Pub Date : 2023-08-10DOI: 10.3390/electrochem4030025
R. Mathews, E. Jovanov
Recent advances in commercially available integrated complex impedance spectroscopy controllers have brought rapid increases in the quality of systems available to researchers for wearable and remote patient monitoring applications. As a result, novel sensing methods and electrode configurations are increasingly viable, particularly for low-power embedded sensors and controllers for general electrochemical analysis. This study evaluates a case study of the four electrode locations suitable for wearable monitoring of respiratory and heart activity monitoring using complex impedance spectroscopy. We use tetrapolar electrode configurations with ten stimulation frequencies to characterize the relative differences in measurement sensitivity. Measurements are performed and compared for the magnitude, phase, resistive, and reactive components of the bioimpedance using two COTS-based controllers, the TI AFE4300 and MAX30009. We identify the highest percent relative changes in the magnitude of the impedance corresponding to deep breathing and heart activity across the chest (17% at 64 kHz, 0.5% at 256 kHz, respectively), on the forearm (0.098% at 16 kHz, 0.04% at 8 kHz), wrist-to-wrist across the body (0.28% at 256 kHz, 0.04% at 256 kHz, respectively), and wrist-to-finger across the body (0.35% at 4 kHz, 0.05% at 4 kHz, respectively). We demonstrate that the wrist-to-wrist and wrist-to-finger configurations are most promising and may enable new wearable bioimpedance applications. Additionally, this paper demonstrates that deep respiration and heart activity influence bioimpedance measurements in whole-body measurement configurations, with variations of nearly 1% in measured impedance due to the phase of the breathing cycle.
{"title":"Enabling Complex Impedance Spectroscopy for Cardio-Respiratory Monitoring with Wearable Biosensors: A Case Study","authors":"R. Mathews, E. Jovanov","doi":"10.3390/electrochem4030025","DOIUrl":"https://doi.org/10.3390/electrochem4030025","url":null,"abstract":"Recent advances in commercially available integrated complex impedance spectroscopy controllers have brought rapid increases in the quality of systems available to researchers for wearable and remote patient monitoring applications. As a result, novel sensing methods and electrode configurations are increasingly viable, particularly for low-power embedded sensors and controllers for general electrochemical analysis. This study evaluates a case study of the four electrode locations suitable for wearable monitoring of respiratory and heart activity monitoring using complex impedance spectroscopy. We use tetrapolar electrode configurations with ten stimulation frequencies to characterize the relative differences in measurement sensitivity. Measurements are performed and compared for the magnitude, phase, resistive, and reactive components of the bioimpedance using two COTS-based controllers, the TI AFE4300 and MAX30009. We identify the highest percent relative changes in the magnitude of the impedance corresponding to deep breathing and heart activity across the chest (17% at 64 kHz, 0.5% at 256 kHz, respectively), on the forearm (0.098% at 16 kHz, 0.04% at 8 kHz), wrist-to-wrist across the body (0.28% at 256 kHz, 0.04% at 256 kHz, respectively), and wrist-to-finger across the body (0.35% at 4 kHz, 0.05% at 4 kHz, respectively). We demonstrate that the wrist-to-wrist and wrist-to-finger configurations are most promising and may enable new wearable bioimpedance applications. Additionally, this paper demonstrates that deep respiration and heart activity influence bioimpedance measurements in whole-body measurement configurations, with variations of nearly 1% in measured impedance due to the phase of the breathing cycle.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":"168 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72585036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-04DOI: 10.3390/electrochem4030024
Mansi Gandhi, K. Amreen
Comprehending the interfacial interaction of nanomaterials (NMs) and biological systems is a significant research interest. NMs comprise various nanoparticles (NPs) like carbon nanotubes, graphene oxides, carbon dots, graphite nanopowders, etc. These NPs show a variety of interactions with biological interfaces via organic layers, therapeutic molecules, proteins, DNA, and cellular matrices. A number of biophysical and colloidal forces act at the morphological surface to regulate the biological responses of bio-nanoconjugates, imparting distinct physical properties to the NMs. The design of future-generation nano-tools is primarily based on the basic properties of NMs, such as shape, size, compositional, functionality, etc., with studies being carried out extensively. Understanding their properties promotes research in the medical and biological sciences and improves their applicability in the health management sector. In this review article, in-depth and critical analysis of the theoretical and experimental aspects involving nanoscale material, which have inspired various biological systems, is the area of focus. The main analysis involves different self-assembled synthetic materials, bio-functionalized NMs, and their probing techniques. The present review article focuses on recent emerging trends in the synthesis and applications of nanomaterials with respect to various biomedical applications. This article provides value to the literature as it summarizes the state-of-the-art nanomaterials reported, especially within the health sector. It has been observed that nanomaterial applications in drug design, diagnosis, testing, and in the research arena, as well as many fatal disease conditions like cancer and sepsis, have explored alongwith drug therapies and other options for the delivery of nanomaterials. Even the day-to-day life of the synthesis and purification of these materials is changing to provide us with a simplified process. This review article can be useful in the research sector as a single platform wherein all types of nanomaterials for biomedical aspects can be understood in detail.
