Pub Date : 2024-04-02DOI: 10.1186/s40658-024-00639-x
Benoît Collette, Marie Mannie-Corbisier, Ana-Maria Bucalau, Nicolas Pauly, Gontran Verset, Rodrigo Moreno-Reyes, Patrick Flamen, Nicola Trotta
Background: Developments in transarterial radioembolization led to the conception of new microspheres loaded with holmium-166 (166Ho). However, due to the complexity of the scatter components in 166Ho single photon emission computed tomography (SPECT), questions about image quality and dosimetry are emerging. The aims of this work are to investigate the scatter components and correction methods to propose a suitable solution, and to evaluate the impact on image quality and dosimetry including Monte-Carlo (MC) simulations, phantom, and patient data.
Methods: Dual energy window (DEW) and triple energy window (TEW) methods were investigated for scatter correction purposes and compared using Contrast Recovery Coefficients (CRC) and Contrast to Noise Ratios (CNR). First, MC simulations were carried out to assess all the scatter components in the energy windows used, also to confirm the choice of the parameter needed for the DEW method. Then, MC simulations of acquisitions of a Jaszczak phantom were conducted with conditions mimicking an ideal scatter correction. These simulated projections can be reconstructed and compared with real acquisitions corrected by both methods and then reconstructed. Finally, both methods were applied on patient data and their impact on personalized dosimetry was evaluated.
Results: MC simulations confirmed the use of k = 1 for the DEW method. These simulations also confirmed the complexity of scatter components in the main energy window used with a high energy gamma rays component of about half of the total counts detected, together with a negligible X rays component and a negligible presence of fluorescence. CRC and CNR analyses, realized on simulated scatter-free projections of the phantom and on scatter corrected acquisitions of the same phantom, suggested an increased efficiency of the TEW method, even at the price of higher level of noise. Finally, these methods, applied on patient data, showed significant differences in terms of non-tumoral liver absorbed dose, non-tumoral liver fraction under 50 Gy, tumor absorbed dose, and tumor fraction above 150 Gy.
Conclusions: This study demonstrated the impact of scatter correction on personalized dosimetry on patient data. The use of a TEW method is proposed for scatter correction in 166Ho SPECT imaging.
{"title":"Impact of scatter correction on personalized dosimetry in selective internal radiotherapy using <sup>166</sup>Ho-PLLA: a single-center study including Monte-Carlo simulation, phantom and patient imaging.","authors":"Benoît Collette, Marie Mannie-Corbisier, Ana-Maria Bucalau, Nicolas Pauly, Gontran Verset, Rodrigo Moreno-Reyes, Patrick Flamen, Nicola Trotta","doi":"10.1186/s40658-024-00639-x","DOIUrl":"10.1186/s40658-024-00639-x","url":null,"abstract":"<p><strong>Background: </strong>Developments in transarterial radioembolization led to the conception of new microspheres loaded with holmium-166 (<sup>166</sup>Ho). However, due to the complexity of the scatter components in <sup>166</sup>Ho single photon emission computed tomography (SPECT), questions about image quality and dosimetry are emerging. The aims of this work are to investigate the scatter components and correction methods to propose a suitable solution, and to evaluate the impact on image quality and dosimetry including Monte-Carlo (MC) simulations, phantom, and patient data.</p><p><strong>Methods: </strong>Dual energy window (DEW) and triple energy window (TEW) methods were investigated for scatter correction purposes and compared using Contrast Recovery Coefficients (CRC) and Contrast to Noise Ratios (CNR). First, MC simulations were carried out to assess all the scatter components in the energy windows used, also to confirm the choice of the parameter needed for the DEW method. Then, MC simulations of acquisitions of a Jaszczak phantom were conducted with conditions mimicking an ideal scatter correction. These simulated projections can be reconstructed and compared with real acquisitions corrected by both methods and then reconstructed. Finally, both methods were applied on patient data and their impact on personalized dosimetry was evaluated.</p><p><strong>Results: </strong>MC simulations confirmed the use of k = 1 for the DEW method. These simulations also confirmed the complexity of scatter components in the main energy window used with a high energy gamma rays component of about half of the total counts detected, together with a negligible X rays component and a negligible presence of fluorescence. CRC and CNR analyses, realized on simulated scatter-free projections of the phantom and on scatter corrected acquisitions of the same phantom, suggested an increased efficiency of the TEW method, even at the price of higher level of noise. Finally, these methods, applied on patient data, showed significant differences in terms of non-tumoral liver absorbed dose, non-tumoral liver fraction under 50 Gy, tumor absorbed dose, and tumor fraction above 150 Gy.</p><p><strong>Conclusions: </strong>This study demonstrated the impact of scatter correction on personalized dosimetry on patient data. The use of a TEW method is proposed for scatter correction in <sup>166</sup>Ho SPECT imaging.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"33"},"PeriodicalIF":3.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140335142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Results: The bone marrow dose was calculated for 131 treatments with the blood-based method and for 17 with the image-based method. In the former, the median absorbed dose was 15.3, 20.5 and 28.3 mGy/GBq with the mono-, bi- and tri-exponential model, respectively. With the image-based method, the median absorbed dose was 63.9, 41.9 and 60.8 with the mono-, bi- and tri-exponential model, respectively. Blood samples after 24h post-injection did not evidence any change in the absorbed bone marrow dose with the bi-exponential model. On the contrary, the 6-day post-injection timepoint was more informative with the image-based model.
Conclusion: This study confirms that the estimated bone marrow dose is significantly lower with the blood-based method than with the image-based method. The blood-based method with a bi-exponential model proved particularly useful, without the need for blood samples after 24h post-injection. Nevertheless, this blood-based method is based on an assumption that needs to be more validated. The important difference between the two methods does not allow to determine the optimal one to estimate the true absorbed dose and further studies are necessary to compare with biological effects.
