Pub Date : 2023-04-10DOI: 10.3390/electrochem4020015
Perumal Pandurangan
Polysaccharide-based natural polymer electrolyte membranes have had tremendous consideration for the various energy storage operations including wearable electronic and hybrid vehicle industries, due to their unique and predominant qualities. Furthermore, they have fascinating oxygen functionality results of a higher flexible nature and help to form easier coordination of metal ions thus improving the conducting profiles of polymer electrolytes. Mixed operations of the various alkali and alkaline metal–salt-incorporated biopolymer electrolytes based on different polysaccharide materials and their charge transportation mechanisms are detailly explained in the review. Furthermore, recent developments in polysaccharide electrolyte separators and their important electrochemical findings are discussed and highlighted. Notably, the characteristics and ion-conducting mechanisms of different biopolymer electrolytes are reviewed in depth here. Finally, the overall conclusion and mandatory conditions that are required to implement biopolymer electrolytes as a potential candidate for the next generation of clean/green flexible bio-energy devices with enhanced safety; several future perspectives are also discussed and suggested.
{"title":"Recent Progression and Opportunities of Polysaccharide Assisted Bio-Electrolyte Membranes for Rechargeable Charge Storage and Conversion Devices","authors":"Perumal Pandurangan","doi":"10.3390/electrochem4020015","DOIUrl":"https://doi.org/10.3390/electrochem4020015","url":null,"abstract":"Polysaccharide-based natural polymer electrolyte membranes have had tremendous consideration for the various energy storage operations including wearable electronic and hybrid vehicle industries, due to their unique and predominant qualities. Furthermore, they have fascinating oxygen functionality results of a higher flexible nature and help to form easier coordination of metal ions thus improving the conducting profiles of polymer electrolytes. Mixed operations of the various alkali and alkaline metal–salt-incorporated biopolymer electrolytes based on different polysaccharide materials and their charge transportation mechanisms are detailly explained in the review. Furthermore, recent developments in polysaccharide electrolyte separators and their important electrochemical findings are discussed and highlighted. Notably, the characteristics and ion-conducting mechanisms of different biopolymer electrolytes are reviewed in depth here. Finally, the overall conclusion and mandatory conditions that are required to implement biopolymer electrolytes as a potential candidate for the next generation of clean/green flexible bio-energy devices with enhanced safety; several future perspectives are also discussed and suggested.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87346351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-07DOI: 10.3390/electrochem4020014
M. B. Sales, J. G. L. Neto, A. K. de Sousa Braz, P. G. de Sousa Junior, R. Melo, Robert Valerio, J. Serpa, Ana Michele da Silva Lima, Rita Karolinny Chaves de Lima, A. P. Guimarães, M. C. M. de Souza, A. Lopes, M. A. Rios, Leonardo F. Serafim, J. C. D. dos Santos
The unique properties of metal-organic frameworks (MOFs) such as their large surface area and high porosity have attracted considerable attention in recent decades. The MOFs are a promising class of materials for developing highly efficient biosensors due to these same properties. This bibliometric analysis focused on the use of MOFs as enzyme-coupled materials in biosensor construction and aimed to provide a comprehensive overview of the research field by analyzing a collected database. The analysis included identifying the countries that have published the most, the most prominent applications, and trends for future directions in the field. The study used three databases with different numbers of documents, differentiated by research areas, with refinements made to the search as needed. The results suggest that MOF-derived biosensors are a growing field, with the Republic of China emerging as a significant contributor to research in this area. The study also used computational processing of trend analysis and geocoding to reveal these findings.