{"title":"Emerging Trends in Nanomaterial-Based Biomedical Aspects","authors":"Mansi Gandhi, K. Amreen","doi":"10.3390/electrochem4030024","DOIUrl":"https://doi.org/10.3390/electrochem4030024","url":null,"abstract":"Comprehending the interfacial interaction of nanomaterials (NMs) and biological systems is a significant research interest. NMs comprise various nanoparticles (NPs) like carbon nanotubes, graphene oxides, carbon dots, graphite nanopowders, etc. These NPs show a variety of interactions with biological interfaces via organic layers, therapeutic molecules, proteins, DNA, and cellular matrices. A number of biophysical and colloidal forces act at the morphological surface to regulate the biological responses of bio-nanoconjugates, imparting distinct physical properties to the NMs. The design of future-generation nano-tools is primarily based on the basic properties of NMs, such as shape, size, compositional, functionality, etc., with studies being carried out extensively. Understanding their properties promotes research in the medical and biological sciences and improves their applicability in the health management sector. In this review article, in-depth and critical analysis of the theoretical and experimental aspects involving nanoscale material, which have inspired various biological systems, is the area of focus. The main analysis involves different self-assembled synthetic materials, bio-functionalized NMs, and their probing techniques. The present review article focuses on recent emerging trends in the synthesis and applications of nanomaterials with respect to various biomedical applications. This article provides value to the literature as it summarizes the state-of-the-art nanomaterials reported, especially within the health sector. It has been observed that nanomaterial applications in drug design, diagnosis, testing, and in the research arena, as well as many fatal disease conditions like cancer and sepsis, have explored alongwith drug therapies and other options for the delivery of nanomaterials. Even the day-to-day life of the synthesis and purification of these materials is changing to provide us with a simplified process. This review article can be useful in the research sector as a single platform wherein all types of nanomaterials for biomedical aspects can be understood in detail.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85622071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-24DOI: 10.3390/electrochem4030023
Bitan Chakraborty
A chronically stable electrode material with a low impedance for recording neural activity, and a high charge-injection capacity for functional electro-stimulation is desirable for the fabrication of implantable microelectrode arrays that aim to restore impaired or lost neurological functions in humans. For this purpose, we have investigated the electrochemical properties of sputtered ruthenium oxide (RuOx) electrode coatings deposited on planar microelectrode arrays, using an inorganic model of interstitial fluid (model-ISF) at 37 °C as the electrolyte. Through a combination of cyclic voltammetry (CV) and an electrochemical impedance spectroscopy (EIS) modelling study, we have established the contribution of the faradaic reaction as the major charge-injection contributor within the safe neural stimulation potential window of ±0.6 V vs. Ag|AgCl. We have also established the reversibility of the charge-injection process for sputtered RuOx film, by applying constant charge-per-phase current stimulations at different pulse widths, and by comparing the magnitudes of the leading and trailing access voltages during voltage transient measurements. Finally, the impedance of the sputtered RuOx film was found to be reasonably comparable in both its oxidized and reduced states, although the electronic contribution from the capacitive double-layer was found to be slightly higher for the completely oxidized film around 0.6 V than for its reduced counterpart around −0.6 V.
