higher than that without a TT, a higher G and a lower qe lead to a greater Δp. In the subcooled boiling (SB) flow region, Δp is correlated with the TT, qe, G, and p: the influence of the TT and G decreases, while the influence of p increases. The higher the qe, the higher the G, and the lower the p, the larger the Δp. The results show that almost all of the SP pressure drop correlations for heated circular channels overestimate the experimental pressure drop coefficient ratio for a given viscosity ratio. According to the test results, a new correlation of SP pressure drop under high and unilateral heat fluxes has been proposed, the average error (AE) and root mean square error (RMSE) of which are 0.26% and 3.17%, respectively.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" 25","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139142536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Static axial induction control and tilt control are two strategies that have the potential to increase power production in wind farms, mitigating wake effects and increasing the available power for downstream turbines. In this study, wind tunnel experiments are performed to evaluate the efficiency of these two techniques. First, the axial induction of upstream turbines in wind farms comprising two, three, and five turbines is modified through the tip-speed ratio. This strategy is found to be ineffective in increasing power extraction. Next, the power extraction and flow through a two-turbine wind farm are evaluated, considering different tilt angles for the upstream turbine, under two levels of incoming flow turbulence intensities and turbine spacing distances. It is shown that forward tilting increases the overall power extraction by deflecting the wake downwards and promoting the entrainment of high-speed fluid in the upper shear layer, regardless of the turbine spacing distance and turbulence intensity level. Also, the wake is seen to recover faster due to the increased shear between the wake and the outer flow. Tilting a turbine backward deflects the wake upwards and pulls low-speed flow from under the turbine into the wake space, increasing the available power for downstream turbines, but it is not enough to increase global power extraction. Moreover, since the wake deflection under backward tilting is not limited by ground blockage, it leads to larger secondary steering compared with forward tilting. Finally, it is demonstrated that the secondary steering of the downstream turbine’s wake influences the flow encountered by a turbine positioned farther downstream.
{"title":"Enhancing Wind Farm Performance through Axial Induction and Tilt Control: Insights from Wind Tunnel Experiments","authors":"Guillem Armengol Barcos, F. Porté-Agel","doi":"10.3390/en17010203","DOIUrl":"https://doi.org/10.3390/en17010203","url":null,"abstract":"Static axial induction control and tilt control are two strategies that have the potential to increase power production in wind farms, mitigating wake effects and increasing the available power for downstream turbines. In this study, wind tunnel experiments are performed to evaluate the efficiency of these two techniques. First, the axial induction of upstream turbines in wind farms comprising two, three, and five turbines is modified through the tip-speed ratio. This strategy is found to be ineffective in increasing power extraction. Next, the power extraction and flow through a two-turbine wind farm are evaluated, considering different tilt angles for the upstream turbine, under two levels of incoming flow turbulence intensities and turbine spacing distances. It is shown that forward tilting increases the overall power extraction by deflecting the wake downwards and promoting the entrainment of high-speed fluid in the upper shear layer, regardless of the turbine spacing distance and turbulence intensity level. Also, the wake is seen to recover faster due to the increased shear between the wake and the outer flow. Tilting a turbine backward deflects the wake upwards and pulls low-speed flow from under the turbine into the wake space, increasing the available power for downstream turbines, but it is not enough to increase global power extraction. Moreover, since the wake deflection under backward tilting is not limited by ground blockage, it leads to larger secondary steering compared with forward tilting. Finally, it is demonstrated that the secondary steering of the downstream turbine’s wake influences the flow encountered by a turbine positioned farther downstream.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"72 s304","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139145986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Harasimczuk, Rafał Kopacz, Przemysław Trochimiuk, R. Miśkiewicz, J. Rąbkowski
This paper investigates the current sink capacitor technique as a method to minimize the turn-off power losses of SiC MOSFETs operated with zero-voltage switching (ZVS). The method is simple and is based on adding auxiliary capacitors in parallel to the transistors, allowing the sink capacitor to take over part of the channel current, thus limiting the power loss while also advantageously lowering the dvds/dt ratio. The technique is validated and experimentally studied based on a single-pulse test setup with 1200 V-rated SiC MOSFETs, with several capacitances and gate resistance values, at various switched currents up to roughly 60 A. It is shown that by employing even very small capacitances, in the range of nanofarads, the turn-off power loss can be reduced by over tenfold, with a negligible impact on the volume and complexity of the system. Thus, the presented method can be effectively employed to improve soft-switched power converters.
本文研究了电流吸收电容器技术,将其作为一种方法,用于最大限度地降低采用零电压开关 (ZVS) 运行的 SiC MOSFET 的关断功率损耗。该方法非常简单,其基础是在晶体管上并联辅助电容器,让汇流电容器接管部分沟道电流,从而限制功率损耗,同时降低 dvds/dt 比。实验表明,即使采用纳法拉级的极小电容,关断功率损耗也能降低 10 倍以上,而对系统体积和复杂性的影响微乎其微。因此,所提出的方法可有效用于改进软开关功率转换器。
{"title":"Experimental Investigation on SiC MOSFET Turn-Off Power Loss Reduction Using the Current Sink Capacitor Technique","authors":"M. Harasimczuk, Rafał Kopacz, Przemysław Trochimiuk, R. Miśkiewicz, J. Rąbkowski","doi":"10.3390/en17010189","DOIUrl":"https://doi.org/10.3390/en17010189","url":null,"abstract":"This paper investigates the current sink capacitor technique as a method to minimize the turn-off power losses of SiC MOSFETs operated with zero-voltage switching (ZVS). The method is simple and is based on adding auxiliary capacitors in parallel to the transistors, allowing the sink capacitor to take over part of the channel current, thus limiting the power loss while also advantageously lowering the dvds/dt ratio. The technique is validated and experimentally studied based on a single-pulse test setup with 1200 V-rated SiC MOSFETs, with several capacitances and gate resistance values, at various switched currents up to roughly 60 A. It is shown that by employing even very small capacitances, in the range of nanofarads, the turn-off power loss can be reduced by over tenfold, with a negligible impact on the volume and complexity of the system. Thus, the presented method can be effectively employed to improve soft-switched power converters.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"48 S228","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139146776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}