首页 > 最新文献

eNeuro最新文献

英文 中文
Heterogeneity in category recognition across the visual field.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-09 DOI: 10.1523/ENEURO.0331-24.2024
Farideh Shakerian, Roxna Kushki, Maryam Vaziri Pashkam, Mohammad-Reza A Dehaqani, Hossein Esteky

Visual information emerging from the extrafoveal locations is important for visual search, saccadic eye movement control, and spatial attention allocation. Our everyday sensory experience with visual object categories varies across different parts of the visual field which may result in location-contingent variations in visual object recognition. We used a body, animal body, and chair two-forced choice object category recognition task to investigate this possibility. Animal body and chair images with various levels of visual ambiguity were presented at the fovea and different extrafoveal locations across the vertical and horizontal meridians. We found heterogeneous body and chair category recognition across the visual field. Specifically, while the recognition performance of the body and chair presented at the fovea were similar, it varied across different extrafoveal locations. The largest difference was observed when the body and chair images were presented at the lower-left and upper-right visual fields, respectively. The lower/upper visual field bias of the body/chair recognition was particularly observed in low/high stimulus visual signals. Finally, when subjects' performances were adjusted for a potential location-contingent decision bias in category recognition by subtracting the category detection in full noise condition, location-dependent category recognition was observed only for the body category. These results suggest heterogeneous body recognition bias across the visual field potentially due to more frequent exposure of the lower visual field to body stimuli.Significance Statement Our study reveals that visual object recognition exhibits notable variations across different visual field regions, with a pronounced bias in recognizing body images in the lower visual field. This heterogeneity in recognition performance suggests that the frequent exposure of certain visual field areas to specific object categories, such as bodies, influences our visual processing abilities. These findings highlight the importance of considering spatial attention and saccadic eye movements in understanding visual object recognition and have potential implications for designing more effective visual information displays and interfaces.

{"title":"Heterogeneity in category recognition across the visual field.","authors":"Farideh Shakerian, Roxna Kushki, Maryam Vaziri Pashkam, Mohammad-Reza A Dehaqani, Hossein Esteky","doi":"10.1523/ENEURO.0331-24.2024","DOIUrl":"https://doi.org/10.1523/ENEURO.0331-24.2024","url":null,"abstract":"<p><p>Visual information emerging from the extrafoveal locations is important for visual search, saccadic eye movement control, and spatial attention allocation. Our everyday sensory experience with visual object categories varies across different parts of the visual field which may result in location-contingent variations in visual object recognition. We used a body, animal body, and chair two-forced choice object category recognition task to investigate this possibility. Animal body and chair images with various levels of visual ambiguity were presented at the fovea and different extrafoveal locations across the vertical and horizontal meridians. We found heterogeneous body and chair category recognition across the visual field. Specifically, while the recognition performance of the body and chair presented at the fovea were similar, it varied across different extrafoveal locations. The largest difference was observed when the body and chair images were presented at the lower-left and upper-right visual fields, respectively. The lower/upper visual field bias of the body/chair recognition was particularly observed in low/high stimulus visual signals. Finally, when subjects' performances were adjusted for a potential location-contingent decision bias in category recognition by subtracting the category detection in full noise condition, location-dependent category recognition was observed only for the body category. These results suggest heterogeneous body recognition bias across the visual field potentially due to more frequent exposure of the lower visual field to body stimuli.<b>Significance Statement</b> Our study reveals that visual object recognition exhibits notable variations across different visual field regions, with a pronounced bias in recognizing body images in the lower visual field. This heterogeneity in recognition performance suggests that the frequent exposure of certain visual field areas to specific object categories, such as bodies, influences our visual processing abilities. These findings highlight the importance of considering spatial attention and saccadic eye movements in understanding visual object recognition and have potential implications for designing more effective visual information displays and interfaces.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MicroRNA-155 Inhibition Activates Wnt/β-catenin Signaling to Restore Th17/Treg Balance and Protect against Acute Ischemic Stroke.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-09 DOI: 10.1523/ENEURO.0347-24.2024
Wenli Huang, Quanlong Hong, Huimin Wang, Zhihua Zhu, Shujie Gong