Pub Date : 2024-03-28DOI: 10.1186/s40658-024-00634-2
Rajeh Assiri, Karen Knapp, Jon Fulford, Junning Chen
Purpose: Arthroplasty phantoms, including total knee replacement (TKR) phantoms, have been frequently used to test metal artefact reduction methods applied to positron emission tomography/computed tomography (PET/CT) images. These phantoms generally simulate either simple anatomical features or simple activity distribution around the metal inserts in the PET/CT scans. 3D printing has been used recently to fabricate fillable anthropomorphic phantoms that accurately simulate volume and geometry. This study aims to describe the process of image segmentation, phantom modelling, 3D printing and validation of a population-based fillable TKR phantom that simulates human TKR PET/CT metal artefacts.
Methods: 10 participants (5 male and 5 female) were scanned using 3T MRI and the images were segmented to create average male and average female 3D knee models, inversely with void cortical and porous trabecular compartments for 3D printing and contrast media. Virtual total knee replacement (TKR) surgery was implemented on these models to prepare the insertion locations for knee prosthetic implants. Subsequently, TKR models were printed using a 3D photopolymer resin printer and then injected with normal saline to test the phantoms for any leaks. Subsequently, diluted iodinated contrast media was injected into the cortical compartment and saline with 18F-FDG was injected into the trabecular compartment and the phantom was scanned with PET/CT. The images were then evaluated and compared to the human knee radiographic features reported in the literature.
Results: Phantoms were shown to be fluid-tight with distinct compartments. They showed comparable volume and geometry to the segmented human MRI knees. The phantoms demonstrated similar values for x-ray attenuation and Hounsfield units (HU) to the literature for both cortical and trabecular compartments. The phantoms displayed a uniform distribution for the radioactive tracer, resembling that seen in human trabecular bone PET. TKR phantom PET/CT images with metal inserts replicated the clinical metal artefacts seen clinically in the periprosthetic area.
Conclusion: This novel, 3D-printed, and customisable phantom effectively mimics the geometric, radiographic and radiotracer distribution features of real TKRs. Importantly, it simulates TKR image metal artefacts, making it suitable for repeatable and comprehensive evaluation of various metal artefact reduction methods in future research.
{"title":"Optimising total knee replacement imaging: a novel 3D printed PET/CT anthropomorphic phantom for metal artefact simulation.","authors":"Rajeh Assiri, Karen Knapp, Jon Fulford, Junning Chen","doi":"10.1186/s40658-024-00634-2","DOIUrl":"10.1186/s40658-024-00634-2","url":null,"abstract":"<p><strong>Purpose: </strong>Arthroplasty phantoms, including total knee replacement (TKR) phantoms, have been frequently used to test metal artefact reduction methods applied to positron emission tomography/computed tomography (PET/CT) images. These phantoms generally simulate either simple anatomical features or simple activity distribution around the metal inserts in the PET/CT scans. 3D printing has been used recently to fabricate fillable anthropomorphic phantoms that accurately simulate volume and geometry. This study aims to describe the process of image segmentation, phantom modelling, 3D printing and validation of a population-based fillable TKR phantom that simulates human TKR PET/CT metal artefacts.</p><p><strong>Methods: </strong>10 participants (5 male and 5 female) were scanned using 3T MRI and the images were segmented to create average male and average female 3D knee models, inversely with void cortical and porous trabecular compartments for 3D printing and contrast media. Virtual total knee replacement (TKR) surgery was implemented on these models to prepare the insertion locations for knee prosthetic implants. Subsequently, TKR models were printed using a 3D photopolymer resin printer and then injected with normal saline to test the phantoms for any leaks. Subsequently, diluted iodinated contrast media was injected into the cortical compartment and saline with <sup>18</sup>F-FDG was injected into the trabecular compartment and the phantom was scanned with PET/CT. The images were then evaluated and compared to the human knee radiographic features reported in the literature.</p><p><strong>Results: </strong>Phantoms were shown to be fluid-tight with distinct compartments. They showed comparable volume and geometry to the segmented human MRI knees. The phantoms demonstrated similar values for x-ray attenuation and Hounsfield units (HU) to the literature for both cortical and trabecular compartments. The phantoms displayed a uniform distribution for the radioactive tracer, resembling that seen in human trabecular bone PET. TKR phantom PET/CT images with metal inserts replicated the clinical metal artefacts seen clinically in the periprosthetic area.</p><p><strong>Conclusion: </strong>This novel, 3D-printed, and customisable phantom effectively mimics the geometric, radiographic and radiotracer distribution features of real TKRs. Importantly, it simulates TKR image metal artefacts, making it suitable for repeatable and comprehensive evaluation of various metal artefact reduction methods in future research.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"31"},"PeriodicalIF":4.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973302/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-21DOI: 10.1186/s40658-024-00631-5
Tobias Meißner, Laura Antonia Cerbone, Paolo Russo, Werner Nahm, Jürgen Hesser
Purpose: Handheld gamma cameras with coded aperture collimators are under investigation for intraoperative imaging in nuclear medicine. Coded apertures are a promising collimation technique for applications such as lymph node localization due to their high sensitivity and the possibility of 3D imaging. We evaluated the axial resolution and computational performance of two reconstruction methods.
Methods: An experimental gamma camera was set up consisting of the pixelated semiconductor detector Timepix3 and MURA mask of rank 31 with round holes of 0.08 mm in diameter in a 0.11 mm thick Tungsten sheet. A set of measurements was taken where a point-like gamma source was placed centrally at 21 different positions within the range of 12-100 mm. For each source position, the detector image was reconstructed in 0.5 mm steps around the true source position, resulting in an image stack. The axial resolution was assessed by the full width at half maximum (FWHM) of the contrast-to-noise ratio (CNR) profile along the z-axis of the stack. Two reconstruction methods were compared: MURA Decoding and a 3D maximum likelihood expectation maximization algorithm (3D-MLEM).
Results: While taking 4400 times longer in computation, 3D-MLEM yielded a smaller axial FWHM and a higher CNR. The axial resolution degraded from 5.3 mm and 1.8 mm at 12 mm to 42.2 mm and 13.5 mm at 100 mm for MURA Decoding and 3D-MLEM respectively.