一种长期稳定的电极材料,具有记录神经活动的低阻抗和用于功能性电刺激的高电荷注入能力,是制造旨在恢复人类受损或失去的神经功能的可植入微电极阵列所需要的。为此,我们研究了沉积在平面微电极阵列上的溅射氧化钌(RuOx)电极涂层的电化学性能,使用37°C的无机间隙流体模型(模型- isf)作为电解质。通过循环伏安法(CV)和电化学阻抗谱(EIS)建模研究,我们确定了法拉第反应在±0.6 V vs. Ag|AgCl的安全神经刺激电位窗口内是主要的电荷注入贡献者。我们还通过在不同脉冲宽度下施加恒定的每相电荷电流刺激,以及在电压瞬态测量期间比较前导和后导接入电压的大小,建立了溅射氧化膜电荷注入过程的可逆性。最后,溅射的RuOx薄膜在氧化和还原状态下的阻抗相当,尽管完全氧化膜在0.6 V左右的电子贡献略高于还原膜在−0.6 V左右的电子贡献。
{"title":"Electrochemical Properties of Sputtered Ruthenium Oxide Neural Stimulation and Recording Electrodes","authors":"Bitan Chakraborty","doi":"10.3390/electrochem4030023","DOIUrl":"https://doi.org/10.3390/electrochem4030023","url":null,"abstract":"A chronically stable electrode material with a low impedance for recording neural activity, and a high charge-injection capacity for functional electro-stimulation is desirable for the fabrication of implantable microelectrode arrays that aim to restore impaired or lost neurological functions in humans. For this purpose, we have investigated the electrochemical properties of sputtered ruthenium oxide (RuOx) electrode coatings deposited on planar microelectrode arrays, using an inorganic model of interstitial fluid (model-ISF) at 37 °C as the electrolyte. Through a combination of cyclic voltammetry (CV) and an electrochemical impedance spectroscopy (EIS) modelling study, we have established the contribution of the faradaic reaction as the major charge-injection contributor within the safe neural stimulation potential window of ±0.6 V vs. Ag|AgCl. We have also established the reversibility of the charge-injection process for sputtered RuOx film, by applying constant charge-per-phase current stimulations at different pulse widths, and by comparing the magnitudes of the leading and trailing access voltages during voltage transient measurements. Finally, the impedance of the sputtered RuOx film was found to be reasonably comparable in both its oxidized and reduced states, although the electronic contribution from the capacitive double-layer was found to be slightly higher for the completely oxidized film around 0.6 V than for its reduced counterpart around −0.6 V.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80509701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-11DOI: 10.3390/electrochem4030022
J. Cassidy, Rafaela C de Carvalho, A. Betts
Salts of hexacyanoferrate II/III anions have been widely used as redox couple probe molecules to determine the characteristics of electrode surfaces. Examples include the assessment of electrocatalysts for energy applications and electrocatalysts for the detection of biological or chemical species, as well as the determination of electrochemically active surface areas. An examination of the electrochemical literature, based largely on cyclic voltammetric investigations, reveals a wide range of peak separation and/or heterogeneous electron transfer rate constants, classified sometimes as inner or outer sphere electron transfer processes. Originally developed for the mechanistic interpretation of inorganic transition metal compounds in solution, this terminology has since been extended to account for heterogeneous electron transfer occurring at electrodes. In the case of the hexacyanoferrate II/III anions, there can be a number of reasons why it sometimes behaves as an outer sphere probe and at other times displays inner sphere electron transfer characteristics. After examining some of the structural and chemical properties of the hexacyanoferrate II/III species, the methods used to determine such classifications are described. The most common method involves measuring peak-to-peak separation in a cyclic voltammogram to ascertain a heterogeneous rate constant, but it has inherent flaws. This paper reviews the reasons for the classification disparity, including the effects of various oxygen surface species, the influence of organic surface films, the nature of the cation counter-ion, surface adsorption and surface hydrophilicity/hydrophobicity. Other surface interactions may also take place, such as those occurring with Au corrosion or pH effects. These can impact the electrical double layer and thus may affect the electron transfer process. Consequently, it is recommended that hexacyanoferrate II/III should be considered a multi-sphere or alternatively a surface-sensitive electron transfer species.