Acute ischemic stroke (AIS) is a dangerous neurological disease associated with an imbalance in Th17/Treg cells and abnormal activation of the Wnt/β-catenin signaling pathway. This study aims to investigate whether inhibition of miR-155 can activate the Wnt/β-catenin signaling pathway to improve Th17/Treg imbalance and provide neuroprotective effects against stroke. We employed a multi-level experimental design. Firstly, we analyzed the differential gene expression between the miR-155 antagomir-treated group and the control group using high-throughput sequencing to identify potential target genes. Subsequently, we conducted functional and pathway enrichment analysis of the differentially expressed genes using bioinformatics tools. Next, we performed in vivo animal experiments using a mouse model to validate the impact of miR-155 antagomir treatment on the Wnt/β-catenin signaling pathway and improvement of Th17/Treg cell ratios. Lastly, we conducted in vitro cell experiments to validate our findings further. High-throughput sequencing results showed significant differential expression between the miR-155 antagomir-treated group and the control group (BioProject: PRJNA1152758, SRA IDs: SRR30410532, SRR30410531, SRR30410530 for the disease group; SRR30410529, SRR30410528, SRR30410527 for the control group). Bioinformatics analysis revealed potential target genes associated with the Wnt/β-catenin signaling pathway and Th17/Treg cell imbalance. In vitro experiments demonstrated that miR-155 antagomir treatment significantly activated the Wnt/β-catenin signaling pathway and improved Th17/Treg cell ratios. In vivo, animal experiment results indicated that miR-155 antagomir treatment exhibited significant neuroprotective effects against AIS. This study demonstrates that miR-155 antagomir can improve Th17/Treg cell imbalance by activating the Wnt/β-catenin signaling pathway and exhibiting neuroprotective effects against AIS in a mouse model. These findings provide crucial support for miR-155 as a potential therapeutic strategy for stroke and lay the foundation for further research.Significance Statement This study identifies miR-155 as a pivotal regulator of the Th17/Treg cell balance and Wnt/β-catenin signaling pathway in AIS. By inhibiting miR-155, we demonstrate the potential to enhance neuroprotection and modulate immune responses, offering a promising therapeutic avenue for stroke management. These findings contribute to the growing understanding of molecular mechanisms in stroke and provide a foundation for developing miR-155-targeted therapies.

{"title":"MicroRNA-155 Inhibition Activates Wnt/β-catenin Signaling to Restore Th17/Treg Balance and Protect against Acute Ischemic Stroke.","authors":"Wenli Huang, Quanlong Hong, Huimin Wang, Zhihua Zhu, Shujie Gong","doi":"10.1523/ENEURO.0347-24.2024","DOIUrl":"https://doi.org/10.1523/ENEURO.0347-24.2024","url":null,"abstract":"<p><p>Acute ischemic stroke (AIS) is a dangerous neurological disease associated with an imbalance in Th17/Treg cells and abnormal activation of the Wnt/β-catenin signaling pathway. This study aims to investigate whether inhibition of miR-155 can activate the Wnt/β-catenin signaling pathway to improve Th17/Treg imbalance and provide neuroprotective effects against stroke. We employed a multi-level experimental design. Firstly, we analyzed the differential gene expression between the miR-155 antagomir-treated group and the control group using high-throughput sequencing to identify potential target genes. Subsequently, we conducted functional and pathway enrichment analysis of the differentially expressed genes using bioinformatics tools. Next, we performed in vivo animal experiments using a mouse model to validate the impact of miR-155 antagomir treatment on the Wnt/β-catenin signaling pathway and improvement of Th17/Treg cell ratios. Lastly, we conducted <i>in vitro</i> cell experiments to validate our findings further. High-throughput sequencing results showed significant differential expression between the miR-155 antagomir-treated group and the control group (BioProject: PRJNA1152758, SRA IDs: SRR30410532, SRR30410531, SRR30410530 for the disease group; SRR30410529, SRR30410528, SRR30410527 for the control group). Bioinformatics analysis revealed potential target genes associated with the Wnt/β-catenin signaling pathway and Th17/Treg cell imbalance. <i>In vitro</i> experiments demonstrated that miR-155 antagomir treatment significantly activated the Wnt/β-catenin signaling pathway and improved Th17/Treg cell ratios. In vivo, animal experiment results indicated that miR-155 antagomir treatment exhibited significant neuroprotective effects against AIS. This study demonstrates that miR-155 antagomir can improve Th17/Treg cell imbalance by activating the Wnt/β-catenin signaling pathway and exhibiting neuroprotective effects against AIS in a mouse model. These findings provide crucial support for miR-155 as a potential therapeutic strategy for stroke and lay the foundation for further research.<b>Significance Statement</b> This study identifies miR-155 as a pivotal regulator of the Th17/Treg cell balance and Wnt/β-catenin signaling pathway in AIS. By inhibiting miR-155, we demonstrate the potential to enhance neuroprotection and modulate immune responses, offering a promising therapeutic avenue for stroke management. These findings contribute to the growing understanding of molecular mechanisms in stroke and provide a foundation for developing miR-155-targeted therapies.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FAST: Fast, free, consistent, and unsupervised oligodendrocyte segmentation and tracking system.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-09 DOI: 10.1523/ENEURO.0025-24.2024
Eunchan Bae, Gregory E Perrin, Virgilio Gonzenbach, Jennifer L Orthmann-Murphy, Russell T Shinohara

To develop reparative therapies for neurological disorders like multiple sclerosis (MS), we need to better understand the physiology of loss and replacement of oligodendrocytes, the cells that make myelin and are the target of damage in MS. In vivo two-photon fluorescence microscopy allows direct visualization of oligodendrocytes in the intact brain of transgenic mouse models, promising a deeper understanding of the longitudinal dynamics of replacing oligodendrocytes after damage. However, the task of tracking the fate of individual oligodendrocytes requires extensive effort for manual annotation and is especially challenging in three-dimensional images. While several models exist for annotating cells in two-dimensional images, few models exist to annotate cells in three-dimensional images and even fewer are designed for tracking cells in longitudinal imaging. Notably, existing options often come with a substantial financial investment, being predominantly commercial or confined to proprietary software. Furthermore, the complexity of processes and myelin formed by individual oligodendrocytes can result in the failure of algorithms that are specifically designed for tracking cell bodies alone. Here, we propose a fast, free, consistent, and unsupervised beta-mixture oligodendrocyte segmentation system (FAST) that is written in open-source software, and can segment and track oligodendrocytes in three-dimensional images over time with minimal human input. We showed that the FAST model can segment and track oligodendrocytes similarly to a blinded human observer. Although FAST was developed to apply to our studies on oligodendrocytes, we anticipate that it can be modified to study four-dimensional in vivo data of any brain cell with associated complex processes.Significance Statement We have developed "FAST: Fast, free, consistent, and unsupervised oligodendrocyte segmentation and tracking system" to solve our challenge of quantification of four-dimensional data acquired from longitudinal in vivo imaging. Although it was developed for oligodendrocytes, we will make the code entirely open source and user-friendly, and expect that it will be useful for segmentation for any cell body from a complex cell amenable to longitudinal in vivo imaging.