Conclusion: Our results show that the coded aperture enables the depth estimation of single point-like sources in the near field. Here, 3D-MLEM offered a better axial resolution but was computationally much slower than MURA Decoding, whose reconstruction time is compatible with real-time imaging.
{"title":"Assessment of the axial resolution of a compact gamma camera with coded aperture collimator.","authors":"Tobias Meißner, Laura Antonia Cerbone, Paolo Russo, Werner Nahm, Jürgen Hesser","doi":"10.1186/s40658-024-00631-5","DOIUrl":"10.1186/s40658-024-00631-5","url":null,"abstract":"<p><strong>Purpose: </strong>Handheld gamma cameras with coded aperture collimators are under investigation for intraoperative imaging in nuclear medicine. Coded apertures are a promising collimation technique for applications such as lymph node localization due to their high sensitivity and the possibility of 3D imaging. We evaluated the axial resolution and computational performance of two reconstruction methods.</p><p><strong>Methods: </strong>An experimental gamma camera was set up consisting of the pixelated semiconductor detector Timepix3 and MURA mask of rank 31 with round holes of 0.08 mm in diameter in a 0.11 mm thick Tungsten sheet. A set of measurements was taken where a point-like gamma source was placed centrally at 21 different positions within the range of 12-100 mm. For each source position, the detector image was reconstructed in 0.5 mm steps around the true source position, resulting in an image stack. The axial resolution was assessed by the full width at half maximum (FWHM) of the contrast-to-noise ratio (CNR) profile along the z-axis of the stack. Two reconstruction methods were compared: MURA Decoding and a 3D maximum likelihood expectation maximization algorithm (3D-MLEM).</p><p><strong>Results: </strong>While taking 4400 times longer in computation, 3D-MLEM yielded a smaller axial FWHM and a higher CNR. The axial resolution degraded from 5.3 mm and 1.8 mm at 12 mm to 42.2 mm and 13.5 mm at 100 mm for MURA Decoding and 3D-MLEM respectively.</p><p><strong>Conclusion: </strong>Our results show that the coded aperture enables the depth estimation of single point-like sources in the near field. Here, 3D-MLEM offered a better axial resolution but was computationally much slower than MURA Decoding, whose reconstruction time is compatible with real-time imaging.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"30"},"PeriodicalIF":3.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266340/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: 10.1186/s40658-024-00627-1
Victor Nuttens, Georg Schramm, Yves D'Asseler, Michel Koole
Purpose: Next-generation SPECT/CT systems with CdZnTe (CZT) digital detectors in a ring-like setup are emerging to perform quantitative Lu-177 SPECT imaging in clinical routine. It is essential to assess how the shorter acquisition time might affect the image quality and uncertainty on the mean absorbed dose of the tumors and organs at risk compared to a conventional system.
Methods: A NEMA Image Quality phantom was scanned with a 3D CZT SPECT/CT system (Veriton, by Spectrum Dynamics) using 6 min per bed position and with a conventional SPECT/CT system (Symbia T16, by Siemens) using 16 min per bed position. The sphere-to-background ratio was 12:1 and the background activity concentration ranged from 0.52 to 0.06 MBq/mL. A clinical reconstruction protocol for dosimetry purposes was determined for both systems by maximizing the sphere-to-background ratio while keeping the coefficient of variation of the background as low as possible. The corresponding image resolution was determined by the matching filter method and used for a dose uncertainty assessment of both systems following an established uncertainty model..
Results: The optimized iterative reconstruction protocol included scatter and attenuation correction for both systems and detector response modeling for the Siemens system. For the 3D CZT system, 6 iterations and 8 subsets were combined with a Gaussian post-filter of 3 mm Full Width Half Maximum (FWHM) for post-smoothing. For the conventional system, 16 iterations and 16 subsets were applied with a Gaussian post-smoothing filter of 1 mm FWHM. For these protocols, the sphere-to-background ratio was 18.5% closer to the true ratio for the conventional system compared to the 3D CZT system when considering the four largest spheres. Meanwhile, the background coefficient of variation was very similar for both systems. These protocols resulted in SPECT image resolution of 14.8 mm and 13.6 mm for the 3D CZT and conventional system respectively. Based on these resolution estimates, a 50% dose uncertainty corresponded to a lesion volume of 28 mL for the conventional system and a lesion volume of 33 mL for the 3D CZT system.
Conclusions: An optimized reconstruction protocol for a Veriton system with 6 min of acquisition time per bed position resulted in slightly higher dose uncertainties than a conventional Symbia system using 16 min of acquisition time per bed position. Therefore, a 3D CZT SPECT/CT allows to significantly reduce the acquisition times with only a very limited impact on dose uncertainties such that quantitative Lu-177 SPECT/CT imaging becomes much more accessible for treatment concurrent dosimetry. Nevertheless, the uncertainty of SPECT-based dose estimates remains high.
