Pub Date : 2024-11-07DOI: 10.1523/ENEURO.0124-24.2024
Emma L Russell, Michael A McDannald
Fear generalization is a hallmark of anxiety disorders. Experimentally, fear generalization can be difficult to dissociate from its counterpart, fear discrimination. Here we use minimal threat learning procedures to reveal such a dissociation. We show that in Long Evans rats, an auditory threat cue predicting foot shock on 10% of trials produces a discriminated fear response that does not generalize to a neutral auditory cue. Even slightly higher foot shock probabilities (30% and 20%) produce fear generalization. AAV-mediated, caspase-3 deletion of ventral pallidum neurons abolishes fear generalization and reduces threat cue responding during extinction. The ventral pallidum's contribution to fear generalization and extinction threat responding does not depend on inputs from the nucleus accumbens. The results demonstrate a minimal threat learning approach to dissociate fear discrimination from fear generalization, and a novel role for the ventral pallidum in generalizing and expressing fear.Significance Statement In the laboratory, healthy mice, rats, and people generalize fear responding to a neutral cue before showing fear discrimination. However, in the real world, fear generalization is not nearly as ubiquitous in healthy individuals. Here we show that in rats, minimal threat learning procedures manipulating foot shock probability identify a boundary at which fear discrimination proceeds in the absence of fear generalization. We exploit this boundary to reveal a novel and essential role for the ventral pallidum in fear generalization.
{"title":"Ventral pallidum neurons are necessary to generalize and express fear-related responding in a minimal threat setting.","authors":"Emma L Russell, Michael A McDannald","doi":"10.1523/ENEURO.0124-24.2024","DOIUrl":"https://doi.org/10.1523/ENEURO.0124-24.2024","url":null,"abstract":"<p><p>Fear generalization is a hallmark of anxiety disorders. Experimentally, fear generalization can be difficult to dissociate from its counterpart, fear discrimination. Here we use minimal threat learning procedures to reveal such a dissociation. We show that in Long Evans rats, an auditory threat cue predicting foot shock on 10% of trials produces a discriminated fear response that does not generalize to a neutral auditory cue. Even slightly higher foot shock probabilities (30% and 20%) produce fear generalization. AAV-mediated, caspase-3 deletion of ventral pallidum neurons abolishes fear generalization and reduces threat cue responding during extinction. The ventral pallidum's contribution to fear generalization and extinction threat responding does not depend on inputs from the nucleus accumbens. The results demonstrate a minimal threat learning approach to dissociate fear discrimination from fear generalization, and a novel role for the ventral pallidum in generalizing and expressing fear.<b>Significance Statement</b> In the laboratory, healthy mice, rats, and people generalize fear responding to a neutral cue before showing fear discrimination. However, in the real world, fear generalization is not nearly as ubiquitous in healthy individuals. Here we show that in rats, minimal threat learning procedures manipulating foot shock probability identify a boundary at which fear discrimination proceeds in the absence of fear generalization. We exploit this boundary to reveal a novel and essential role for the ventral pallidum in fear generalization.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06Print Date: 2024-11-01DOI: 10.1523/ENEURO.0155-24.2024
Julien Grimaud, William Dorrell, Siddharth Jayakumar, Cengiz Pehlevan, Venkatesh Murthy
Each olfactory cortical hemisphere receives ipsilateral odor information directly from the olfactory bulb and contralateral information indirectly from the other cortical hemisphere. Since neural projections to the olfactory cortex (OC) are disordered and nontopographic, spatial information cannot be used to align projections from the two sides like in the visual cortex. Therefore, how bilateral information is integrated in individual cortical neurons is unknown. We have found, in mice, that the odor responses of individual neurons to selective stimulation of each of the two nostrils are significantly correlated, such that odor identity decoding optimized with information arriving from one nostril transfers very well to the other side. Nevertheless, these aligned responses are asymmetric enough to allow decoding of stimulus laterality. Computational analysis shows that such matched odor tuning is incompatible with purely random connections but is explained readily by Hebbian plasticity structuring bilateral connectivity. Our data reveal that despite the distributed and fragmented sensory representation in the OC, odor information across the two hemispheres is highly coordinated.