{"title":"FAST: Fast, free, consistent, and unsupervised oligodendrocyte segmentation and tracking system.","authors":"Eunchan Bae, Gregory E Perrin, Virgilio Gonzenbach, Jennifer L Orthmann-Murphy, Russell T Shinohara","doi":"10.1523/ENEURO.0025-24.2024","DOIUrl":"https://doi.org/10.1523/ENEURO.0025-24.2024","url":null,"abstract":"<p><p>To develop reparative therapies for neurological disorders like multiple sclerosis (MS), we need to better understand the physiology of loss and replacement of oligodendrocytes, the cells that make myelin and are the target of damage in MS. In vivo two-photon fluorescence microscopy allows direct visualization of oligodendrocytes in the intact brain of transgenic mouse models, promising a deeper understanding of the longitudinal dynamics of replacing oligodendrocytes after damage. However, the task of tracking the fate of individual oligodendrocytes requires extensive effort for manual annotation and is especially challenging in three-dimensional images. While several models exist for annotating cells in two-dimensional images, few models exist to annotate cells in three-dimensional images and even fewer are designed for tracking cells in longitudinal imaging. Notably, existing options often come with a substantial financial investment, being predominantly commercial or confined to proprietary software. Furthermore, the complexity of processes and myelin formed by individual oligodendrocytes can result in the failure of algorithms that are specifically designed for tracking cell bodies alone. Here, we propose a fast, free, consistent, and unsupervised beta-mixture oligodendrocyte segmentation system (FAST) that is written in open-source software, and can segment and track oligodendrocytes in three-dimensional images over time with minimal human input. We showed that the FAST model can segment and track oligodendrocytes similarly to a blinded human observer. Although FAST was developed to apply to our studies on oligodendrocytes, we anticipate that it can be modified to study four-dimensional in vivo data of any brain cell with associated complex processes.<b>Significance Statement</b> We have developed \"FAST: Fast, free, consistent, and unsupervised oligodendrocyte segmentation and tracking system\" to solve our challenge of quantification of four-dimensional data acquired from longitudinal in vivo imaging. Although it was developed for oligodendrocytes, we will make the code entirely open source and user-friendly, and expect that it will be useful for segmentation for any cell body from a complex cell amenable to longitudinal in vivo imaging.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Voltage-Gated Potassium Channel Shal (Kv4) Contributes to Active Hearing in Drosophila.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-09 Print Date: 2025-01-01 DOI: 10.1523/ENEURO.0083-24.2024
Eli S Gregory, YiFeng Y J Xu, Tai-Ting Lee, Mei-Ling A Joiner, Azusa Kamikouchi, Matthew P Su, Daniel F Eberl

The full complement of ion channels which influence insect auditory mechanotransduction and the mechanisms by which their influence is exerted remain unclear. Shal (Kv4), a Shaker family member encoding voltage-gated potassium channels in Drosophila melanogaster, has been shown to localize to dendrites in some neuron types, suggesting the potential role of Shal in Drosophila hearing, including mechanotransduction. A GFP trap was used to visualize the localization of the Shal channel in Johnston's organ neurons responsible for hearing in the antenna. Shal protein was localized strongly to the cell body and inner dendritic segment of sensory neurons. It was also detectable in the sensory cilium, suggesting its involvement not only in general auditory function but specifically in mechanotransduction. Electrophysiological recordings to assess neural responses to auditory stimuli in mutant Shal flies revealed significant decreases in auditory responses. Laser Doppler vibrometer recordings indicated abnormal antennal free fluctuation frequencies in mutant lines, indicating an effect on active antennal tuning, and thus active transduction mechanisms. This suggests that Shal participates in coordinating energy-dependent antennal movements in Drosophila that are essential for tuning the antenna to courtship song frequencies.

