Pub Date : 2023-12-12DOI: 10.3390/electrochem4040035
Daniela Nunes da Silva, Arnaldo César Pereira
Aptamers are three-dimensional structures of DNA or RNA that present high affinity and selectivity to specific targets, obtained through in vitro screening. Aptamers are used as biological recognizers in electrochemical biosensors, the so-called aptasensors, providing greater specificity in recognizing the most diverse analytes. Electrochemical aptasensors have extremely relevant characteristics, such as high sensitivity, low cost compared to other biorecognizers such as antibodies, and excellent compatibility, being considered one of the most promising alternative methods in several areas, such as biomedical diagnosis and monitoring environmental contaminants. In this sense, the present work reviews the relevant aspects of methodologies based on electrochemical aptasensors and their applications in determining antibiotics, seeking to foster innovation in electrochemical biosensors.
适配体是通过体外筛选获得的 DNA 或 RNA 的三维结构,对特定目标具有高亲和力和选择性。适配体被用作电化学生物传感器(即所谓的aptasensors)中的生物识别器,在识别最多样化的分析物时具有更高的特异性。电化学适配体具有极其重要的特性,如灵敏度高、与抗体等其他生物识别剂相比成本低、兼容性好等,被认为是生物医学诊断和环境污染物监测等多个领域最有前途的替代方法之一。从这个意义上说,本研究综述了基于电化学灵敏度传感器的相关方法及其在抗生素测定中的应用,旨在促进电化学生物传感器的创新。
{"title":"Relevant Aspects in the Development of Electrochemical Aptasensors for the Determination of Antibiotics—A Review","authors":"Daniela Nunes da Silva, Arnaldo César Pereira","doi":"10.3390/electrochem4040035","DOIUrl":"https://doi.org/10.3390/electrochem4040035","url":null,"abstract":"Aptamers are three-dimensional structures of DNA or RNA that present high affinity and selectivity to specific targets, obtained through in vitro screening. Aptamers are used as biological recognizers in electrochemical biosensors, the so-called aptasensors, providing greater specificity in recognizing the most diverse analytes. Electrochemical aptasensors have extremely relevant characteristics, such as high sensitivity, low cost compared to other biorecognizers such as antibodies, and excellent compatibility, being considered one of the most promising alternative methods in several areas, such as biomedical diagnosis and monitoring environmental contaminants. In this sense, the present work reviews the relevant aspects of methodologies based on electrochemical aptasensors and their applications in determining antibiotics, seeking to foster innovation in electrochemical biosensors.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139007191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The global hazardous waste management market is expected to reach USD 987.51 million by 2027 at a CAGR of 14.48%. The early detection of corrosive, flammable, and infectious toxicants from natural sources or manmade contaminants from different environments is crucial to ensure the safety and security of the global living system. Even though the emergence of advanced science and technology continuously offers a more comfortable lifestyle, there are two sides of the coin in terms of opportunities and challenges, demanding solutions for greener applications and waste-to-wealth strategies. A modern analytical technique based on an electrochemical approach and microfluidics is one such emerging advanced solution for the early and effective detection of toxicants. This review attempts to highlight the different studies performed in the field of toxicant analysis, especially the fusion of electrochemistry and lab-chip model systems, promising for point-of-need analysis. The contents of this report are organised by classifying the types of toxicants and trends in electrochemical-integrated lab-chip assays that test for heavy-metal ions, food-borne pathogens, pesticides, physiological reactive oxygen/nitrogen species, and microbial metabolites. Future demands in toxicant analysis and possible suggestions in the field of microanalysis-mediated electrochemical (bio)sensing are summarised.