{"title":"Use of Inner/Outer Sphere Terminology in Electrochemistry—A Hexacyanoferrate II/III Case Study","authors":"J. Cassidy, Rafaela C de Carvalho, A. Betts","doi":"10.3390/electrochem4030022","DOIUrl":"https://doi.org/10.3390/electrochem4030022","url":null,"abstract":"Salts of hexacyanoferrate II/III anions have been widely used as redox couple probe molecules to determine the characteristics of electrode surfaces. Examples include the assessment of electrocatalysts for energy applications and electrocatalysts for the detection of biological or chemical species, as well as the determination of electrochemically active surface areas. An examination of the electrochemical literature, based largely on cyclic voltammetric investigations, reveals a wide range of peak separation and/or heterogeneous electron transfer rate constants, classified sometimes as inner or outer sphere electron transfer processes. Originally developed for the mechanistic interpretation of inorganic transition metal compounds in solution, this terminology has since been extended to account for heterogeneous electron transfer occurring at electrodes. In the case of the hexacyanoferrate II/III anions, there can be a number of reasons why it sometimes behaves as an outer sphere probe and at other times displays inner sphere electron transfer characteristics. After examining some of the structural and chemical properties of the hexacyanoferrate II/III species, the methods used to determine such classifications are described. The most common method involves measuring peak-to-peak separation in a cyclic voltammogram to ascertain a heterogeneous rate constant, but it has inherent flaws. This paper reviews the reasons for the classification disparity, including the effects of various oxygen surface species, the influence of organic surface films, the nature of the cation counter-ion, surface adsorption and surface hydrophilicity/hydrophobicity. Other surface interactions may also take place, such as those occurring with Au corrosion or pH effects. These can impact the electrical double layer and thus may affect the electron transfer process. Consequently, it is recommended that hexacyanoferrate II/III should be considered a multi-sphere or alternatively a surface-sensitive electron transfer species.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81499429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-13DOI: 10.3390/electrochem4020020
J. Sushmitha, Subramanian Nellaiappan
The present study focuses on the electrochemical sensing of amoxicillin (AMX, as a model antibiotic drug) and its interaction with Uropathogenic E. coli (UPEC) bacteria (as a model pathogen) under physiological conditions. The electrochemical sensor probe is formulated by nanostructured gold wires (AuNWs) embedded in a carbon nanofiber–chitosan (CNF-CHIT) matrix. The synthesis of AuNWs is characterized by scanning electron microscopy (SEM), UV-Visible spectrophotometry, and X-ray photoelectron spectroscopy (XPS). The CNF-CHIT/AuNW-modified system is characterized by SEM and XPS. Initially, the CNF-CHIT/AuNW electrode was utilized for the sensing of AMX; later, in the antibiotic drug-assisted sensing of UPEC, i.e., in the presence of AMX, the interaction of UPEC was studied. The modified electrode showed appreciable sensitivity for AMX sensing; also, the interaction of AMX with UPEC is studied at two different conditions. One, at a fixed concentration of AMX (100 µM) and different concentrations of UPEC bacteria (0.6–1.2 × 106 CFU/mL), and another with incubation time (1 h–1 h 35 min) for bacterial reaction. The electrochemical antimicrobial resistance developed by UPEC, which is inherent in the sensing of AMX, is the key concept for the detection of pathogens.