影响昆虫听觉机械传导的全部离子通道及其影响机制仍不清楚。黑腹果蝇中编码电压门控钾通道的Shaker家族成员Shal(Kv4)已被证明定位在某些神经元类型的树突上,这表明Shal在果蝇听觉(包括机械传导)中可能发挥作用。研究人员利用GFP蛋白捕获器观察了负责触角听觉的约翰斯顿器官神经元中Shal通道的定位情况。Shal 蛋白被强烈定位在感觉神经元的细胞体和内树突段。在感觉纤毛中也能检测到它,这表明它不仅参与了一般的听觉功能,还特别参与了机械传导。通过电生理记录评估突变体沙尔蝇对听觉刺激的神经反应,发现其听觉反应显著下降。激光多普勒测振仪的记录表明,突变品系的触角自由波动频率异常,这表明主动触角调谐受到了影响,因此主动传导机制也受到了影响。这表明 Shal 参与协调果蝇中依赖能量的触角运动,而这种运动对于将触角调谐到求爱歌曲的频率至关重要。 重要意义 声明 对果蝇听觉的研究揭示了参与机械传导的机械敏感离子通道,与哺乳动物的听觉一样,依赖能量的机制积极地放大和调谐听觉过程。要更好地理解这一过程,就必须确定不同离子通道所发挥的不同作用。在这里,我们探讨了一种特定的电压门控钾通道 Shal 对苍蝇听力的影响,并发现它影响了机械传导过程的特定部分。我们的研究揭示了 Shal 在听觉神经元感觉树突区的定位,它在那里有助于形成机械传导和主动触角调谐。对 Shal 参与听觉功能和机械传导的了解加深了我们对苍蝇听觉的认识,并揭示了在协调依赖能量的主动触角运动中的一个关键角色。
{"title":"The Voltage-Gated Potassium Channel <i>Shal</i> (K<sub>v</sub>4) Contributes to Active Hearing in <i>Drosophila</i>.","authors":"Eli S Gregory, YiFeng Y J Xu, Tai-Ting Lee, Mei-Ling A Joiner, Azusa Kamikouchi, Matthew P Su, Daniel F Eberl","doi":"10.1523/ENEURO.0083-24.2024","DOIUrl":"10.1523/ENEURO.0083-24.2024","url":null,"abstract":"<p><p>The full complement of ion channels which influence insect auditory mechanotransduction and the mechanisms by which their influence is exerted remain unclear. <i>Shal</i> (K<sub>v</sub>4), a <i>Shaker</i> family member encoding voltage-gated potassium channels in <i>Drosophila melanogaster</i>, has been shown to localize to dendrites in some neuron types, suggesting the potential role of <i>Shal</i> in <i>Drosophila</i> hearing, including mechanotransduction. A GFP trap was used to visualize the localization of the <i>Shal</i> channel in Johnston's organ neurons responsible for hearing in the antenna. <i>Shal</i> protein was localized strongly to the cell body and inner dendritic segment of sensory neurons. It was also detectable in the sensory cilium, suggesting its involvement not only in general auditory function but specifically in mechanotransduction. Electrophysiological recordings to assess neural responses to auditory stimuli in mutant <i>Shal</i> flies revealed significant decreases in auditory responses. Laser Doppler vibrometer recordings indicated abnormal antennal free fluctuation frequencies in mutant lines, indicating an effect on active antennal tuning, and thus active transduction mechanisms. This suggests that <i>Shal</i> participates in coordinating energy-dependent antennal movements in <i>Drosophila</i> that are essential for tuning the antenna to courtship song frequencies.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728854/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strength of low-frequency EEG phase entrainment to external stimuli is associated with fluctuations in the brain's internal state.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-08 DOI: 10.1523/ENEURO.0064-24.2024
Verónica Mäki-Marttunen, Alexandra Velinov, Sander Nieuwenhuis

The brain attends to environmental rhythms by aligning the phase of internal oscillations. However, the factors underlying fluctuations in the strength of this phase entrainment remain largely unknown. In the present study we examined whether the strength of low-frequency EEG phase entrainment to rhythmic stimulus sequences varied with pupil size and posterior alpha-band power, thought to reflect arousal level and excitability of posterior cortical brain areas, respectively. We recorded pupil size and scalp EEG while participants carried out an intermodal selective attention task, in which they were instructed to attend to a rhythmic sequence of visual or auditory stimuli and ignore the other perceptual modality. As expected, intertrial phase coherence (ITC), a measure of entrainment strength, was larger for the task-relevant than for the task-irrelevant modality. Across the experiment, pupil size and posterior alpha power were strongly linked with each other. Interestingly, ITC tracked both variables: larger pupil size was associated with a selective increase in entrainment to the task-relevant stimulus sequence, whereas larger posterior alpha power was associated with a decrease in phase entrainment to both the task-relevant and task-irrelevant stimulus sequences. Exploratory analyses showed that a temporal relation between ITC and posterior alpha power emerged in the time periods around pupil maxima and pupil minima. These results indicate that endogenous sources contribute distinctly to the fluctuations of EEG phase entrainment.Significance statement Fluctuations in cortical state powerfully shape the perception of external stimuli. Understanding the physiological signatures of cortical state fluctuations is crucial to understand how the brain selectively attends and switches between internal and external content. Here we studied how two signatures of attentional state, pupil-linked arousal and power in the alpha band, shape the entrainment of brain activity to low-frequency rhythmic stimuli. Our results reveal common and dissociable influences of these signatures at slow time scales. Furthermore, measuring and including pupil size and posterior alpha power as covariates in statistical models can help increase statistical power in studies focusing on EEG phase entrainment. Our study provides new evidence on a direct influence of cortical state on the perception of rhythmic stimuli.