{"title":"Bilateral Alignment of Receptive Fields in the Olfactory Cortex.","authors":"Julien Grimaud, William Dorrell, Siddharth Jayakumar, Cengiz Pehlevan, Venkatesh Murthy","doi":"10.1523/ENEURO.0155-24.2024","DOIUrl":"10.1523/ENEURO.0155-24.2024","url":null,"abstract":"<p><p>Each olfactory cortical hemisphere receives ipsilateral odor information directly from the olfactory bulb and contralateral information indirectly from the other cortical hemisphere. Since neural projections to the olfactory cortex (OC) are disordered and nontopographic, spatial information cannot be used to align projections from the two sides like in the visual cortex. Therefore, how bilateral information is integrated in individual cortical neurons is unknown. We have found, in mice, that the odor responses of individual neurons to selective stimulation of each of the two nostrils are significantly correlated, such that odor identity decoding optimized with information arriving from one nostril transfers very well to the other side. Nevertheless, these aligned responses are asymmetric enough to allow decoding of stimulus laterality. Computational analysis shows that such matched odor tuning is incompatible with purely random connections but is explained readily by Hebbian plasticity structuring bilateral connectivity. Our data reveal that despite the distributed and fragmented sensory representation in the OC, odor information across the two hemispheres is highly coordinated.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540595/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The neural network, including the interstitial nucleus of Cajal (INC), functions as an oculomotor neural integrator involved in the control of vertical gaze holding. Impairment of the vestibulocerebellum (VC), including the flocculus (FL), has been shown to affect vertical gaze holding, indicating that the INC cooperates with the VC in controlling this function. However, a network between the INC and VC has not been identified. In this study, we aimed to obtain anatomical evidence of a neural pathway from the INC to the VC (the INC-VC pathway) in rats. Injection of dextran-conjugated Alexa Fluor 488 or adeno-associated virus 2-retro (AAV2retro) expressing GFP into the FL or another VC region (uvula/nodulus) did not reveal any retrogradely labeled neurons in the INC, suggesting that INC neurons do not project directly to the VC. Rabies virus-based transsynaptic tracing experiments revealed that the INC-VC pathway is mediated via synaptic connections with the prepositus hypoglossi nucleus (PHN) and medial vestibular nucleus (MVN). The INC neurons in the INC-VC pathway were mainly localized bilaterally within the rostral region of the INC. Transsynaptic tracing experiments involving the INC-FL pathway revealed that INC neurons connected to the FL via the bilateral PHN and MVN. These results indicate that the INC-VC pathway is not a direct pathway but is mediated via the PHN and MVN. These findings can provide clues for understanding the network mechanisms responsible for vertical gaze holding.