{"title":"Comparison of a 3D CZT and conventional SPECT/CT system for quantitative Lu-177 SPECT imaging.","authors":"Victor Nuttens, Georg Schramm, Yves D'Asseler, Michel Koole","doi":"10.1186/s40658-024-00627-1","DOIUrl":"10.1186/s40658-024-00627-1","url":null,"abstract":"<p><strong>Purpose: </strong>Next-generation SPECT/CT systems with CdZnTe (CZT) digital detectors in a ring-like setup are emerging to perform quantitative Lu-177 SPECT imaging in clinical routine. It is essential to assess how the shorter acquisition time might affect the image quality and uncertainty on the mean absorbed dose of the tumors and organs at risk compared to a conventional system.</p><p><strong>Methods: </strong>A NEMA Image Quality phantom was scanned with a 3D CZT SPECT/CT system (Veriton, by Spectrum Dynamics) using 6 min per bed position and with a conventional SPECT/CT system (Symbia T16, by Siemens) using 16 min per bed position. The sphere-to-background ratio was 12:1 and the background activity concentration ranged from 0.52 to 0.06 MBq/mL. A clinical reconstruction protocol for dosimetry purposes was determined for both systems by maximizing the sphere-to-background ratio while keeping the coefficient of variation of the background as low as possible. The corresponding image resolution was determined by the matching filter method and used for a dose uncertainty assessment of both systems following an established uncertainty model..</p><p><strong>Results: </strong>The optimized iterative reconstruction protocol included scatter and attenuation correction for both systems and detector response modeling for the Siemens system. For the 3D CZT system, 6 iterations and 8 subsets were combined with a Gaussian post-filter of 3 mm Full Width Half Maximum (FWHM) for post-smoothing. For the conventional system, 16 iterations and 16 subsets were applied with a Gaussian post-smoothing filter of 1 mm FWHM. For these protocols, the sphere-to-background ratio was 18.5% closer to the true ratio for the conventional system compared to the 3D CZT system when considering the four largest spheres. Meanwhile, the background coefficient of variation was very similar for both systems. These protocols resulted in SPECT image resolution of 14.8 mm and 13.6 mm for the 3D CZT and conventional system respectively. Based on these resolution estimates, a 50% dose uncertainty corresponded to a lesion volume of 28 mL for the conventional system and a lesion volume of 33 mL for the 3D CZT system.</p><p><strong>Conclusions: </strong>An optimized reconstruction protocol for a Veriton system with 6 min of acquisition time per bed position resulted in slightly higher dose uncertainties than a conventional Symbia system using 16 min of acquisition time per bed position. Therefore, a 3D CZT SPECT/CT allows to significantly reduce the acquisition times with only a very limited impact on dose uncertainties such that quantitative Lu-177 SPECT/CT imaging becomes much more accessible for treatment concurrent dosimetry. Nevertheless, the uncertainty of SPECT-based dose estimates remains high.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"29"},"PeriodicalIF":4.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10948674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-15DOI: 10.1186/s40658-024-00629-z
Christina P W Cox, Tessa Brabander, Erik Vegt, Quido G de Lussanet de la Sablonière, Laura H Graven, Frederik A Verburg, Marcel Segbers
Background: New digital detectors and block-sequential regularized expectation maximization (BSREM) reconstruction algorithm improve positron emission tomography (PET)/magnetic resonance (MR) image quality. The impact on image quality may differ from analogue PET/computed tomography (CT) protocol. The aim of this study is to determine the potential reduction of injected [68Ga]Ga-DOTA-TATE activity for digital PET/MR with BSREM reconstruction while maintaining at least equal image quality compared to the current analogue PET/CT protocol.
Methods: NEMA IQ phantom data and 25 patients scheduled for a diagnostic PET/MR were included. According to our current protocol, 1.5 MBq [68Ga]Ga-DOTA-TATE per kilogram (kg) was injected. After 60 min, scans were acquired with 3 (≤ 70 kg) or 4 (> 70 kg) minutes per bedposition. PET/MR scans were reconstructed using BSREM and factors β 150, 300, 450 and 600. List mode data with reduced counts were reconstructed to simulate scans with 17%, 33%, 50% and 67% activity reduction. Image quality was measured quantitatively for PET/CT and PET/MR phantom and patient data. Experienced nuclear medicine physicians performed visual image quality scoring and lesion counting in the PET/MR patient data.
Results: Phantom analysis resulted in a possible injected activity reduction of 50% with factor β = 600. Quantitative analysis of patient images revealed a possible injected activity reduction of 67% with factor β = 600. Both with equal or improved image quality as compared to PET/CT. However, based on visual scoring a maximum activity reduction of 33% with factor β = 450 was acceptable, which was further limited by lesion detectability analysis to an injected activity reduction of 17% with factor β = 450.
Conclusion: A digital [68Ga]Ga-DOTA-TATE PET/MR together with BSREM using factor β = 450 result in 17% injected activity reduction with quantitative values at least similar to analogue PET/CT, without compromising on PET/MR visual image quality and lesion detectability.
{"title":"Reduction of [<sup>68</sup>Ga]Ga-DOTA-TATE injected activity for digital PET/MR in comparison with analogue PET/CT.","authors":"Christina P W Cox, Tessa Brabander, Erik Vegt, Quido G de Lussanet de la Sablonière, Laura H Graven, Frederik A Verburg, Marcel Segbers","doi":"10.1186/s40658-024-00629-z","DOIUrl":"10.1186/s40658-024-00629-z","url":null,"abstract":"<p><strong>Background: </strong>New digital detectors and block-sequential regularized expectation maximization (BSREM) reconstruction algorithm improve positron emission tomography (PET)/magnetic resonance (MR) image quality. The impact on image quality may differ from analogue PET/computed tomography (CT) protocol. The aim of this study is to determine the potential reduction of injected [<sup>68</sup>Ga]Ga-DOTA-TATE activity for digital PET/MR with BSREM reconstruction while maintaining at least equal image quality compared to the current analogue PET/CT protocol.</p><p><strong>Methods: </strong>NEMA IQ phantom data and 25 patients scheduled for a diagnostic PET/MR were included. According to our current protocol, 1.5 MBq [<sup>68</sup>Ga]Ga-DOTA-TATE per kilogram (kg) was injected. After 60 min, scans were acquired with 3 (≤ 70 kg) or 4 (> 70 kg) minutes per bedposition. PET/MR scans were reconstructed using BSREM and factors β 150, 300, 450 and 600. List mode data with reduced counts were reconstructed to simulate scans with 17%, 33%, 50% and 67% activity reduction. Image quality was measured quantitatively for PET/CT and PET/MR phantom and patient data. Experienced nuclear medicine physicians performed visual image quality scoring and lesion counting in the PET/MR patient data.</p><p><strong>Results: </strong>Phantom analysis resulted in a possible injected activity reduction of 50% with factor β = 600. Quantitative analysis of patient images revealed a possible injected activity reduction of 67% with factor β = 600. Both with equal or improved image quality as compared to PET/CT. However, based on visual scoring a maximum activity reduction of 33% with factor β = 450 was acceptable, which was further limited by lesion detectability analysis to an injected activity reduction of 17% with factor β = 450.</p><p><strong>Conclusion: </strong>A digital [<sup>68</sup>Ga]Ga-DOTA-TATE PET/MR together with BSREM using factor β = 450 result in 17% injected activity reduction with quantitative values at least similar to analogue PET/CT, without compromising on PET/MR visual image quality and lesion detectability.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"27"},"PeriodicalIF":3.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140136543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-15DOI: 10.1186/s40658-024-00630-6
Francesca Barbaro, Luciano Canton, Nikolay Uzunov, Laura De Nardo, Laura Melendez-Alafort
Background: 155Tb represents a potentially useful radionuclide for diagnostic medical applications, but its production remains a challenging problem, in spite of the fact that many production routes have been already investigated and tested. A recent experimental campaign, conducted with low-energy proton beams impinging on a 155Gd target with 91.9% enrichment, demonstrated a significant co-production of 156gTb, a contaminant of great concern since its half-life is comparable to that of 155Tb and its high-energy γ emissions severely impact on the dose released and on the quality of the SPECT images. In the present investigation, the isotopic purity of the enriched 155Gd target necessary to minimize the co-production of contaminant radioisotopes, in particular 156gTb, was explored using various computational simulations.