本研究主要研究了生理条件下阿莫西林(AMX,模型抗生素)的电化学传感及其与尿路致病性大肠杆菌(UPEC)细菌(模型病原体)的相互作用。电化学传感器探针由纳米结构金线(AuNWs)嵌入碳纳米纤维-壳聚糖(CNF-CHIT)基体制成。采用扫描电子显微镜(SEM)、紫外可见分光光度法和x射线光电子能谱(XPS)对AuNWs的合成进行了表征。对CNF-CHIT/ aunw改性体系进行了SEM和XPS表征。最初,CNF-CHIT/AuNW电极用于AMX的传感;随后,在抗生素药物辅助感知UPEC中,即在AMX存在的情况下,研究了UPEC的相互作用。修饰后的电极对AMX传感具有较好的灵敏度;并研究了两种不同条件下AMX与UPEC的相互作用。一种是固定浓度的AMX(100µM)和不同浓度的UPEC细菌(0.6-1.2 × 106 CFU/mL),另一种是细菌反应的孵育时间(1 h - 1 h 35 min)。UPEC产生的电化学抗菌素耐药性是AMX感知所固有的,是病原体检测的关键概念。
{"title":"Electrochemical Sensing of Amoxicillin Drug-Assisted Uropathogenic E. coli Bacteria Using Gold Nanostructures—A Preliminary Study","authors":"J. Sushmitha, Subramanian Nellaiappan","doi":"10.3390/electrochem4020020","DOIUrl":"https://doi.org/10.3390/electrochem4020020","url":null,"abstract":"The present study focuses on the electrochemical sensing of amoxicillin (AMX, as a model antibiotic drug) and its interaction with Uropathogenic E. coli (UPEC) bacteria (as a model pathogen) under physiological conditions. The electrochemical sensor probe is formulated by nanostructured gold wires (AuNWs) embedded in a carbon nanofiber–chitosan (CNF-CHIT) matrix. The synthesis of AuNWs is characterized by scanning electron microscopy (SEM), UV-Visible spectrophotometry, and X-ray photoelectron spectroscopy (XPS). The CNF-CHIT/AuNW-modified system is characterized by SEM and XPS. Initially, the CNF-CHIT/AuNW electrode was utilized for the sensing of AMX; later, in the antibiotic drug-assisted sensing of UPEC, i.e., in the presence of AMX, the interaction of UPEC was studied. The modified electrode showed appreciable sensitivity for AMX sensing; also, the interaction of AMX with UPEC is studied at two different conditions. One, at a fixed concentration of AMX (100 µM) and different concentrations of UPEC bacteria (0.6–1.2 × 106 CFU/mL), and another with incubation time (1 h–1 h 35 min) for bacterial reaction. The electrochemical antimicrobial resistance developed by UPEC, which is inherent in the sensing of AMX, is the key concept for the detection of pathogens.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":"437 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76671709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-13DOI: 10.3390/electrochem4020021
Yuanyuan Liu, K. Aoki, Jingyuan Chen
Chronoamperometric curves for the oxidation of a ferrocenyl derivative via a potential step, calculated using the Cottrell equation, showed less diffusion-controlled currents on a platinum wire electrode. This lower deviation cannot be explained via Butler–Volmer heterogeneous kinetics, but was ascribed to the negatively capacitive current associated with a redox reaction. The deviation in fully oxidized electrical potential corresponds to the non-zero concentration at the electrode surface, which cannot be predicted using the Nernst equation. This equation expresses the relationship between the electrical potential and activity at the electrode surface rather than the concentration. The diffusion equation determines the relationship between the current and surface concentration rather than activity. Negative capacitance or a non-zero concentration may arise from structure formation on the electrode owing to dipole–dipole interactions, which are similar to the generation of double-layer capacitance, including frequency dispersion. Following this concept, we derive expressions for a lowered diffusion-controlled current and time-dependent surface concentration. The negatively capacitive current shows the time dependence of t−0.9, which is similar to the decay of double-layer capacitive currents. The surface concentration decays with t−0.4-dependence.