{"title":"Trends and Opportunities in Enzyme Biosensors Coupled to Metal-Organic Frameworks (MOFs): An Advanced Bibliometric Analysis","authors":"M. B. Sales, J. G. L. Neto, A. K. de Sousa Braz, P. G. de Sousa Junior, R. Melo, Robert Valerio, J. Serpa, Ana Michele da Silva Lima, Rita Karolinny Chaves de Lima, A. P. Guimarães, M. C. M. de Souza, A. Lopes, M. A. Rios, Leonardo F. Serafim, J. C. D. dos Santos","doi":"10.3390/electrochem4020014","DOIUrl":"https://doi.org/10.3390/electrochem4020014","url":null,"abstract":"The unique properties of metal-organic frameworks (MOFs) such as their large surface area and high porosity have attracted considerable attention in recent decades. The MOFs are a promising class of materials for developing highly efficient biosensors due to these same properties. This bibliometric analysis focused on the use of MOFs as enzyme-coupled materials in biosensor construction and aimed to provide a comprehensive overview of the research field by analyzing a collected database. The analysis included identifying the countries that have published the most, the most prominent applications, and trends for future directions in the field. The study used three databases with different numbers of documents, differentiated by research areas, with refinements made to the search as needed. The results suggest that MOF-derived biosensors are a growing field, with the Republic of China emerging as a significant contributor to research in this area. The study also used computational processing of trend analysis and geocoding to reveal these findings.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81773751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-23DOI: 10.3390/electrochem4020012
M. Siddika, M. Hasan, Tahamida A. Oyshi, M. Hasnat
Water pollution has badly affected human health, aquatic life, and the ecosystem. The purity of surface water can be measured in terms of dissolved oxygen (DO) measurements. Hence, it is desirable to have a portable and simple-to-use dissolved oxygen sensor. One possible remedy is an electrochemical sensor. Thus, we proposed an ITO-IrOx electrocatalyst for an effective and interference-free DO sensor utilizing the principle of oxygen reduction reaction (ORR). The ITO-IrOx was characterized using cyclic voltammetry (CV), scanning electron microscopy (SEM), electrochemical impedance spectrometry (EIS), X-ray photoelectron spectroscopy (XPS), and reflectance spectroscopy-based techniques. Reflectance spectra of the ITO-IrOx electrode showed the photoresist capability. The EIS spectra revealed lower charge transfer resistance for the ITO-IrOx electrode in ORR. The IrOx film on ITO exhibited a quick (one electron, α = 1.00), and reversible electron transfer mechanism. The electrode demonstrated high stability for oxygen sensing, having a limit of detection (LOD) of 0.49 ppm and interference-free from some common ions (nitrate, sulphate, chloride etc.) found in water.
{"title":"Electrocatalytic Reduction of O2 by ITO-IrOx: Implication for Dissolved Oxygen Sensor in the Alkaline Medium","authors":"M. Siddika, M. Hasan, Tahamida A. Oyshi, M. Hasnat","doi":"10.3390/electrochem4020012","DOIUrl":"https://doi.org/10.3390/electrochem4020012","url":null,"abstract":"Water pollution has badly affected human health, aquatic life, and the ecosystem. The purity of surface water can be measured in terms of dissolved oxygen (DO) measurements. Hence, it is desirable to have a portable and simple-to-use dissolved oxygen sensor. One possible remedy is an electrochemical sensor. Thus, we proposed an ITO-IrOx electrocatalyst for an effective and interference-free DO sensor utilizing the principle of oxygen reduction reaction (ORR). The ITO-IrOx was characterized using cyclic voltammetry (CV), scanning electron microscopy (SEM), electrochemical impedance spectrometry (EIS), X-ray photoelectron spectroscopy (XPS), and reflectance spectroscopy-based techniques. Reflectance spectra of the ITO-IrOx electrode showed the photoresist capability. The EIS spectra revealed lower charge transfer resistance for the ITO-IrOx electrode in ORR. The IrOx film on ITO exhibited a quick (one electron, α = 1.00), and reversible electron transfer mechanism. The electrode demonstrated high stability for oxygen sensing, having a limit of detection (LOD) of 0.49 ppm and interference-free from some common ions (nitrate, sulphate, chloride etc.) found in water.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84089232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-23DOI: 10.3390/electrochem4020013
Jinghui Miao
With the surge of electric vehicles, fast charging has become one of the major challenges for the development of Li-ion and Li metal batteries. The degradation of battery electrodes at fast charging has been identified as among the gating factors. While there have been extensive studies on anode and cathode degradation modes, not sufficient efforts have been made to dive deep into the kinetics of battery charging and its influence on electrode degradation, especially during fast charging. This review presents a comprehensive yet concentrated perspective into such issues. By tracing back to the kinetic origins of battery charging, it is revealed that the intrinsic properties of electrode active materials and the microstructures of electrode are of great importance in determining electrode kinetics. Most of the electrode degradation modes are closely related to the high overpotentials and the spatial inhomogeneity in Li concentration and pertinent characteristics, which are results of the sluggish electrode kinetics during fast charging. Approaches to mitigate electrode degradation are summarized from the aspect of improving electrode kinetics and circumventing detrimental side reactions.