{"title":"An Indirect Pathway from the Rat Interstitial Nucleus of Cajal to the Vestibulocerebellum Involved in Vertical Gaze Holding.","authors":"Taketoshi Sugimura, Toshio Miyashita, Mariko Yamamoto, Kenta Kobayashi, Yumiko Yoshimura, Yasuhiko Saito","doi":"10.1523/ENEURO.0294-24.2024","DOIUrl":"10.1523/ENEURO.0294-24.2024","url":null,"abstract":"<p><p>The neural network, including the interstitial nucleus of Cajal (INC), functions as an oculomotor neural integrator involved in the control of vertical gaze holding. Impairment of the vestibulocerebellum (VC), including the flocculus (FL), has been shown to affect vertical gaze holding, indicating that the INC cooperates with the VC in controlling this function. However, a network between the INC and VC has not been identified. In this study, we aimed to obtain anatomical evidence of a neural pathway from the INC to the VC (the INC-VC pathway) in rats. Injection of dextran-conjugated Alexa Fluor 488 or adeno-associated virus 2-retro (AAV2retro) expressing GFP into the FL or another VC region (uvula/nodulus) did not reveal any retrogradely labeled neurons in the INC, suggesting that INC neurons do not project directly to the VC. Rabies virus-based transsynaptic tracing experiments revealed that the INC-VC pathway is mediated via synaptic connections with the prepositus hypoglossi nucleus (PHN) and medial vestibular nucleus (MVN). The INC neurons in the INC-VC pathway were mainly localized bilaterally within the rostral region of the INC. Transsynaptic tracing experiments involving the INC-FL pathway revealed that INC neurons connected to the FL via the bilateral PHN and MVN. These results indicate that the INC-VC pathway is not a direct pathway but is mediated via the PHN and MVN. These findings can provide clues for understanding the network mechanisms responsible for vertical gaze holding.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06Print Date: 2024-11-01DOI: 10.1523/ENEURO.0180-24.2024
Eleonora Lupi, Gabriele Di Antonio, Marianna Angiolelli, Maria Sacha, Mehmet Alihan Kayabas, Nicola Alboré, Riccardo Leone, Karim El Kanbi, Alain Destexhe, Jan Fousek
Age-related brain changes affect sleep and are reflected in properties of sleep slow-waves, however, the precise mechanisms behind these changes are still not completely understood. Here, we adapt a previously established whole-brain model relating structural connectivity changes to resting state dynamics, and extend it to a slow-wave sleep brain state. In particular, starting from a representative connectome at the beginning of the aging trajectory, we have gradually reduced the inter-hemispheric connections, and simulated sleep-like slow-wave activity. We show that the main empirically observed trends, namely a decrease in duration and increase in variability of the slow waves are captured by the model. Furthermore, comparing the simulated EEG activity to the source signals, we suggest that the empirically observed decrease in amplitude of the slow waves is caused by the decrease in synchrony between brain regions.
{"title":"A Whole-Brain Model of the Aging Brain During Slow Wave Sleep.","authors":"Eleonora Lupi, Gabriele Di Antonio, Marianna Angiolelli, Maria Sacha, Mehmet Alihan Kayabas, Nicola Alboré, Riccardo Leone, Karim El Kanbi, Alain Destexhe, Jan Fousek","doi":"10.1523/ENEURO.0180-24.2024","DOIUrl":"10.1523/ENEURO.0180-24.2024","url":null,"abstract":"<p><p>Age-related brain changes affect sleep and are reflected in properties of sleep slow-waves, however, the precise mechanisms behind these changes are still not completely understood. Here, we adapt a previously established whole-brain model relating structural connectivity changes to resting state dynamics, and extend it to a slow-wave sleep brain state. In particular, starting from a representative connectome at the beginning of the aging trajectory, we have gradually reduced the inter-hemispheric connections, and simulated sleep-like slow-wave activity. We show that the main empirically observed trends, namely a decrease in duration and increase in variability of the slow waves are captured by the model. Furthermore, comparing the simulated EEG activity to the source signals, we suggest that the empirically observed decrease in amplitude of the slow waves is caused by the decrease in synchrony between brain regions.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540593/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1523/ENEURO.0342-24.2024
Meghan Cum, Jocelyn A Santiago Pérez, Ryo L Iwata, Naeliz Lopez, Aidan Higgs, Albert Li, Charles Ye, Erika Wangia, Elizabeth S Wright, Catalina García Restrepo, Nancy Padilla-Coreano
Social status and dominance are critical factors influencing well-being and survival across multiple species. However, dominance behaviors vary widely across species, from elaborate feather displays in birds to aggression in chimps. To effectively study dominance, it is essential to clearly define and reliably measure dominance behaviors. In laboratory settings, C57BL/6 mice are commonly used to study dominance due to their stable and linear social hierarchies. However, other mouse strains are also used for laboratory research. Despite substantial evidence for strain effects on behavioral repertoires, the impact of strain on dominance in mice remains largely unstudied. To address this gap, we compared dominance behaviors between CD1 and C57BL/6 male mice across four assays: observation of agonistic behaviors, urine marking, tube test, and a reward competition. We found that CD1 mice demonstrate increased fighting, increased territorial marking through urination, and increased pushing and resisting in the tube test. We used unsupervised machine learning and pose estimation data from the reward competitions to uncover behavioral differences across strains and across rank differences between competing pairs. Of the four assays, urine marking and agonistic behaviors showed the strongest correlation with dominance in both strains. Most notably, we found that CD1 dominance rankings based on the tube test negatively correlated with rankings from all three other assays, suggesting that the tube test may measure a different behavior in CD1 mice. Our results highlight that behaviors can be strain-specific in mice and studies that measure social rank should consider assays carefully to promote reproducibility.Significance Statement Recent studies have highlighted that social dominance can significantly impact behavior and the brain. As such, accurately measuring dominance behavior in laboratory settings is crucial in neuroscience research. In this study, we investigated the consistency of four dominance assays for male mice across two common mouse strains. We find that not all assays result in the same dominance rankings and dominance behaviors differ across strains. Our study sheds light on the importance of considering strains for assay selection, rigor, and reproducibility.