{"title":"Similarity of Heterogeneous Kinetics to Delay of Double-Layer Capacitance Using Chronoamperometry","authors":"Yuanyuan Liu, K. Aoki, Jingyuan Chen","doi":"10.3390/electrochem4020021","DOIUrl":"https://doi.org/10.3390/electrochem4020021","url":null,"abstract":"Chronoamperometric curves for the oxidation of a ferrocenyl derivative via a potential step, calculated using the Cottrell equation, showed less diffusion-controlled currents on a platinum wire electrode. This lower deviation cannot be explained via Butler–Volmer heterogeneous kinetics, but was ascribed to the negatively capacitive current associated with a redox reaction. The deviation in fully oxidized electrical potential corresponds to the non-zero concentration at the electrode surface, which cannot be predicted using the Nernst equation. This equation expresses the relationship between the electrical potential and activity at the electrode surface rather than the concentration. The diffusion equation determines the relationship between the current and surface concentration rather than activity. Negative capacitance or a non-zero concentration may arise from structure formation on the electrode owing to dipole–dipole interactions, which are similar to the generation of double-layer capacitance, including frequency dispersion. Following this concept, we derive expressions for a lowered diffusion-controlled current and time-dependent surface concentration. The negatively capacitive current shows the time dependence of t−0.9, which is similar to the decay of double-layer capacitive currents. The surface concentration decays with t−0.4-dependence.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81655072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-06DOI: 10.3390/electrochem4020018
Emad F. Newair, Aboelhasan G. Shehata, Menna Essam
A study of keracyanin chloride (KC) electrochemical behavior in an aqueous buffer solution using screen-printed carbon electrodes (SPCEs) and glassy carbon electrodes (GCEs) was performed. Cyclic voltammetry (CV) and square-wave voltammetry (SWV) were used to analyze the electrochemical response of KC under studied conditions. A clear redox wave was observed for KC, primarily due to the oxidation of the catechol 3′,4′-dihydroxyl group of its ring B, with a minor redox wave from oxidation of the hydroxyl groups in ring A. Compared to GCEs, using modified SPCEs resulted in two-fold amplification in the electrochemical oxidation signal of KC. Using SPCEs as a working electrode could provide high sensitivity in the quantification of KC and the ability to gauge KC quantification to significantly lower detection limits.
{"title":"Electrochemical Oxidation Profile of Anthocyanin Keracyanin on Glassy and Screen-Printed Carbon Electrodes","authors":"Emad F. Newair, Aboelhasan G. Shehata, Menna Essam","doi":"10.3390/electrochem4020018","DOIUrl":"https://doi.org/10.3390/electrochem4020018","url":null,"abstract":"A study of keracyanin chloride (KC) electrochemical behavior in an aqueous buffer solution using screen-printed carbon electrodes (SPCEs) and glassy carbon electrodes (GCEs) was performed. Cyclic voltammetry (CV) and square-wave voltammetry (SWV) were used to analyze the electrochemical response of KC under studied conditions. A clear redox wave was observed for KC, primarily due to the oxidation of the catechol 3′,4′-dihydroxyl group of its ring B, with a minor redox wave from oxidation of the hydroxyl groups in ring A. Compared to GCEs, using modified SPCEs resulted in two-fold amplification in the electrochemical oxidation signal of KC. Using SPCEs as a working electrode could provide high sensitivity in the quantification of KC and the ability to gauge KC quantification to significantly lower detection limits.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85671510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-06DOI: 10.3390/electrochem4020019
A. Ottlakan, G. Lázár, J. Oláh, A. Nagy, Gábor Vass, M. Vas, Raissa Pereira, E. Kis
Electrochemotherapy (ECT) has evolved significantly during the last decade, expanding treatment indications from superficial skin lesions to advanced-stage, deep-seated tumors in hard-to-reach areas. Electrodes have also shown steady technological improvement throughout the years. Besides standard and VEG (variable geometry electrode) electrodes, the introduction of laparoscopic electrodes has brought on a new era in ECT treatment, making the minimally invasive approach a reality. The exact role of ECT in the oncological dashboard is yet to be determined; however, increased tumor response, pain relief, and a low number of adverse events may yield the way for more widespread application of the technique with possible further inclusion of ECT in international oncological guidelines. The aim of this review is to give an overview on the current status of ECT in deep-seated tumor treatment and shed light on its emerging role in local anticancer therapy.