{"title":"Review on Electrode Degradation at Fast Charging of Li-Ion and Li Metal Batteries from a Kinetic Perspective","authors":"Jinghui Miao","doi":"10.3390/electrochem4020013","DOIUrl":"https://doi.org/10.3390/electrochem4020013","url":null,"abstract":"With the surge of electric vehicles, fast charging has become one of the major challenges for the development of Li-ion and Li metal batteries. The degradation of battery electrodes at fast charging has been identified as among the gating factors. While there have been extensive studies on anode and cathode degradation modes, not sufficient efforts have been made to dive deep into the kinetics of battery charging and its influence on electrode degradation, especially during fast charging. This review presents a comprehensive yet concentrated perspective into such issues. By tracing back to the kinetic origins of battery charging, it is revealed that the intrinsic properties of electrode active materials and the microstructures of electrode are of great importance in determining electrode kinetics. Most of the electrode degradation modes are closely related to the high overpotentials and the spatial inhomogeneity in Li concentration and pertinent characteristics, which are results of the sluggish electrode kinetics during fast charging. Approaches to mitigate electrode degradation are summarized from the aspect of improving electrode kinetics and circumventing detrimental side reactions.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74451038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-21DOI: 10.3390/electrochem4010011
Rossarin Ampairojanawong, Ajalaya Boripun, S. Ruankon, T. Suwanasri, K. Cheenkachorn, T. Kangsadan
Electrically driven separation (EDS) technology with a high voltage (HV) alternating current source (AC) was used to remove glycerol and other contaminants from biodiesel in order to meet the ASTM D6751 and EN 14214 standards. Biodiesel was produced from a transesterification of refined palm oil and methanol using sodium methylate as a homogeneous catalyst. The effects of an Iron (Fe) electrode, including types of electrode configurations, vertical distance between electrodes, applied voltage, and separation time, were studied. Furthermore, the effects of the remaining catalyst and soap content in biodiesel phase were also investigated to improve the separating performance using the EDS technique. The EDS using HVAC and low amperage with a point-to-point electrode configuration showed the highest separation efficiency of 99.8%. The optimum vertical distance between electrodes was 3 cm, while the optimum applied voltage was 3 kV. The separation time of 240 s yielded the best separating performance, completely eliminating the unreacted catalyst, and the lowest of the normalized remaining soap value content was obtained. Considering all of this, the EDS technique had higher efficiency to remove glycerol and other contaminants than a conventional separation of gravitation settling. The final biodiesel product was produced with the high purity of 98.0 wt% after purification and met all standard specifications.
{"title":"Separation Process of Biodiesel-Product Mixture from Crude Glycerol and Other Contaminants Using Electrically Driven Separation Technique with AC High Voltage","authors":"Rossarin Ampairojanawong, Ajalaya Boripun, S. Ruankon, T. Suwanasri, K. Cheenkachorn, T. Kangsadan","doi":"10.3390/electrochem4010011","DOIUrl":"https://doi.org/10.3390/electrochem4010011","url":null,"abstract":"Electrically driven separation (EDS) technology with a high voltage (HV) alternating current source (AC) was used to remove glycerol and other contaminants from biodiesel in order to meet the ASTM D6751 and EN 14214 standards. Biodiesel was produced from a transesterification of refined palm oil and methanol using sodium methylate as a homogeneous catalyst. The effects of an Iron (Fe) electrode, including types of electrode configurations, vertical distance between electrodes, applied voltage, and separation time, were studied. Furthermore, the effects of the remaining catalyst and soap content in biodiesel phase were also investigated to improve the separating performance using the EDS technique. The EDS using HVAC and low amperage with a point-to-point electrode configuration showed the highest separation efficiency of 99.8%. The optimum vertical distance between electrodes was 3 cm, while the optimum applied voltage was 3 kV. The separation time of 240 s yielded the best separating performance, completely eliminating the unreacted catalyst, and the lowest of the normalized remaining soap value content was obtained. Considering all of this, the EDS technique had higher efficiency to remove glycerol and other contaminants than a conventional separation of gravitation settling. The final biodiesel product was produced with the high purity of 98.0 wt% after purification and met all standard specifications.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86222684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-06DOI: 10.3390/electrochem4010010
M. Zouarhi
Iron is a widely used metal due to its low cost and availability, but it is susceptible to corrosion in many circumstances. This corrosion can result in economic and environmental losses, and negatively affect the physical and chemical properties of the metal. This chapter provides a background on iron corrosion in archaeology and introduces various inhibitors used for its protection. It starts with a general overview of corrosion and metallurgy of iron, followed by an in-depth explanation of the mechanisms of iron corrosion in water and air. The chapter concludes with a review of different corrosion inhibitors, focusing on those made from natural plant extracts.