{"title":"A multi-paradigm approach to characterize dominance behaviors in CD1 and C57BL6 male mice.","authors":"Meghan Cum, Jocelyn A Santiago Pérez, Ryo L Iwata, Naeliz Lopez, Aidan Higgs, Albert Li, Charles Ye, Erika Wangia, Elizabeth S Wright, Catalina García Restrepo, Nancy Padilla-Coreano","doi":"10.1523/ENEURO.0342-24.2024","DOIUrl":"https://doi.org/10.1523/ENEURO.0342-24.2024","url":null,"abstract":"<p><p>Social status and dominance are critical factors influencing well-being and survival across multiple species. However, dominance behaviors vary widely across species, from elaborate feather displays in birds to aggression in chimps. To effectively study dominance, it is essential to clearly define and reliably measure dominance behaviors. In laboratory settings, C57BL/6 mice are commonly used to study dominance due to their stable and linear social hierarchies. However, other mouse strains are also used for laboratory research. Despite substantial evidence for strain effects on behavioral repertoires, the impact of strain on dominance in mice remains largely unstudied. To address this gap, we compared dominance behaviors between CD1 and C57BL/6 male mice across four assays: observation of agonistic behaviors, urine marking, tube test, and a reward competition. We found that CD1 mice demonstrate increased fighting, increased territorial marking through urination, and increased pushing and resisting in the tube test. We used unsupervised machine learning and pose estimation data from the reward competitions to uncover behavioral differences across strains and across rank differences between competing pairs. Of the four assays, urine marking and agonistic behaviors showed the strongest correlation with dominance in both strains. Most notably, we found that CD1 dominance rankings based on the tube test negatively correlated with rankings from all three other assays, suggesting that the tube test may measure a different behavior in CD1 mice. Our results highlight that behaviors can be strain-specific in mice and studies that measure social rank should consider assays carefully to promote reproducibility.<b>Significance Statement</b> Recent studies have highlighted that social dominance can significantly impact behavior and the brain. As such, accurately measuring dominance behavior in laboratory settings is crucial in neuroscience research. In this study, we investigated the consistency of four dominance assays for male mice across two common mouse strains. We find that not all assays result in the same dominance rankings and dominance behaviors differ across strains. Our study sheds light on the importance of considering strains for assay selection, rigor, and reproducibility.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04Print Date: 2024-11-01DOI: 10.1523/ENEURO.0391-24.2024
Isabelle Witteveen, Timothy Balmer
Adeno-associated viral vector (AAV) serotypes vary in how effectively they express genes across different cell types and brain regions. Here we report a systematic comparison of the AAV serotypes 1, 2, 5, 8, 9, and the directed evolution derived AAVrg, in the inferior colliculus (IC) and cerebellum. The AAVs were identical apart from their different serotypes, each having a synapsin promotor and expressing GFP (AAV-hSyn-GFP). Identical titers and volumes were injected into the IC and cerebellum of adult male and female mice, and brains were sectioned and imaged 2 weeks later. Transduction efficacy, anterograde labeling of axonal projections, and retrograde labeling of somata were characterized and compared across serotypes. Cell-type tropism was assessed by analyzing the morphology of the GFP-labeled neurons in the cerebellar cortex. In both the cerebellum and IC, AAV1 expressed GFP in more cells, labeled a larger volume, and produced significantly brighter labeling than all other serotypes, indicating superior transgene expression. AAV1 labeled more Purkinje cells, unipolar brush cells, and molecular layer interneurons than the other serotypes, while AAV2 labeled a greater number of granule cells. These results provide guidelines for the use of AAVs as gene delivery tools in these regions.