{"title":"Strength of low-frequency EEG phase entrainment to external stimuli is associated with fluctuations in the brain's internal state.","authors":"Verónica Mäki-Marttunen, Alexandra Velinov, Sander Nieuwenhuis","doi":"10.1523/ENEURO.0064-24.2024","DOIUrl":"https://doi.org/10.1523/ENEURO.0064-24.2024","url":null,"abstract":"<p><p>The brain attends to environmental rhythms by aligning the phase of internal oscillations. However, the factors underlying fluctuations in the strength of this phase entrainment remain largely unknown. In the present study we examined whether the strength of low-frequency EEG phase entrainment to rhythmic stimulus sequences varied with pupil size and posterior alpha-band power, thought to reflect arousal level and excitability of posterior cortical brain areas, respectively. We recorded pupil size and scalp EEG while participants carried out an intermodal selective attention task, in which they were instructed to attend to a rhythmic sequence of visual or auditory stimuli and ignore the other perceptual modality. As expected, intertrial phase coherence (ITC), a measure of entrainment strength, was larger for the task-relevant than for the task-irrelevant modality. Across the experiment, pupil size and posterior alpha power were strongly linked with each other. Interestingly, ITC tracked both variables: larger pupil size was associated with a selective increase in entrainment to the task-relevant stimulus sequence, whereas larger posterior alpha power was associated with a <i>decrease</i> in phase entrainment to both the task-relevant and task-irrelevant stimulus sequences. Exploratory analyses showed that a temporal relation between ITC and posterior alpha power emerged in the time periods around pupil maxima and pupil minima. These results indicate that endogenous sources contribute distinctly to the fluctuations of EEG phase entrainment.<b>Significance statement</b> Fluctuations in cortical state powerfully shape the perception of external stimuli. Understanding the physiological signatures of cortical state fluctuations is crucial to understand how the brain selectively attends and switches between internal and external content. Here we studied how two signatures of attentional state, pupil-linked arousal and power in the alpha band, shape the entrainment of brain activity to low-frequency rhythmic stimuli. Our results reveal common and dissociable influences of these signatures at slow time scales. Furthermore, measuring and including pupil size and posterior alpha power as covariates in statistical models can help increase statistical power in studies focusing on EEG phase entrainment. Our study provides new evidence on a direct influence of cortical state on the perception of rhythmic stimuli.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of operant self-administration behaviors with supervised machine learning: Protocol for video acquisition and pose estimation analysis using DeepLabCut and Simple Behavioral Analysis (SimBA).
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-07 DOI: 10.1523/ENEURO.0031-24.2024
Leo F Pereira Sanabria, Luciano S Voutour, Victoria J Kaufman, Christopher A Reeves, Aneesh S Bal, Fidel Maureira, Amy A Arguello

The use of supervised machine learning to approximate poses in video recordings allows for rapid and efficient analysis of complex behavioral profiles. Currently, there are limited protocols for automated analysis of operant self-administration behavior. We provide methodology to 1) obtain videos of training sessions via Raspberry Pi microcomputers or GoPros 2) obtain pose estimation data using the supervised machine learning software packages DeepLabCut (DLC) and Simple Behavioral Analysis (SimBA) with local high performance computer cluster, 3) comparison of standard MedPC lever response vs quadrant time data generated from pose estimation regions of interest and 4) generation of predictive behavioral classifiers. Overall, we demonstrate proof-of-concept to use pose estimation outputs from DLC to both generate quadrant time results and obtain behavioral classifiers from SimBA during operant training phases.Significance Statement Substance use disorders are comprised of complex behaviors that promote chronic relapse to drug-seeking and -taking. Rodent operant self-administration is commonly used as a preclinical tool to examine drug-taking, -seeking and craving behavior. We provide protocols to acquire videos of self-administration behavior and obtain pose estimation outputs and unique behavioral classifiers using the supervised learning softwares DeepLabCut and Simple Behavioral Analysis (SimBA).

{"title":"Analysis of operant self-administration behaviors with supervised machine learning: Protocol for video acquisition and pose estimation analysis using DeepLabCut and Simple Behavioral Analysis (SimBA).","authors":"Leo F Pereira Sanabria, Luciano S Voutour, Victoria J Kaufman, Christopher A Reeves, Aneesh S Bal, Fidel Maureira, Amy A Arguello","doi":"10.1523/ENEURO.0031-24.2024","DOIUrl":"https://doi.org/10.1523/ENEURO.0031-24.2024","url":null,"abstract":"<p><p>The use of supervised machine learning to approximate poses in video recordings allows for rapid and efficient analysis of complex behavioral profiles. Currently, there are limited protocols for automated analysis of operant self-administration behavior. We provide methodology to 1) obtain videos of training sessions via Raspberry Pi microcomputers or GoPros 2) obtain pose estimation data using the supervised machine learning software packages DeepLabCut (DLC) and Simple Behavioral Analysis (SimBA) with local high performance computer cluster, 3) comparison of standard MedPC lever response vs quadrant time data generated from pose estimation regions of interest and 4) generation of predictive behavioral classifiers. Overall, we demonstrate proof-of-concept to use pose estimation outputs from DLC to both generate quadrant time results and obtain behavioral classifiers from SimBA during operant training phases.<b>Significance Statement</b> Substance use disorders are comprised of complex behaviors that promote chronic relapse to drug-seeking and -taking. Rodent operant self-administration is commonly used as a preclinical tool to examine drug-taking, -seeking and craving behavior. We provide protocols to acquire videos of self-administration behavior and obtain pose estimation outputs and unique behavioral classifiers using the supervised learning softwares DeepLabCut and Simple Behavioral Analysis (SimBA).</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TrkB Agonist (7,8-DHF)-Induced Responses in Dorsal Root Ganglia Neurons Are Decreased after Spinal Cord Injury: Implication for Peripheral Pain Mechanisms.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-03 Print Date: 2025-01-01 DOI: 10.1523/ENEURO.0219-24.2024
Kyeongran Jang, Sandra M Garraway

Brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) are known to contribute to both protective and pronociceptive processes. However, their contribution to neuropathic pain after spinal cord injury (SCI) needs further investigation. In a recent study utilizing TrkBF616A mice, it was shown that systemic pharmacogenetic inhibition of TrkB signaling with 1NM-PP1 (1NMP) immediately after SCI delayed the onset of pain hypersensitivity, implicating maladaptive TrkB signaling in pain after SCI. To examine potential neural mechanisms underlying the behavioral outcome, patch-clamp recording was performed in small-diameter dissociated thoracic (T) dorsal root ganglia (DRG) neurons to evaluate TrkB signaling in uninjured mice and after T10 contusion SCI. Bath-applied 7,8-dihydroxyflavone (7,8-DHF), a selective TrkB agonist, induced a robust inward current in neurons from uninjured mice, which was attenuated by 1NMP treatment. SCI also decreased 7,8-DHF-induced current while increasing the latency to its peak amplitude. Western blot revealed a concomitant decrease in TrkB expression in DRGs adjacent to the spinal lesion. Analyses of cellular and membrane properties showed that SCI increased neuronal excitability, evident by an increase in resting membrane potential and the number of spiking neurons. However, SCI did not increase spontaneous firing in DRG neurons. These results suggest that SCI induced changes in TrkB activation in DRG neurons even though these alterations are likely not contributing to pain hypersensitivity by nociceptor hyperexcitability. Overall, this reveals complex interactions involving TrkB signaling and provides an opportunity to investigate other, presumably peripheral, mechanisms by which TrkB contributes to pain hypersensitivity after SCI.

{"title":"TrkB Agonist (7,8-DHF)-Induced Responses in Dorsal Root Ganglia Neurons Are Decreased after Spinal Cord Injury: Implication for Peripheral Pain Mechanisms.","authors":"Kyeongran Jang, Sandra M Garraway","doi":"10.1523/ENEURO.0219-24.2024","DOIUrl":"10.1523/ENEURO.0219-24.2024","url":null,"abstract":"<p><p>Brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) are known to contribute to both protective and pronociceptive processes. However, their contribution to neuropathic pain after spinal cord injury (SCI) needs further investigation. In a recent study utilizing TrkB<sup>F616A</sup> mice, it was shown that systemic pharmacogenetic inhibition of TrkB signaling with 1NM-PP1 (1NMP) immediately after SCI delayed the onset of pain hypersensitivity, implicating maladaptive TrkB signaling in pain after SCI. To examine potential neural mechanisms underlying the behavioral outcome, patch-clamp recording was performed in small-diameter dissociated thoracic (T) dorsal root ganglia (DRG) neurons to evaluate TrkB signaling in uninjured mice and after T10 contusion SCI. Bath-applied 7,8-dihydroxyflavone (7,8-DHF), a selective TrkB agonist, induced a robust inward current in neurons from uninjured mice, which was attenuated by 1NMP treatment. SCI also decreased 7,8-DHF-induced current while increasing the latency to its peak amplitude. Western blot revealed a concomitant decrease in TrkB expression in DRGs adjacent to the spinal lesion. Analyses of cellular and membrane properties showed that SCI increased neuronal excitability, evident by an increase in resting membrane potential and the number of spiking neurons. However, SCI did not increase spontaneous firing in DRG neurons. These results suggest that SCI induced changes in TrkB activation in DRG neurons even though these alterations are likely not contributing to pain hypersensitivity by nociceptor hyperexcitability. Overall, this reveals complex interactions involving TrkB signaling and provides an opportunity to investigate other, presumably peripheral, mechanisms by which TrkB contributes to pain hypersensitivity after SCI.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":"12 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Relevant Features for EEG-Based Investigation of Sound Perception in Naturalistic Soundscapes.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-03 DOI: 10.1523/ENEURO.0287-24.2024
Thorge Haupt, Marc Rosenkranz, Martin Bleichner