Results: Starting from the recent experimental data obtained with a 91.9% 155Gd-enriched target, the co-production of other Tb radioisotopes besides 155Tb has been theoretically evaluated using the Talys code. It was found that 156Gd, with an isotopic content of 5.87%, was the principal contributor to the co-production of 156gTb. The analysis also demonstrated that the maximum amount of 156Gd admissible for 155Tb production with a radionuclidic purity higher than 99% was 1%. A less stringent condition was obtained through computational dosimetry analysis, suggesting that a 2% content of 156Gd in the target can be tolerated to limit the dose increase to the patient below the 10% limit. Moreover, it has been demonstrated that the imaging properties of the produced 155Tb are not severely affected by this level of impurity in the target.
Conclusions: 155Tb can be produced with a quality suitable for medical applications using low-energy proton beams and 155Gd-enriched targets, if the 156Gd impurity content does not exceed 2%. Under these conditions, the dose increase due to the presence of contaminant radioisotopes remains below the 10% limit and good quality images, comparable to those of 111In, are guaranteed.
{"title":"<sup>155</sup>Tb production by cyclotrons: what level of <sup>155</sup>Gd enrichment allows clinical applications?","authors":"Francesca Barbaro, Luciano Canton, Nikolay Uzunov, Laura De Nardo, Laura Melendez-Alafort","doi":"10.1186/s40658-024-00630-6","DOIUrl":"10.1186/s40658-024-00630-6","url":null,"abstract":"<p><strong>Background: </strong><sup>155</sup>Tb represents a potentially useful radionuclide for diagnostic medical applications, but its production remains a challenging problem, in spite of the fact that many production routes have been already investigated and tested. A recent experimental campaign, conducted with low-energy proton beams impinging on a <sup>155</sup>Gd target with 91.9% enrichment, demonstrated a significant co-production of <sup>156g</sup>Tb, a contaminant of great concern since its half-life is comparable to that of <sup>155</sup>Tb and its high-energy γ emissions severely impact on the dose released and on the quality of the SPECT images. In the present investigation, the isotopic purity of the enriched <sup>155</sup>Gd target necessary to minimize the co-production of contaminant radioisotopes, in particular <sup>156g</sup>Tb, was explored using various computational simulations.</p><p><strong>Results: </strong>Starting from the recent experimental data obtained with a 91.9% <sup>155</sup>Gd-enriched target, the co-production of other Tb radioisotopes besides <sup>155</sup>Tb has been theoretically evaluated using the Talys code. It was found that <sup>156</sup>Gd, with an isotopic content of 5.87%, was the principal contributor to the co-production of <sup>156g</sup>Tb. The analysis also demonstrated that the maximum amount of <sup>156</sup>Gd admissible for <sup>155</sup>Tb production with a radionuclidic purity higher than 99% was 1%. A less stringent condition was obtained through computational dosimetry analysis, suggesting that a 2% content of <sup>156</sup>Gd in the target can be tolerated to limit the dose increase to the patient below the 10% limit. Moreover, it has been demonstrated that the imaging properties of the produced <sup>155</sup>Tb are not severely affected by this level of impurity in the target.</p><p><strong>Conclusions: </strong><sup>155</sup>Tb can be produced with a quality suitable for medical applications using low-energy proton beams and <sup>155</sup>Gd-enriched targets, if the <sup>156</sup>Gd impurity content does not exceed 2%. Under these conditions, the dose increase due to the presence of contaminant radioisotopes remains below the 10% limit and good quality images, comparable to those of <sup>111</sup>In, are guaranteed.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"26"},"PeriodicalIF":3.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140131025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-15DOI: 10.1186/s40658-024-00632-4
Meghi Dedja, Abolfazl Mehranian, Kevin M Bradley, Matthew D Walker, Patrick A Fielding, Scott D Wollenweber, Robert Johnsen, Daniel R McGowan
Background: Investigate the potential benefits of sequential deployment of two deep learning (DL) algorithms namely DL-Enhancement (DLE) and DL-based time-of-flight (ToF) (DLT). DLE aims to enhance the rapidly reconstructed ordered-subset-expectation-maximisation algorithm (OSEM) images towards block-sequential-regularised-expectation-maximisation (BSREM) images, whereas DLT aims to improve the quality of BSREM images reconstructed without ToF. As the algorithms differ in their purpose, sequential application may allow benefits from each to be combined. 20 FDG PET-CT scans were performed on a Discovery 710 (D710) and 20 on Discovery MI (DMI; both GE HealthCare). PET data was reconstructed using five combinations of algorithms:1. ToF-BSREM, 2. ToF-OSEM + DLE, 3. OSEM + DLE + DLT, 4. ToF-OSEM + DLE + DLT, 5. ToF-BSREM + DLT. To assess image noise, 30 mm-diameter spherical VOIs were drawn in both lung and liver to measure standard deviation of voxels within the volume. In a blind clinical reading, two experienced readers rated the images on a five-point Likert scale based on lesion detectability, diagnostic confidence, and image quality.