{"title":"Electrochemical-Based Biosensor Platforms in Lab-Chip Models for Point-of-Need Toxicant Analysis","authors":"Mohana Marimuthu, Vinoth Krishnan, Shailendra Sudhakaran, Sevakumaran Vigneswari, Shanmugam Senthilkumar, M. Veerapandian","doi":"10.3390/electrochem4040034","DOIUrl":"https://doi.org/10.3390/electrochem4040034","url":null,"abstract":"The global hazardous waste management market is expected to reach USD 987.51 million by 2027 at a CAGR of 14.48%. The early detection of corrosive, flammable, and infectious toxicants from natural sources or manmade contaminants from different environments is crucial to ensure the safety and security of the global living system. Even though the emergence of advanced science and technology continuously offers a more comfortable lifestyle, there are two sides of the coin in terms of opportunities and challenges, demanding solutions for greener applications and waste-to-wealth strategies. A modern analytical technique based on an electrochemical approach and microfluidics is one such emerging advanced solution for the early and effective detection of toxicants. This review attempts to highlight the different studies performed in the field of toxicant analysis, especially the fusion of electrochemistry and lab-chip model systems, promising for point-of-need analysis. The contents of this report are organised by classifying the types of toxicants and trends in electrochemical-integrated lab-chip assays that test for heavy-metal ions, food-borne pathogens, pesticides, physiological reactive oxygen/nitrogen species, and microbial metabolites. Future demands in toxicant analysis and possible suggestions in the field of microanalysis-mediated electrochemical (bio)sensing are summarised.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139253885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-14DOI: 10.3390/electrochem4040033
Wiviane E. R. de Melo, Karoline S. Nantes, Ana L. H. K. Ferreira, Márcio C. Pereira, Luiz H. C. Mattoso, Ronaldo C. Faria, André S. Afonso
Hydrogen peroxide (H2O2) is an essential analyte for detecting neurodegenerative diseases and inflammatory processes and plays a crucial role in pharmaceuticals, the food industry, and environmental monitoring. However, conventional H2O2 detection methods have drawbacks such as lengthy analysis times, high costs, and bulky equipment. Non-enzymatic sensors have emerged as promising alternatives to overcome these limitations. In this research, we introduce a simple, portable, and cost-effective non-enzymatic sensor that uses carbon black (CB) and silver nanoparticle-modified δ-FeOOH (Ag/δ-FeOOH) integrated into a disposable electrochemical cell (DCell). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrochemical impedance spectroscopy (EIS) confirmed successful CB and Ag/δ-FeOOH immobilization on the DCell working electrode. Electrochemical investigations revealed that the DCell-CB//Ag/δ-FeOOH sensor exhibited an approximately twofold higher apparent heterogeneous electron transfer rate constant than the DCell-Ag/δ-FeOOH sensor, capitalizing on CB’s advantages. Moreover, the sensor displayed an excellent electrochemical response for H2O2 reduction, boasting a low detection limit of 22 µM and a high analytical sensitivity of 214 μA mM−1 cm−2. Notably, the DCell-CB//Ag/δ-FeOOH sensor exhibited outstanding selectivity for H2O2 detection, even in potential interferents such as dopamine, uric acid, and ascorbic acid. Furthermore, the sensor has the right qualities for monitoring H2O2 in complex biological samples, as evidenced by H2O2 recoveries ranging from 92% to 103% in 10% fetal bovine serum. These findings underscore the considerable potential of the DCell-CB//Ag/δ-FeOOH sensor for precise and reliable H2O2 monitoring in various biomedical and environmental applications.
{"title":"A Disposable Carbon-Based Electrochemical Cell Modified with Carbon Black and Ag/δ-FeOOH for Non-Enzymatic H2O2 Electrochemical Sensing","authors":"Wiviane E. R. de Melo, Karoline S. Nantes, Ana L. H. K. Ferreira, Márcio C. Pereira, Luiz H. C. Mattoso, Ronaldo C. Faria, André S. Afonso","doi":"10.3390/electrochem4040033","DOIUrl":"https://doi.org/10.3390/electrochem4040033","url":null,"abstract":"Hydrogen peroxide (H2O2) is an essential analyte for detecting neurodegenerative diseases and inflammatory processes and plays a crucial role in pharmaceuticals, the food industry, and environmental monitoring. However, conventional H2O2 detection methods have drawbacks such as lengthy analysis times, high costs, and bulky equipment. Non-enzymatic sensors have emerged as promising alternatives to overcome these limitations. In this research, we introduce a simple, portable, and cost-effective non-enzymatic sensor that uses carbon black (CB) and silver nanoparticle-modified δ-FeOOH (Ag/δ-FeOOH) integrated into a disposable electrochemical cell (DCell). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrochemical impedance spectroscopy (EIS) confirmed successful CB and Ag/δ-FeOOH immobilization on the DCell working electrode. Electrochemical investigations revealed that the DCell-CB//Ag/δ-FeOOH sensor exhibited an approximately twofold higher apparent heterogeneous electron transfer rate constant than the DCell-Ag/δ-FeOOH sensor, capitalizing on CB’s advantages. Moreover, the sensor displayed an excellent electrochemical response for H2O2 reduction, boasting a low detection limit of 22 µM and a high analytical sensitivity of 214 μA mM−1 cm−2. Notably, the DCell-CB//Ag/δ-FeOOH sensor exhibited outstanding selectivity for H2O2 detection, even in potential interferents such as dopamine, uric acid, and ascorbic acid. Furthermore, the sensor has the right qualities for monitoring H2O2 in complex biological samples, as evidenced by H2O2 recoveries ranging from 92% to 103% in 10% fetal bovine serum. These findings underscore the considerable potential of the DCell-CB//Ag/δ-FeOOH sensor for precise and reliable H2O2 monitoring in various biomedical and environmental applications.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134900749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-13DOI: 10.3390/electrochem4040032
Ryohei Mori
In the recent rechargeable battery industry, lithium sulfur batteries (LSBs) have demonstrated to be a promising candidate battery to serve as the next-generation secondary battery, owing to its enhanced theoretical specific energy, economy, and environmental friendliness. Its inferior cyclability, however, which is primarily due to electrode deterioration caused by the lithium polysulfide shuttle effect, is still a major problem for the real industrial usage of LSBs. The optimization of the separator and functional barrier layer is an effective strategy for remedying these issues. In this article, the current progress based on the classification and modification of functional separators is summarized. We will also describe their working mechanisms as well as the resulting LSB electrochemical properties. In addition, necessary performance for separators will also be mentioned in order to gain optimized LSB performance.
{"title":"Separator Materials for Lithium Sulfur Battery—A Review","authors":"Ryohei Mori","doi":"10.3390/electrochem4040032","DOIUrl":"https://doi.org/10.3390/electrochem4040032","url":null,"abstract":"In the recent rechargeable battery industry, lithium sulfur batteries (LSBs) have demonstrated to be a promising candidate battery to serve as the next-generation secondary battery, owing to its enhanced theoretical specific energy, economy, and environmental friendliness. Its inferior cyclability, however, which is primarily due to electrode deterioration caused by the lithium polysulfide shuttle effect, is still a major problem for the real industrial usage of LSBs. The optimization of the separator and functional barrier layer is an effective strategy for remedying these issues. In this article, the current progress based on the classification and modification of functional separators is summarized. We will also describe their working mechanisms as well as the resulting LSB electrochemical properties. In addition, necessary performance for separators will also be mentioned in order to gain optimized LSB performance.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136346409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cobalt diphosphides (CoP2) show a high theoretical capacity and hold great promise as anode materials for lithium-ion batteries (LIBs). However, the large variation in the volume and structure of CoP2 caused during lithium-ion insertion and extraction results in electrode fragmentation and a compromised solid electrolyte interface, ultimately leading to poor cycling performance. Herein, a composite of CoP2 nanoparticles encapsulated in carbon matrix has been successfully synthesized by carbonization of Co-MOF-based zeolitic imidazolate frameworks (ZIF-67) and sequential phosphorization and further wrapped in graphene oxide (CoP2@C@GO). The formation of CoP2 was confirmed by X-ray diffraction, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The morphology of CoP2@C with and without GO wrapping was examined by scanning electron microscopy and transmission electron spectroscopy. It was demonstrated that the decoration of GO significantly reduces the polarization of CoP2@C electrodes, enhancing their charge capacity and cycling stability as an anode material for LIBs. After 200 cycles, they deliver a capacity of 450 mAh·g−1.