{"title":"Current Updates in Bleomycin-Based Electrochemotherapy for Deep-Seated Soft-Tissue Tumors","authors":"A. Ottlakan, G. Lázár, J. Oláh, A. Nagy, Gábor Vass, M. Vas, Raissa Pereira, E. Kis","doi":"10.3390/electrochem4020019","DOIUrl":"https://doi.org/10.3390/electrochem4020019","url":null,"abstract":"Electrochemotherapy (ECT) has evolved significantly during the last decade, expanding treatment indications from superficial skin lesions to advanced-stage, deep-seated tumors in hard-to-reach areas. Electrodes have also shown steady technological improvement throughout the years. Besides standard and VEG (variable geometry electrode) electrodes, the introduction of laparoscopic electrodes has brought on a new era in ECT treatment, making the minimally invasive approach a reality. The exact role of ECT in the oncological dashboard is yet to be determined; however, increased tumor response, pain relief, and a low number of adverse events may yield the way for more widespread application of the technique with possible further inclusion of ECT in international oncological guidelines. The aim of this review is to give an overview on the current status of ECT in deep-seated tumor treatment and shed light on its emerging role in local anticancer therapy.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":"106 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81003923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-24DOI: 10.3390/electrochem4020017
Shruti Patle, D. Rotake, K. Rewatkar
Ammonium dihydrogen phosphate (ADP) single crystals along with the incorporated 0.5 and 1% L-lysine, an organic molecule which possesses a good nonlinear response, were grown with the vision to meet the requirements of the optoelectronic industry. The inclusion of the L-lysine molecule in the crystal was confirmed by the XRD and EDX. The experiment not only confirms the inclusion level of the impurity but also the capability of the amino acid molecule to bond hydrogen within the crystal facet. A minor decrease in lattice parameters was reported for all ADP: L-lysine crystals compared with pure ADP. The structures of the grown crystals were identified as tetragonal with the space group I42d by the single-crystal XRD analysis. Vibrational signatures and functional groups were confirmed using FTIR spectroscopy. The thermal stability and decomposition temperatures of 0.5 and 1% L-lysine-added crystals were measured by TG/DTA and found to be 203 °C and 207 °C, respectively. The UV–visible transmission spectra prove a higher transparency for doped crystals as compared to pure crystals; therefore, these doped crystals can be considered the best option for the frequency doubling process in a broad range of visible and near-IR spectra. The improved hardness of the doped crystals was confirmed by the Vickers hardness data. The nonlinear optical (NLO) behaviour investigated using a second-harmonic generation (SHG) technique, indicating an efficient quadratic nonlinear coefficient of ADP: Lysine crystals at a 1064 nm initial wavelength, shows about 1.5-fold higher efficiency compared with undoped ADP.
为了满足光电工业的要求,在磷酸二氢铵(ADP)单晶中掺入具有良好非线性响应的有机分子0.5%和1% l -赖氨酸。通过XRD和EDX证实了晶体中含有l -赖氨酸分子。实验不仅证实了杂质的夹杂程度,而且还证实了氨基酸分子在晶面内结合氢的能力。与纯ADP相比,所有ADP: l -赖氨酸晶体的晶格参数略有下降。单晶XRD分析表明,生长的晶体结构为四边形,具有空间基I42d。振动特征和官能团用FTIR光谱确认。通过TG/DTA测定了添加0.5%和1% l -赖氨酸晶体的热稳定性和分解温度,分别为203℃和207℃。紫外可见透射光谱证明,与纯晶体相比,掺杂晶体具有更高的透明度;因此,在可见光和近红外光谱的宽范围内,这些掺杂晶体可以被认为是倍频过程的最佳选择。通过维氏硬度数据证实了掺杂晶体硬度的提高。利用二次谐波产生(SHG)技术研究了非线性光学(NLO)行为,表明ADP:赖氨酸晶体在1064 nm初始波长处具有有效的二次非线性系数,比未掺杂的ADP晶体效率高1.5倍。
{"title":"Investigation of Physiochemical Impact of Organic Molecule L-Lysine on Ammonium Dihydrogen Phosphate Single Crystal for Optoelectronics Applications","authors":"Shruti Patle, D. Rotake, K. Rewatkar","doi":"10.3390/electrochem4020017","DOIUrl":"https://doi.org/10.3390/electrochem4020017","url":null,"abstract":"Ammonium dihydrogen phosphate (ADP) single crystals along with the incorporated 0.5 and 1% L-lysine, an organic molecule which possesses a good nonlinear response, were grown with the vision to meet the requirements of the optoelectronic industry. The inclusion of the L-lysine molecule in the crystal was confirmed by the XRD and EDX. The experiment not only confirms the inclusion level of the impurity but also the capability of the amino acid molecule to bond hydrogen within the crystal facet. A