{"title":"Bibliographical Synthesis on the Corrosion and Protection of Archaeological Iron by Green Inhibitors","authors":"M. Zouarhi","doi":"10.3390/electrochem4010010","DOIUrl":"https://doi.org/10.3390/electrochem4010010","url":null,"abstract":"Iron is a widely used metal due to its low cost and availability, but it is susceptible to corrosion in many circumstances. This corrosion can result in economic and environmental losses, and negatively affect the physical and chemical properties of the metal. This chapter provides a background on iron corrosion in archaeology and introduces various inhibitors used for its protection. It starts with a general overview of corrosion and metallurgy of iron, followed by an in-depth explanation of the mechanisms of iron corrosion in water and air. The chapter concludes with a review of different corrosion inhibitors, focusing on those made from natural plant extracts.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85848952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.3390/electrochem4010009
Jamuna Thapa Magar, Indra Kumari Budhathoki, Anil Rajaure, H. Oli, D. Bhattarai
Green corrosion inhibitors are of great interest due to their exciting and environmentally friendly behavior in mild steel corrosion control during and after the acid cleaning process. Herein, alkaloids were extracted from the stem of Ageratina adenophora and were ensured by qualitative chemical tests as well as spectroscopic test methods. The corrosion inhibition efficacy of the alkaloids against mild steel corrosion was evaluated by gravimetric, electrochemical and EIS measurement methods. In addition, the adsorption isotherm, free energy of adsorption and thermodynamic parameters of the process were evaluated. The investigations indicated the most promising inhibition efficacy of the alkaloids for mild steel corrosion. The adsorption isotherm study revealed that the adsorption of inhibitor molecules on the MS interface was manifested by dominant physisorption followed by chemisorption. Free energy and thermodynamic parameters are well suited to endothermic processes.
{"title":"Alkaloid Extract of Ageratina adenophora Stem as Green Inhibitor for Mild Steel Corrosion in One Molar Sulfuric Acid Solution","authors":"Jamuna Thapa Magar, Indra Kumari Budhathoki, Anil Rajaure, H. Oli, D. Bhattarai","doi":"10.3390/electrochem4010009","DOIUrl":"https://doi.org/10.3390/electrochem4010009","url":null,"abstract":"Green corrosion inhibitors are of great interest due to their exciting and environmentally friendly behavior in mild steel corrosion control during and after the acid cleaning process. Herein, alkaloids were extracted from the stem of Ageratina adenophora and were ensured by qualitative chemical tests as well as spectroscopic test methods. The corrosion inhibition efficacy of the alkaloids against mild steel corrosion was evaluated by gravimetric, electrochemical and EIS measurement methods. In addition, the adsorption isotherm, free energy of adsorption and thermodynamic parameters of the process were evaluated. The investigations indicated the most promising inhibition efficacy of the alkaloids for mild steel corrosion. The adsorption isotherm study revealed that the adsorption of inhibitor molecules on the MS interface was manifested by dominant physisorption followed by chemisorption. Free energy and thermodynamic parameters are well suited to endothermic processes.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76783582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-22DOI: 10.3390/electrochem4010008
Vantu Nguyen, H. T. Nguyen, Nu Huong Tran
In this paper, ZnO nanorods were synthesized by the hydrothermal method and used as anodes for zinc-silver batteries. The Tafel and EIS curve analysis results show that ZnO nanorods have better anti-corrosion and charge transport properties than ZnO powders. At 0.1 C discharge conditions, the ZnO electrode exhibits more stable cycle efficiency than the powder electrode; after 25 cycles, the capacity is higher by 95%. The superior electrochemical performance is due to the ZnO nanorods having the ability to conduct electrons and increase the surface area. Therefore, the possible growth mechanism of ZnO nanorods has been investigated.