{"title":"Graphene-Oxide-Coated CoP2@C Anode Enables High Capacity of Lithium-Ion Batteries","authors":"Wei Zhang, Hangxuan Xie, Zirui Dou, Zhentao Hao, Qianhui Huang, Ziqi Guo, Chao Wang, Kanghua Miao, Xiongwu Kang","doi":"10.3390/electrochem4040031","DOIUrl":"https://doi.org/10.3390/electrochem4040031","url":null,"abstract":"Cobalt diphosphides (CoP2) show a high theoretical capacity and hold great promise as anode materials for lithium-ion batteries (LIBs). However, the large variation in the volume and structure of CoP2 caused during lithium-ion insertion and extraction results in electrode fragmentation and a compromised solid electrolyte interface, ultimately leading to poor cycling performance. Herein, a composite of CoP2 nanoparticles encapsulated in carbon matrix has been successfully synthesized by carbonization of Co-MOF-based zeolitic imidazolate frameworks (ZIF-67) and sequential phosphorization and further wrapped in graphene oxide (CoP2@C@GO). The formation of CoP2 was confirmed by X-ray diffraction, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The morphology of CoP2@C with and without GO wrapping was examined by scanning electron microscopy and transmission electron spectroscopy. It was demonstrated that the decoration of GO significantly reduces the polarization of CoP2@C electrodes, enhancing their charge capacity and cycling stability as an anode material for LIBs. After 200 cycles, they deliver a capacity of 450 mAh·g−1.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134907213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-23DOI: 10.3390/electrochem4040030
Yuanyuan Liu, Koichi Jeremiah Aoki, Jingyuan Chen
Diffusion-controlled cyclic voltammograms at fast scan rates show peak shifts, as well as decreases in the peak currents from predicted diffusion-controlled currents, especially when the currents are large in a low concentration of supporting electrolytes. This has been conventionally recognized as an IR-drop effect due to solution resistance on the peaks, as well as a heterogeneously kinetic effect. It is also brought about by the negatively capacitive currents associated with charge transfer reactions. The reaction product generates dipoles with counterions to yield a capacitance, the current of which flows oppositely to that of the double-layer capacitance. The three effects are specified here in the oxidation of a ferrocenyl derivative using fast scan voltammetry. The expression for voltammograms complicated with IR-drop is derived analytically and yields deformed voltammograms. The peak shift is approximately linear with the IR-voltage, but exhibits a convex variation. The dependence of some parameters on the peaks due to the IR-drop is compared with those due to the negative capacitance. The latter is more conspicuous than the former under conventional conditions. The two effects cannot be distinguished specifically except for variations in the conductance of the solution.
{"title":"The Difference in the Effects of IR-Drop from the Negative Capacitance of Fast Cyclic Voltammograms","authors":"Yuanyuan Liu, Koichi Jeremiah Aoki, Jingyuan Chen","doi":"10.3390/electrochem4040030","DOIUrl":"https://doi.org/10.3390/electrochem4040030","url":null,"abstract":"Diffusion-controlled cyclic voltammograms at fast scan rates show peak shifts, as well as decreases in the peak currents from predicted diffusion-controlled currents, especially when the currents are large in a low concentration of supporting electrolytes. This has been conventionally recognized as an IR-drop effect due to solution resistance on the peaks, as well as a heterogeneously kinetic effect. It is also brought about by the negatively capacitive currents associated with charge transfer reactions. The reaction product generates dipoles with counterions to yield a capacitance, the current of which flows oppositely to that of the double-layer capacitance. The three effects are specified here in the oxidation of a ferrocenyl derivative using fast scan voltammetry. The expression for voltammograms complicated with IR-drop is derived analytically and yields deformed voltammograms. The peak shift is approximately linear with the IR-voltage, but exhibits a convex variation. The dependence of some parameters on the peaks due to the IR-drop is compared with those due to the negative capacitance. The latter is more conspicuous than the former under conventional conditions. The two effects cannot be distinguished specifically except for variations in the conductance of the solution.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135413555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.3390/electrochem4040029
Ponraj Jeyabarathi, Marwan Abukhaled, Murugesan Kannan, Lakshmanan Rajendran, Michael E. G. Lyons
An electrochemical photobioreactor with a packed bed containing transparent gel granules and immobilized photosynthetic bacterial cells is shown with a one-dimensional two-phase flow and transport model. We consider the biological/chemical events in the electrochemical photobioreactor, the intrinsically connected two-phase flow and mass transport, and other factors. This model is based on a system of nonlinear equations. This paper applies Akbari-Ganji’s and Taylor series methods to find analytical solutions to nonlinear differential equations that arise in an immobilized-cell electrochemical photobioreactor. Approximate analytical expressions of the concentration of glucose and hydrogen are obtained in liquid and gas phases for different parameter values. Numerical simulations are presented to validate the theoretical investigations.