{"title":"Comparative Analysis of Six Adeno-Associated Viral Vector Serotypes in Mouse Inferior Colliculus and Cerebellum.","authors":"Isabelle Witteveen, Timothy Balmer","doi":"10.1523/ENEURO.0391-24.2024","DOIUrl":"10.1523/ENEURO.0391-24.2024","url":null,"abstract":"<p><p>Adeno-associated viral vector (AAV) serotypes vary in how effectively they express genes across different cell types and brain regions. Here we report a systematic comparison of the AAV serotypes 1, 2, 5, 8, 9, and the directed evolution derived AAVrg, in the inferior colliculus (IC) and cerebellum. The AAVs were identical apart from their different serotypes, each having a synapsin promotor and expressing GFP (AAV-hSyn-GFP). Identical titers and volumes were injected into the IC and cerebellum of adult male and female mice, and brains were sectioned and imaged 2 weeks later. Transduction efficacy, anterograde labeling of axonal projections, and retrograde labeling of somata were characterized and compared across serotypes. Cell-type tropism was assessed by analyzing the morphology of the GFP-labeled neurons in the cerebellar cortex. In both the cerebellum and IC, AAV1 expressed GFP in more cells, labeled a larger volume, and produced significantly brighter labeling than all other serotypes, indicating superior transgene expression. AAV1 labeled more Purkinje cells, unipolar brush cells, and molecular layer interneurons than the other serotypes, while AAV2 labeled a greater number of granule cells. These results provide guidelines for the use of AAVs as gene delivery tools in these regions.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30Print Date: 2024-10-01DOI: 10.1523/ENEURO.0308-24.2024
Zichao Liu, Erik De Schutter, Yinyun Li
Experimental evidence showed that an increase in intracellular chloride concentration [Formula: see text] caused by gamma-aminobutyric acid (GABA) input can promote epileptic firing activity, but the actual mechanisms remain elusive. Here in this theoretical work, we show that influx of chloride and concomitant bicarbonate ion [Formula: see text] efflux upon GABA receptor activation can induce epileptic firing activity by transition of GABA from inhibition to excitation. We analyzed the intrinsic property of neuron firing states as a function of [Formula: see text] We found that as [Formula: see text] increases, the system exhibits a saddle-node bifurcation, above which the neuron exhibits a spectrum of intensive firing, periodic bursting interrupted by depolarization block (DB) state, and eventually a stable DB through a Hopf bifurcation. We demonstrate that only GABA stimuli together with [Formula: see text] efflux can switch GABA's effect to excitation which leads to a series of seizure-like events (SLEs). Exposure to a low [Formula: see text] can drive neurons with high concentrations of [Formula: see text] downward to lower levels of [Formula: see text], during which it could also trigger SLEs depending on the exchange rate with the bath. Our analysis and simulation results show how the competition between GABA stimuli-induced accumulation of [Formula: see text] and [Formula: see text] application-induced decrease of [Formula: see text] regulates the neuron firing activity, which helps to understand the fundamental ionic dynamics of SLE.