A comprehensive analysis of everyday sound perception can be achieved using Electroencephalography (EEG) with the concurrent acquisition of information about the environment. While extensive research has been dedicated to speech perception, the complexities of auditory perception within everyday environments, specifically the types of information and the key features to extract, remain less explored. Our study aims to systematically investigate the relevance of different feature categories: discrete sound-identity markers, general cognitive state information, and acoustic representations, including discrete sound onset, the envelope, and mel-spectrogram. Using continuous data analysis, we contrast different features in terms of their predictive power for unseen data and thus their distinct contributions to explaining neural data. For this, we analyse data from a complex audio-visual motor task using a naturalistic soundscape. The results demonstrated that the feature sets that explain the most neural variability were a combination of highly detailed acoustic features with a comprehensive description of specific sound onsets. Furthermore, it showed that established features can be applied to complex soundscapes. Crucially, the outcome hinged on excluding periods devoid of sound onsets in the analysis in the case of the discrete features. Our study highlights the importance to comprehensively describe the soundscape, using acoustic and nonacoustic aspects, to fully understand the dynamics of sound perception in complex situations. This approach can serve as a foundation for future studies aiming to investigate sound perception in natural settings.Significance Statement This study is an important step in our broader research endeavor, which aims to understand sound perception in everyday life. Although conducted in a stationary setting, this research provides foundational insights into necessary environmental information to obtain to understand concurrent neural responses. We delved into the analysis of various acoustic features, sound-identity labeling, and cognitive information, with the goal of refining neural models related to sound perception. Our findings particularly highlight the need for a thorough analysis and description of complex soundscapes. Our study provides key considerations for future research in sound perception across various contexts, from laboratory settings to mobile EEG technologies, and paves the way for investigations into more naturalistic environments, advancing the field of auditory neuroscience.

{"title":"Exploring Relevant Features for EEG-Based Investigation of Sound Perception in Naturalistic Soundscapes.","authors":"Thorge Haupt, Marc Rosenkranz, Martin Bleichner","doi":"10.1523/ENEURO.0287-24.2024","DOIUrl":"https://doi.org/10.1523/ENEURO.0287-24.2024","url":null,"abstract":"<p><p>A comprehensive analysis of everyday sound perception can be achieved using Electroencephalography (EEG) with the concurrent acquisition of information about the environment. While extensive research has been dedicated to speech perception, the complexities of auditory perception within everyday environments, specifically the types of information and the key features to extract, remain less explored. Our study aims to systematically investigate the relevance of different feature categories: discrete sound-identity markers, general cognitive state information, and acoustic representations, including discrete sound onset, the envelope, and mel-spectrogram. Using continuous data analysis, we contrast different features in terms of their predictive power for unseen data and thus their distinct contributions to explaining neural data. For this, we analyse data from a complex audio-visual motor task using a naturalistic soundscape. The results demonstrated that the feature sets that explain the most neural variability were a combination of highly detailed acoustic features with a comprehensive description of specific sound onsets. Furthermore, it showed that established features can be applied to complex soundscapes. Crucially, the outcome hinged on excluding periods devoid of sound onsets in the analysis in the case of the discrete features. Our study highlights the importance to comprehensively describe the soundscape, using acoustic and nonacoustic aspects, to fully understand the dynamics of sound perception in complex situations. This approach can serve as a foundation for future studies aiming to investigate sound perception in natural settings.<b>Significance Statement</b> This study is an important step in our broader research endeavor, which aims to understand sound perception in everyday life. Although conducted in a stationary setting, this research provides foundational insights into necessary environmental information to obtain to understand concurrent neural responses. We delved into the analysis of various acoustic features, sound-identity labeling, and cognitive information, with the goal of refining neural models related to sound perception. Our findings particularly highlight the need for a thorough analysis and description of complex soundscapes. Our study provides key considerations for future research in sound perception across various contexts, from laboratory settings to mobile EEG technologies, and paves the way for investigations into more naturalistic environments, advancing the field of auditory neuroscience.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia morphology in the developing primate amygdala and effects of early life stress.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-03 DOI: 10.1523/ENEURO.0466-24.2024
Dennisha P King, Miral Abdalaziz, Ania K Majewska, Judy L Cameron, Julie L Fudge

A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons, and likely supports local neuronal maturation and emerging synaptogenesis. Microglia may alter neuronal growth following environmental perturbations such as stress. Using multiple measures in Rhesus Macaques, we found that microglia in the infant primate PL had relatively large somas, and a small arbor size. In contrast, microglia in the adolescent PL had a smaller soma, and a larger dendritic arbor. We then examined microglial morphology in the PL after a novel maternal separation protocol, to examine the effects of early life stress. After maternal separation, the microglia had increased soma size, arbor size and complexity. Surprisingly, strong effects were seen not only in the infant PL, but also in the adolescent PL from subjects who had experienced the separation many years earlier. We conclude that under normal maternal-rearing conditions, PL microglia morphology tracks PL neuronal growth, progressing to a more 'mature' phenotype by adolescence. Maternal separation has long-lasting effects on microglia, altering their normal developmental trajectory, and resulting in a 'hyper-ramified' phenotype that persists for years. We speculate that these changes have consequences for neuronal development in young primates.Significance Statement The paralaminar (PL) nucleus of the amygdala is an important source of plasticity, due to its unique repository of immature glutamatergic neurons. In Rhesus macaques, similar to human, PL immature neurons mature between birth and adolescence. This maturation process is likely supported by synaptogenesis, which requires microglia. Between infancy and adolescence in macaques, PL microglia became denser, and shifted to a 'ramified' phenotype, consistent with increased synaptic pruning functions. Early life stress in the form of maternal separation, however, blunted this normal trajectory, leading to a persistent 'hyper-ramified' microglial phenotype. We speculate that microglia hyper-ramification aligns with 'para-inflammatory' concepts of stress and may alter PL neuronal maturation and synapse formation in young animals.