minor decrease in lattice parameters was reported for all ADP: L-lysine crystals compared with pure ADP. The structures of the grown crystals were identified as tetragonal with the space group I42d by the single-crystal XRD analysis. Vibrational signatures and functional groups were confirmed using FTIR spectroscopy. The thermal stability and decomposition temperatures of 0.5 and 1% L-lysine-added crystals were measured by TG/DTA and found to be 203 °C and 207 °C, respectively. The UV–visible transmission spectra prove a higher transparency for doped crystals as compared to pure crystals; therefore, these doped crystals can be considered the best option for the frequency doubling process in a broad range of visible and near-IR spectra. The improved hardness of the doped crystals was confirmed by the Vickers hardness data. The nonlinear optical (NLO) behaviour investigated using a second-harmonic generation (SHG) technique, indicating an efficient quadratic nonlinear coefficient of ADP: Lysine crystals at a 1064 nm initial wavelength, shows about 1.5-fold higher efficiency compared with undoped ADP.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75172208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-23DOI: 10.3390/electrochem4020016
L. Damiani, R. Revetria, P. Giribone
This paper focuses on an industrial application where renewable power produced by photovoltaic panels is exploited to feed a pneumatic transport plant. The proposed system requires the careful management of the energy flows involved since it includes the interaction with the electric grid and with an electrochemical storage (battery) rather than the correct choice of the photovoltaic panel and battery itself. A dedicated control system needs to be developed in order to accord together these energetic flows, also providing a degree of flexibility to implement different control logics. The methodology employed in the research is simulation, which through the construction of a model in Matlab Simulink is able to reproduce the behavior of the system components and their energetic interactions for a long time period. The aim of the research is to provide a tool for assessing the energetic convenience of different battery–PV panel combinations. Moreover, an economical assessment of the proposed system is provided and compared to the traditional setup. Simulation results show that the proposed system provides energy savings with respect to a traditional grid-powered plant. The economic assessment shows that the system becomes convenient over the traditional setup within a time frame compatible with an average PV panel’s useful life.
{"title":"Dynamic Simulation of a Pneumatic Transport Plant Powered by PV Panels and Equipped with Electro-Chemical Storage","authors":"L. Damiani, R. Revetria, P. Giribone","doi":"10.3390/electrochem4020016","DOIUrl":"https://doi.org/10.3390/electrochem4020016","url":null,"abstract":"This paper focuses on an industrial application where renewable power produced by photovoltaic panels is exploited to feed a pneumatic transport plant. The proposed system requires the careful management of the energy flows involved since it includes the interaction with the electric grid and with an electrochemical storage (battery) rather than the correct choice of the photovoltaic panel and battery itself. A dedicated control system needs to be developed in order to accord together these energetic flows, also providing a degree of flexibility to implement different control logics. The methodology employed in the research is simulation, which through the construction of a model in Matlab Simulink is able to reproduce the behavior of the system components and their energetic interactions for a long time period. The aim of the research is to provide a tool for assessing the energetic convenience of different battery–PV panel combinations. Moreover, an economical assessment of the proposed system is provided and compared to the traditional setup. Simulation results show that the proposed system provides energy savings with respect to a traditional grid-powered plant. The economic assessment shows that the system becomes convenient over the traditional setup within a time frame compatible with an average PV panel’s useful life.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74157561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}