{"title":"New Analytical Expressions of Concentrations in Packed Bed Immobilized-Cell Electrochemical Photobioreactor","authors":"Ponraj Jeyabarathi, Marwan Abukhaled, Murugesan Kannan, Lakshmanan Rajendran, Michael E. G. Lyons","doi":"10.3390/electrochem4040029","DOIUrl":"https://doi.org/10.3390/electrochem4040029","url":null,"abstract":"An electrochemical photobioreactor with a packed bed containing transparent gel granules and immobilized photosynthetic bacterial cells is shown with a one-dimensional two-phase flow and transport model. We consider the biological/chemical events in the electrochemical photobioreactor, the intrinsically connected two-phase flow and mass transport, and other factors. This model is based on a system of nonlinear equations. This paper applies Akbari-Ganji’s and Taylor series methods to find analytical solutions to nonlinear differential equations that arise in an immobilized-cell electrochemical photobioreactor. Approximate analytical expressions of the concentration of glucose and hydrogen are obtained in liquid and gas phases for different parameter values. Numerical simulations are presented to validate the theoretical investigations.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135199338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-28DOI: 10.3390/electrochem4040028
Pranaya Charkravarthula, Amos Mugweru
This work was aimed at the development of a sensitive electrochemical detection method for oxycodone in water. Molecularly imprinted electrodes were formed by electro-polymerization process using o-phenylenediamine as a monomer. The electro-polymerization was performed on glassy carbon electrodes in the presence of oxycodone before the extraction of entrapped oxycodone molecules. Various electrochemical techniques were employed to monitor the polymerization and response of the fabricated electrodes toward oxycodone. These techniques included cyclic voltammetry (CV), square wave voltammetry (SWV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The oxycodone concentration was determined using SWV by measuring the change in the oxidation peak current of [Fe(CN)6]3−/4− in a 0.1 mM acetate buffer solution. At the optimal electro-polymerization conditions, a calibration curve of the current versus the concentration of oxycodone indicated a linear response at a region from 0.4 nM to 5.0 nM with a detection limit of 1.8 ± 0.239 nM. The MIP-modified electrode’s binding isotherm was fitted using a Langmuir model and showed an association constant, KA, of 1.12 × 106, indicating a high affinity of oxycodone molecules to binding sites. This sensor has the potential to act as an alternative method suitable for the on-site analysis of oxycodone.
{"title":"Molecularly Imprinted Electrochemical Sensor Based on Poly (O-Phenylenediamine) for Sensitive Detection of Oxycodone in Water","authors":"Pranaya Charkravarthula, Amos Mugweru","doi":"10.3390/electrochem4040028","DOIUrl":"https://doi.org/10.3390/electrochem4040028","url":null,"abstract":"This work was aimed at the development of a sensitive electrochemical detection method for oxycodone in water. Molecularly imprinted electrodes were formed by electro-polymerization process using o-phenylenediamine as a monomer. The electro-polymerization was performed on glassy carbon electrodes in the presence of oxycodone before the extraction of entrapped oxycodone molecules. Various electrochemical techniques were employed to monitor the polymerization and response of the fabricated electrodes toward oxycodone. These techniques included cyclic voltammetry (CV), square wave voltammetry (SWV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The oxycodone concentration was determined using SWV by measuring the change in the oxidation peak current of [Fe(CN)6]3−/4− in a 0.1 mM acetate buffer solution. At the optimal electro-polymerization conditions, a calibration curve of the current versus the concentration of oxycodone indicated a linear response at a region from 0.4 nM to 5.0 nM with a detection limit of 1.8 ± 0.239 nM. The MIP-modified electrode’s binding isotherm was fitted using a Langmuir model and showed an association constant, KA, of 1.12 × 106, indicating a high affinity of oxycodone molecules to binding sites. This sensor has the potential to act as an alternative method suitable for the on-site analysis of oxycodone.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135387895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05DOI: 10.3390/electrochem4030027
Ramalingam Vanaja, P. Jeyabarathi, Lakshmanan Rajendran, M. E. G. Lyons
A device that transforms chemical energy into electrical energy is an electrochemical cell. The reaction type inside the cell determines whether it is exothermic or endothermic. This paper discusses the mathematical modelling of exothermic explosions in a slab. This model is based on a nonlinear equation containing a nonlinear term related to Arrhenius, bimolecular, and sensitised laws of reaction kinetics. The absolute temperature can be derived by solving the nonlinear equation using the Akbari–Ganji technique. The mathematical model also numerically solved and simulated in the MATLAB® v2016b software. The new simple theoretical result is validated with previously identified analytical and numerical findings. The influence of the parameters of Frank-Kamenetskii number, activation energy and the numerical exponent on temperature is discussed. The Frank-Kamenetskii number is observed to drop as the temperature is found to decrease, while the activation energy parameter is shown to increase. The numerical exponent has little or no effect on the temperature. An extension of this model to cylinder and sphere geometry is also provided.