{"title":"Microglia morphology in the developing primate amygdala and effects of early life stress.","authors":"Dennisha P King, Miral Abdalaziz, Ania K Majewska, Judy L Cameron, Julie L Fudge","doi":"10.1523/ENEURO.0466-24.2024","DOIUrl":"https://doi.org/10.1523/ENEURO.0466-24.2024","url":null,"abstract":"<p><p>A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons, and likely supports local neuronal maturation and emerging synaptogenesis. Microglia may alter neuronal growth following environmental perturbations such as stress. Using multiple measures in Rhesus Macaques, we found that microglia in the infant primate PL had relatively large somas, and a small arbor size. In contrast, microglia in the adolescent PL had a smaller soma, and a larger dendritic arbor. We then examined microglial morphology in the PL after a novel maternal separation protocol, to examine the effects of early life stress. After maternal separation, the microglia had increased soma size, arbor size and complexity. Surprisingly, strong effects were seen not only in the infant PL, but also in the adolescent PL from subjects who had experienced the separation many years earlier. We conclude that under normal maternal-rearing conditions, PL microglia morphology tracks PL neuronal growth, progressing to a more 'mature' phenotype by adolescence. Maternal separation has long-lasting effects on microglia, altering their normal developmental trajectory, and resulting in a 'hyper-ramified' phenotype that persists for years. We speculate that these changes have consequences for neuronal development in young primates.<b>Significance Statement</b> The paralaminar (PL) nucleus of the amygdala is an important source of plasticity, due to its unique repository of immature glutamatergic neurons. In Rhesus macaques, similar to human, PL immature neurons mature between birth and adolescence. This maturation process is likely supported by synaptogenesis, which requires microglia. Between infancy and adolescence in macaques, PL microglia became denser, and shifted to a 'ramified' phenotype, consistent with increased synaptic pruning functions. Early life stress in the form of maternal separation, however, blunted this normal trajectory, leading to a persistent 'hyper-ramified' microglial phenotype. We speculate that microglia hyper-ramification aligns with 'para-inflammatory' concepts of stress and may alter PL neuronal maturation and synapse formation in young animals.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FXR1 Deletion from Cortical Parvalbumin Interneurons Modifies their Excitatory Synaptic Responses.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-03 DOI: 10.1523/ENEURO.0363-24.2024
Katherine S Scheuer, Anna M Jansson, Minjie Shen, Xinyu Zhao, Meyer B Jackson

Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing, and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior. This indicates that FXR1 regulates behaviorally relevant electrophysiological functions in PV interneurons. We therefore expressed a genetically-encoded hybrid voltage sensor in PV interneurons, and used voltage imaging in slices of mouse somatosensory cortex to assess the impact of targeted FXR1 deletion. These experiments showed that PV interneurons lacking FXR1 had excitatory synaptic potentials with larger amplitudes and shorter latencies compared to wild type. Synaptic potential rise-times, decay-times, and half-widths were also impacted to degrees that varied between cortical layer and synaptic input. Thus, FXR1 modulates the responsiveness of PV interneurons to excitatory synaptic inputs. This will enable FXR1 to control cortical processing in subtle ways, with the potential to influence behavior and contribute to psychiatric dysfunction.Significance statement Parvalbumin interneurons have been implicated in schizophrenia and autism. The RNA binding protein FXR1, a member of the fragile X protein family has been linked to mental illnesses and disabilities. Voltage imaging from parvalbumin interneurons in cortical slices revealed that targeted ablation of FXR1 from these neurons alters the amplitude and dynamics of their excitatory synaptic responses. These changes have the potential to alter circuit processing and behavior, and may be relevant to FXR1-linked mental illnesses.

{"title":"FXR1 Deletion from Cortical Parvalbumin Interneurons Modifies their Excitatory Synaptic Responses.","authors":"Katherine S Scheuer, Anna M Jansson, Minjie Shen, Xinyu Zhao, Meyer B Jackson","doi":"10.1523/ENEURO.0363-24.2024","DOIUrl":"10.1523/ENEURO.0363-24.2024","url":null,"abstract":"<p><p>Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing, and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior. This indicates that FXR1 regulates behaviorally relevant electrophysiological functions in PV interneurons. We therefore expressed a genetically-encoded hybrid voltage sensor in PV interneurons, and used voltage imaging in slices of mouse somatosensory cortex to assess the impact of targeted FXR1 deletion. These experiments showed that PV interneurons lacking FXR1 had excitatory synaptic potentials with larger amplitudes and shorter latencies compared to wild type. Synaptic potential rise-times, decay-times, and half-widths were also impacted to degrees that varied between cortical layer and synaptic input. Thus, FXR1 modulates the responsiveness of PV interneurons to excitatory synaptic inputs. This will enable FXR1 to control cortical processing in subtle ways, with the potential to influence behavior and contribute to psychiatric dysfunction.<b>Significance statement</b> Parvalbumin interneurons have been implicated in schizophrenia and autism. The RNA binding protein FXR1, a member of the fragile X protein family has been linked to mental illnesses and disabilities. Voltage imaging from parvalbumin interneurons in cortical slices revealed that targeted ablation of FXR1 from these neurons alters the amplitude and dynamics of their excitatory synaptic responses. These changes have the potential to alter circuit processing and behavior, and may be relevant to FXR1-linked mental illnesses.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
eNeuro
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1