Results: Applying DLE + DLT reduced noise whilst improving lesion detectability, diagnostic confidence, and image reconstruction time. ToF-OSEM + DLE + DLT reconstructions demonstrated an increase in lesion SUVmax of 28 ± 14% (average ± standard deviation) and 11 ± 5% for data acquired on the D710 and DMI, respectively. The same reconstruction scored highest in clinical readings for both lesion detectability and diagnostic confidence for D710.
Conclusions: The combination of DLE and DLT increased diagnostic confidence and lesion detectability compared to ToF-BSREM images. As DLE + DLT used input OSEM images, and because DL inferencing was fast, there was a significant decrease in overall reconstruction time. This could have applications to total body PET.
背景:研究两种深度学习(DL)算法,即深度学习增强(DLE)和基于深度学习的飞行时间(ToF)(DLT)的顺序部署的潜在好处。DLE 旨在增强快速重建的有序子集期望最大化算法(OSEM)图像,使其趋向于块序列正则化期望最大化算法(BSREM)图像,而 DLT 则旨在提高无 ToF 重建的 BSREM 图像的质量。由于这两种算法的目的不同,顺序应用可将各自的优势结合起来。在 Discovery 710(D710)和 Discovery MI(DMI;均为 GE HealthCare)上分别进行了 20 次 FDG PET-CT 扫描。PET 数据使用五种算法组合进行重建:1.ToF-BSREM;2.ToF-OSEM + DLE;3.OSEM + DLE + DLT;4.ToF-OSEM + DLE + DLT;5.ToF-BSREM + DLT。为了评估图像噪声,在肺部和肝脏绘制了直径为30毫米的球形VOI,以测量体积内体素的标准偏差。在临床盲读中,两位经验丰富的读者根据病变可探测性、诊断可信度和图像质量,用李克特五点量表对图像进行评分:结果:应用 DLE + DLT 降低了噪声,同时提高了病变可探测性、诊断信心和图像重建时间。ToF-OSEM + DLE + DLT重建显示,在D710和DMI上获得的数据,病变SUVmax分别增加了28±14%(平均值±标准偏差)和11±5%。同样的重建在病灶可探测性和诊断可信度方面的临床读数中,D710得分最高:结论:与 ToF-BSREM 图像相比,DLE 和 DLT 的组合提高了诊断可信度和病变可探测性。由于 DLE + DLT 使用的是输入的 OSEM 图像,而且 DL 推断速度很快,因此整体重建时间显著缩短。这可应用于全身 PET。
{"title":"Sequential deep learning image enhancement models improve diagnostic confidence, lesion detectability, and image reconstruction time in PET.","authors":"Meghi Dedja, Abolfazl Mehranian, Kevin M Bradley, Matthew D Walker, Patrick A Fielding, Scott D Wollenweber, Robert Johnsen, Daniel R McGowan","doi":"10.1186/s40658-024-00632-4","DOIUrl":"10.1186/s40658-024-00632-4","url":null,"abstract":"<p><strong>Background: </strong>Investigate the potential benefits of sequential deployment of two deep learning (DL) algorithms namely DL-Enhancement (DLE) and DL-based time-of-flight (ToF) (DLT). DLE aims to enhance the rapidly reconstructed ordered-subset-expectation-maximisation algorithm (OSEM) images towards block-sequential-regularised-expectation-maximisation (BSREM) images, whereas DLT aims to improve the quality of BSREM images reconstructed without ToF. As the algorithms differ in their purpose, sequential application may allow benefits from each to be combined. 20 FDG PET-CT scans were performed on a Discovery 710 (D710) and 20 on Discovery MI (DMI; both GE HealthCare). PET data was reconstructed using five combinations of algorithms:1. ToF-BSREM, 2. ToF-OSEM + DLE, 3. OSEM + DLE + DLT, 4. ToF-OSEM + DLE + DLT, 5. ToF-BSREM + DLT. To assess image noise, 30 mm-diameter spherical VOIs were drawn in both lung and liver to measure standard deviation of voxels within the volume. In a blind clinical reading, two experienced readers rated the images on a five-point Likert scale based on lesion detectability, diagnostic confidence, and image quality.</p><p><strong>Results: </strong>Applying DLE + DLT reduced noise whilst improving lesion detectability, diagnostic confidence, and image reconstruction time. ToF-OSEM + DLE + DLT reconstructions demonstrated an increase in lesion SUV<sub>max</sub> of 28 ± 14% (average ± standard deviation) and 11 ± 5% for data acquired on the D710 and DMI, respectively. The same reconstruction scored highest in clinical readings for both lesion detectability and diagnostic confidence for D710.</p><p><strong>Conclusions: </strong>The combination of DLE and DLT increased diagnostic confidence and lesion detectability compared to ToF-BSREM images. As DLE + DLT used input OSEM images, and because DL inferencing was fast, there was a significant decrease in overall reconstruction time. This could have applications to total body PET.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"28"},"PeriodicalIF":4.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140136544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-13DOI: 10.1186/s40658-024-00628-0
Xavier Palard-Novello, Denise Visser, Nelleke Tolboom, Charlotte L C Smith, Gerben Zwezerijnen, Elsmarieke van de Giessen, Marijke E den Hollander, Frederik Barkhof, Albert D Windhorst, Bart Nm van Berckel, Ronald Boellaard, Maqsood Yaqub
Background: Accurate image-derived input function (IDIF) from highly sensitive large axial field of view (LAFOV) PET/CT scanners could avoid the need of invasive blood sampling for kinetic modelling. The aim is to validate the use of IDIF for two kinds of tracers, 3 different IDIF locations and 9 different reconstruction settings.