{"title":"Theory for Electrochemical Heat Sources and Exothermic Explosions: The Akbari–Ganji Method","authors":"Ramalingam Vanaja, P. Jeyabarathi, Lakshmanan Rajendran, M. E. G. Lyons","doi":"10.3390/electrochem4030027","DOIUrl":"https://doi.org/10.3390/electrochem4030027","url":null,"abstract":"A device that transforms chemical energy into electrical energy is an electrochemical cell. The reaction type inside the cell determines whether it is exothermic or endothermic. This paper discusses the mathematical modelling of exothermic explosions in a slab. This model is based on a nonlinear equation containing a nonlinear term related to Arrhenius, bimolecular, and sensitised laws of reaction kinetics. The absolute temperature can be derived by solving the nonlinear equation using the Akbari–Ganji technique. The mathematical model also numerically solved and simulated in the MATLAB® v2016b software. The new simple theoretical result is validated with previously identified analytical and numerical findings. The influence of the parameters of Frank-Kamenetskii number, activation energy and the numerical exponent on temperature is discussed. The Frank-Kamenetskii number is observed to drop as the temperature is found to decrease, while the activation energy parameter is shown to increase. The numerical exponent has little or no effect on the temperature. An extension of this model to cylinder and sphere geometry is also provided.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75430309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-14DOI: 10.3390/electrochem4030026
Mansi Gandhi
Plants have a remarkable position among renewable materials because of their abundance, and nearly thousands of tons are consumed worldwide every day. Most unexploited plants and agricultural waste can be a real potential resource system. With increasing environmental awareness and the growing importance of friendly agricultural waste, crops and fruit waste can be used for efficient conversion into bio-fertilizers, biocarbons, bio-polymers, biosensors and bio-fibers. Global challenges based on limited natural resources and fossil energy reserves simulated keen interest in the development of various electrochemical systems inspired by food and plant scraps, which aid in curbing pollution. The successful adoption of a renewable energy roadmap is dependent on the availability of a cheaper means of storage. In order to cut down the cost of storage units, an improvement on energy storage devices having better stability, power, and energy density with low post-maintenance cost is the vital key. Although food and plant scraps have a huge need for energy storage, it has been extended to various sensing platform fabrications, which are eco-friendly and comparable to organic molecule-based sensors. Current research proclivity has witnessed a huge surge in the development of phyto-chemical-based sensors. The state-of-the-art progresses on the subsequent use of plant-waste systems as nano-engineered electrochemical platforms for numerous environmental science and renewable energy applications. Moreover, the relevant rationale behind the use of waste in a well-developed, sustainable future device is also presented in this review.
{"title":"Design and Development of Food Waste Inspired Electrochemical Platform for Various Applications","authors":"Mansi Gandhi","doi":"10.3390/electrochem4030026","DOIUrl":"https://doi.org/10.3390/electrochem4030026","url":null,"abstract":"Plants have a remarkable position among renewable materials because of their abundance, and nearly thousands of tons are consumed worldwide every day. Most unexploited plants and agricultural waste can be a real potential resource system. With increasing environmental awareness and the growing importance of friendly agricultural waste, crops and fruit waste can be used for efficient conversion into bio-fertilizers, biocarbons, bio-polymers, biosensors and bio-fibers. Global challenges based on limited natural resources and fossil energy reserves simulated keen interest in the development of various electrochemical systems inspired by food and plant scraps, which aid in curbing pollution. The successful adoption of a renewable energy roadmap is dependent on the availability of a cheaper means of storage. In order to cut down the cost of storage units, an improvement on energy storage devices having better stability, power, and energy density with low post-maintenance cost is the vital key. Although food and plant scraps have a huge need for energy storage, it has been extended to various sensing platform fabrications, which are eco-friendly and comparable to organic molecule-based sensors. Current research proclivity has witnessed a huge surge in the development of phyto-chemical-based sensors. The state-of-the-art progresses on the subsequent use of plant-waste systems as nano-engineered electrochemical platforms for numerous environmental science and renewable energy applications. Moreover, the relevant rationale behind the use of waste in a well-developed, sustainable future device is also presented in this review.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84173088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}