{"title":"Synthesis of ZnO Nanorods and Its Application in Zinc-Silver Secondary Batteries","authors":"Vantu Nguyen, H. T. Nguyen, Nu Huong Tran","doi":"10.3390/electrochem4010008","DOIUrl":"https://doi.org/10.3390/electrochem4010008","url":null,"abstract":"In this paper, ZnO nanorods were synthesized by the hydrothermal method and used as anodes for zinc-silver batteries. The Tafel and EIS curve analysis results show that ZnO nanorods have better anti-corrosion and charge transport properties than ZnO powders. At 0.1 C discharge conditions, the ZnO electrode exhibits more stable cycle efficiency than the powder electrode; after 25 cycles, the capacity is higher by 95%. The superior electrochemical performance is due to the ZnO nanorods having the ability to conduct electrons and increase the surface area. Therefore, the possible growth mechanism of ZnO nanorods has been investigated.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88422789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-21DOI: 10.3390/electrochem4010007
High-quality academic publishing is built on rigorous peer review [...]
高质量的学术出版建立在严格的同行评审的基础上[…]
{"title":"Acknowledgment to the Reviewers of Electrochem in 2022","authors":"","doi":"10.3390/electrochem4010007","DOIUrl":"https://doi.org/10.3390/electrochem4010007","url":null,"abstract":"High-quality academic publishing is built on rigorous peer review [...]","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77298376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-10DOI: 10.3390/electrochem4010006
B. Silwana, M. Matoetoe
High levels of H2O2 in food can lead to oxidative stress. Which has been linked to a number of neurological diseases. Hence, its detection in beverages is essential. However, a complicated structure of the reaction medium of H2O2 makes the detection procedure very difficult. For this reason, sensitive strategic methods are required. In this study, quantification of H2O2 in milk and apple juice has been obtained via the electrochemical sensing platform based on GCE/SiO-CeONPs. Scanning Electron Microscopy (SEM), Cyclic voltammetry(CV), and electron impedance spectroscopy(EIS) were employed to characterize the composite. The kinetics investigation of the sensor with H2O2 revealed an a quasi-reversible one -electron adsorption process. Under optimized conditions, the Differential Pulse Voltammetry (DPV) in 0.1 M Phosphate buffer (PB) pH 5.5 of the H2O2 displayed a peak at 0.13 V vs. Ag/AgCl with the detection limits of 0.0004 µM, linearity range of 0.01–0.08 µM. The observed LOD values of this method for real samples were calculated to be 0.006 µM and 0.007 µM with LOQ of 0.02 µM for milk and apple juice, respectively. The recovery of the analyte was from 92 to 99%. Furthermore, due to good selectivity and stability, the benefit of this sensor is its applicability in multiple fields.
{"title":"Heterostructure of Metal Oxides Integrated on a GCE for Estimation of H2O2 Capacity in Milk and Fruit Juice Samples","authors":"B. Silwana, M. Matoetoe","doi":"10.3390/electrochem4010006","DOIUrl":"https://doi.org/10.3390/electrochem4010006","url":null,"abstract":"High levels of H2O2 in food can lead to oxidative stress. Which has been linked to a number of neurological diseases. Hence, its detection in beverages is essential. However, a complicated structure of the reaction medium of H2O2 makes the detection procedure very difficult. For this reason, sensitive strategic methods are required. In this study, quantification of H2O2 in milk and apple juice has been obtained via the electrochemical sensing platform based on GCE/SiO-CeONPs. Scanning Electron Microscopy (SEM), Cyclic voltammetry(CV), and electron impedance spectroscopy(EIS) were employed to characterize the composite. The kinetics investigation of the sensor with H2O2 revealed an a quasi-reversible one -electron adsorption process. Under optimized conditions, the Differential Pulse Voltammetry (DPV) in 0.1 M Phosphate buffer (PB) pH 5.5 of the H2O2 displayed a peak at 0.13 V vs. Ag/AgCl with the detection limits of 0.0004 µM, linearity range of 0.01–0.08 µM. The observed LOD values of this method for real samples were calculated to be 0.006 µM and 0.007 µM with LOQ of 0.02 µM for milk and apple juice, respectively. The recovery of the analyte was from 92 to 99%. Furthermore, due to good selectivity and stability, the benefit of this sensor is its applicability in multiple fields.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89070475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}