Methods: Eight [18F]FDG and 10 [18F]DPA-714 scans were acquired respectively during 70 and 60 min on the Vision Quadra PET/CT system. PET images were reconstructed using various reconstruction settings. IDIFs were taken from ascending aorta (AA), descending aorta (DA), and left ventricular cavity (LV). The calibration factor (CF) extracted from the comparison between the IDIFs and the manual blood samples as reference was used for IDIFs accuracy and precision assessment. To illustrate the effect of various calibrated-IDIFs on Patlak linearization for [18F]FDG and Logan linearization for [18F]DPA-714, the same target time-activity curves were applied for each calibrated-IDIF.
Results: For [18F]FDG, the accuracy and precision of the IDIFs were high (mean CF ≥ 0.82, SD ≤ 0.06). Compared to the striatum influx (Ki) extracted using calibrated AA IDIF with the updated European Association of Nuclear Medicine Research Ltd. standard reconstruction (EARL2), Ki mean differences were < 2% using the other calibrated IDIFs. For [18F]DPA714, high accuracy of the IDIFs was observed (mean CF ≥ 0.86) except using absolute scatter correction, DA and LV (respectively mean CF = 0.68, 0.47 and 0.44). However, the precision of the AA IDIFs was low (SD ≥ 0.10). Compared to the distribution volume (VT) in a frontal region obtained using calibrated continuous arterial sampler input function as reference, VT mean differences were small using calibrated AA IDIFs (for example VT mean difference = -5.3% using EARL2), but higher using calibrated DA and LV IDIFs (respectively + 12.5% and + 19.1%).
Conclusions: For [18F]FDG, IDIF do not need calibration against manual blood samples. For [18F]DPA-714, AA IDIF can replace continuous arterial sampling for simplified kinetic quantification but only with calibration against arterial blood samples. The accuracy and precision of IDIF from LAFOV PET/CT system depend on tracer, reconstruction settings and IDIF VOI locations, warranting careful optimization.
{"title":"Validation of image-derived input function using a long axial field of view PET/CT scanner for two different tracers.","authors":"Xavier Palard-Novello, Denise Visser, Nelleke Tolboom, Charlotte L C Smith, Gerben Zwezerijnen, Elsmarieke van de Giessen, Marijke E den Hollander, Frederik Barkhof, Albert D Windhorst, Bart Nm van Berckel, Ronald Boellaard, Maqsood Yaqub","doi":"10.1186/s40658-024-00628-0","DOIUrl":"10.1186/s40658-024-00628-0","url":null,"abstract":"<p><strong>Background: </strong>Accurate image-derived input function (IDIF) from highly sensitive large axial field of view (LAFOV) PET/CT scanners could avoid the need of invasive blood sampling for kinetic modelling. The aim is to validate the use of IDIF for two kinds of tracers, 3 different IDIF locations and 9 different reconstruction settings.</p><p><strong>Methods: </strong>Eight [<sup>18</sup>F]FDG and 10 [<sup>18</sup>F]DPA-714 scans were acquired respectively during 70 and 60 min on the Vision Quadra PET/CT system. PET images were reconstructed using various reconstruction settings. IDIFs were taken from ascending aorta (AA), descending aorta (DA), and left ventricular cavity (LV). The calibration factor (CF) extracted from the comparison between the IDIFs and the manual blood samples as reference was used for IDIFs accuracy and precision assessment. To illustrate the effect of various calibrated-IDIFs on Patlak linearization for [<sup>18</sup>F]FDG and Logan linearization for [<sup>18</sup>F]DPA-714, the same target time-activity curves were applied for each calibrated-IDIF.</p><p><strong>Results: </strong>For [<sup>18</sup>F]FDG, the accuracy and precision of the IDIFs were high (mean CF ≥ 0.82, SD ≤ 0.06). Compared to the striatum influx (K<sub>i</sub>) extracted using calibrated AA IDIF with the updated European Association of Nuclear Medicine Research Ltd. standard reconstruction (EARL2), K<sub>i</sub> mean differences were < 2% using the other calibrated IDIFs. For [<sup>18</sup>F]DPA714, high accuracy of the IDIFs was observed (mean CF ≥ 0.86) except using absolute scatter correction, DA and LV (respectively mean CF = 0.68, 0.47 and 0.44). However, the precision of the AA IDIFs was low (SD ≥ 0.10). Compared to the distribution volume (V<sub>T</sub>) in a frontal region obtained using calibrated continuous arterial sampler input function as reference, V<sub>T</sub> mean differences were small using calibrated AA IDIFs (for example V<sub>T</sub> mean difference = -5.3% using EARL2), but higher using calibrated DA and LV IDIFs (respectively + 12.5% and + 19.1%).</p><p><strong>Conclusions: </strong>For [<sup>18</sup>F]FDG, IDIF do not need calibration against manual blood samples. For [<sup>18</sup>F]DPA-714, AA IDIF can replace continuous arterial sampling for simplified kinetic quantification but only with calibration against arterial blood samples. The accuracy and precision of IDIF from LAFOV PET/CT system depend on tracer, reconstruction settings and IDIF VOI locations, warranting careful optimization.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"25"},"PeriodicalIF":4.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140109594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-05DOI: 10.1186/s40658-024-00625-3
Fen Du, Xieraili Wumener, Yarong Zhang, Maoqun Zhang, Jiuhui Zhao, Jinpeng Zhou, Yiluo Li, Bin Huang, Rongliang Wu, Zeheng Xia, Zhiheng Yao, Tao Sun, Ying Liang
<p><strong>Purpose: </strong>This study aimed to evaluate the clinical feasibility of early 30-minute dynamic 2-deoxy-2-[<sup>18</sup>F]fluoro-D-glucose (<sup>18</sup>F-FDG) positron emission tomography (PET) scanning protocol for patients with lung lesions in comparison to the standard 65-minute dynamic FDG-PET scanning as a reference.</p><p><strong>Methods: </strong>Dynamic <sup>18</sup>F-FDG PET images of 146 patients with 181 lung lesions (including 146 lesions confirmed by histology) were analyzed in this prospective study. Dynamic images were reconstructed into 28 frames with a specific temporal division protocol for the scan data acquired 65 min post-injection. Ki images and quantitative parameters Ki based on two different acquisition durations [the first 30 min (Ki-30 min) and 65 min (Ki-65 min)] were obtained by applying the irreversible two-tissue compartment model using in-house Matlab software. The two acquisition durations were compared for Ki image quality (including visual score analysis and number of lesions detected) and Ki value (including accuracy of Ki, the value of differential diagnosis of lung lesions and prediction of PD-L1 status) by Wilcoxon's rank sum test, Spearman's rank correlation analysis, receiver operating characteristic (ROC) curve, and the DeLong test. The significant testing level (alpha) was set to 0.05.</p><p><strong>Results: </strong>The quality of the Ki-30 min images was not significantly different from the Ki-65 min images based on visual score analysis (P > 0.05). In terms of Ki value, among 181 lesions, Ki-65 min was statistically higher than Ki-30 min (0.027 ± 0.017 ml/g/min vs. 0.026 ± 0.018 ml/g/min, P < 0.05), while a very high correlation was obtained between Ki-65 min and Ki-30 min (r = 0.977, P < 0.05). In the differential diagnosis of lung lesions, ROC analysis was performed on 146 histologically confirmed lesions, the area under the curve (AUC) of Ki-65 min, Ki-30 min, and SUVmax was 0.816, 0.816, and 0.709, respectively. According to the Delong test, no significant differences in the diagnostic accuracies were found between Ki-65 min and Ki-30 min (P > 0.05), while the diagnostic accuracies of Ki-65 min and Ki-30 min were both significantly higher than that of SUVmax (P < 0.05). In 73 (NSCLC) lesions with definite PD-L1 expression results, the Ki-65 min, Ki-30 min, and SUVmax in PD-L1 positivity were significantly higher than that in PD-L1 negativity (P < 0.05). And no significant differences in predicting PD-L1 positivity were found among Ki-65 min, Ki-30 min, and SUVmax (AUC = 0.704, 0.695, and 0.737, respectively, P > 0.05), according to the results of ROC analysis and Delong test.</p><p><strong>Conclusions: </strong>This study indicates that an early 30-minute dynamic FDG-PET acquisition appears to be sufficient to provide quantitative images with good-quality and accurate Ki values for the assessment of lung lesions and prediction of PD-L1 expression. Protocols with a shortened early 30
{"title":"Clinical feasibility study of early 30-minute dynamic FDG-PET scanning protocol for patients with lung lesions.","authors":"Fen Du, Xieraili Wumener, Yarong Zhang, Maoqun Zhang, Jiuhui Zhao, Jinpeng Zhou, Yiluo Li, Bin Huang, Rongliang Wu, Zeheng Xia, Zhiheng Yao, Tao Sun, Ying Liang","doi":"10.1186/s40658-024-00625-3","DOIUrl":"10.1186/s40658-024-00625-3","url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to evaluate the clinical feasibility of early 30-minute dynamic 2-deoxy-2-[<sup>18</sup>F]fluoro-D-glucose (<sup>18</sup>F-FDG) positron emission tomography (PET) scanning protocol for patients with lung lesions in comparison to the standard 65-minute dynamic FDG-PET scanning as a reference.</p><p><strong>Methods: </strong>Dynamic <sup>18</sup>F-FDG PET images of 146 patients with 181 lung lesions (including 146 lesions confirmed by histology) were analyzed in this prospective study. Dynamic images were reconstructed into 28 frames with a specific temporal division protocol for the scan data acquired 65 min post-injection. Ki images and quantitative parameters Ki based on two different acquisition durations [the first 30 min (Ki-30 min) and 65 min (Ki-65 min)] were obtained by applying the irreversible two-tissue compartment model using in-house Matlab software. The two acquisition durations were compared for Ki image quality (including visual score analysis and number of lesions detected) and Ki value (including accuracy of Ki, the value of differential diagnosis of lung lesions and prediction of PD-L1 status) by Wilcoxon's rank sum test, Spearman's rank correlation analysis, receiver operating characteristic (ROC) curve, and the DeLong test. The significant testing level (alpha) was set to 0.05.</p><p><strong>Results: </strong>The quality of the Ki-30 min images was not significantly different from the Ki-65 min images based on visual score analysis (P > 0.05). In terms of Ki value, among 181 lesions, Ki-65 min was statistically higher than Ki-30 min (0.027 ± 0.017 ml/g/min vs. 0.026 ± 0.018 ml/g/min, P < 0.05), while a very high correlation was obtained between Ki-65 min and Ki-30 min (r = 0.977, P < 0.05). In the differential diagnosis of lung lesions, ROC analysis was performed on 146 histologically confirmed lesions, the area under the curve (AUC) of Ki-65 min, Ki-30 min, and SUVmax was 0.816, 0.816, and 0.709, respectively. According to the Delong test, no significant differences in the diagnostic accuracies were found between Ki-65 min and Ki-30 min (P > 0.05), while the diagnostic accuracies of Ki-65 min and Ki-30 min were both significantly higher than that of SUVmax (P < 0.05). In 73 (NSCLC) lesions with definite PD-L1 expression results, the Ki-65 min, Ki-30 min, and SUVmax in PD-L1 positivity were significantly higher than that in PD-L1 negativity (P < 0.05). And no significant differences in predicting PD-L1 positivity were found among Ki-65 min, Ki-30 min, and SUVmax (AUC = 0.704, 0.695, and 0.737, respectively, P > 0.05), according to the results of ROC analysis and Delong test.</p><p><strong>Conclusions: </strong>This study indicates that an early 30-minute dynamic FDG-PET acquisition appears to be sufficient to provide quantitative images with good-quality and accurate Ki values for the assessment of lung lesions and prediction of PD-L1 expression. Protocols with a shortened early 30","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"23"},"PeriodicalIF":4.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}