{"title":"GABA-Induced Seizure-Like Events Caused by Multi-ionic Interactive Dynamics.","authors":"Zichao Liu, Erik De Schutter, Yinyun Li","doi":"10.1523/ENEURO.0308-24.2024","DOIUrl":"10.1523/ENEURO.0308-24.2024","url":null,"abstract":"<p><p>Experimental evidence showed that an increase in intracellular chloride concentration [Formula: see text] caused by gamma-aminobutyric acid (GABA) input can promote epileptic firing activity, but the actual mechanisms remain elusive. Here in this theoretical work, we show that influx of chloride and concomitant bicarbonate ion [Formula: see text] efflux upon GABA receptor activation can induce epileptic firing activity by transition of GABA from inhibition to excitation. We analyzed the intrinsic property of neuron firing states as a function of [Formula: see text] We found that as [Formula: see text] increases, the system exhibits a saddle-node bifurcation, above which the neuron exhibits a spectrum of intensive firing, periodic bursting interrupted by depolarization block (DB) state, and eventually a stable DB through a Hopf bifurcation. We demonstrate that only GABA stimuli together with [Formula: see text] efflux can switch GABA's effect to excitation which leads to a series of seizure-like events (SLEs). Exposure to a low [Formula: see text] can drive neurons with high concentrations of [Formula: see text] downward to lower levels of [Formula: see text], during which it could also trigger SLEs depending on the exchange rate with the bath. Our analysis and simulation results show how the competition between GABA stimuli-induced accumulation of [Formula: see text] and [Formula: see text] application-induced decrease of [Formula: see text] regulates the neuron firing activity, which helps to understand the fundamental ionic dynamics of SLE.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deficits in social behavior are found in neurodevelopmental disorders, including autism spectrum disorders (ASDs). Since abnormalities in cerebellar morphology and function are observed in ASD patients, the cerebellum is thought to play a role in social behavior. However, it remains unknown whether the cerebellum is involved in social behavior in other animals and how cerebellar circuits control social behavior. To address this issue, we employed zebrafish stereotyped orienting behavior as a model of social behaviors, in which a pair of adult zebrafish in two separate tanks approach each other, with one swimming at synchronized angles (orienting angles) with the other. We harnessed transgenic zebrafish that express botulinum toxin, which inhibits the release of neurotransmitters, in either granule cells or Purkinje cells (PCs), and zebrafish mutants of reelin, which is involved in the positioning of cerebellar neurons, including PCs. These zebrafish, deficient in the function or formation of cerebellar neural circuits, showed a significantly shorter period of orienting behavior compared with their control siblings. We found an increase in c-fos and egr1 expression in the cerebellum after the orienting behavior. These results suggest that zebrafish cerebellar circuits play an important role in social orienting behavior.
{"title":"The Zebrafish Cerebellar Neural Circuits Are Involved in Orienting Behavior.","authors":"Shiori Hosaka, Miu Hosokawa, Masahiko Hibi, Takashi Shimizu","doi":"10.1523/ENEURO.0141-24.2024","DOIUrl":"10.1523/ENEURO.0141-24.2024","url":null,"abstract":"<p><p>Deficits in social behavior are found in neurodevelopmental disorders, including autism spectrum disorders (ASDs). Since abnormalities in cerebellar morphology and function are observed in ASD patients, the cerebellum is thought to play a role in social behavior. However, it remains unknown whether the cerebellum is involved in social behavior in other animals and how cerebellar circuits control social behavior. To address this issue, we employed zebrafish stereotyped orienting behavior as a model of social behaviors, in which a pair of adult zebrafish in two separate tanks approach each other, with one swimming at synchronized angles (orienting angles) with the other. We harnessed transgenic zebrafish that express botulinum toxin, which inhibits the release of neurotransmitters, in either granule cells or Purkinje cells (PCs), and zebrafish mutants of <i>reelin</i>, which is involved in the positioning of cerebellar neurons, including PCs. These zebrafish, deficient in the function or formation of cerebellar neural circuits, showed a significantly shorter period of orienting behavior compared with their control siblings. We found an increase in c-<i>fos</i> and <i>egr1</i> expression in the cerebellum after the orienting behavior. These results suggest that zebrafish cerebellar circuits play an important role in social orienting behavior.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29Print Date: 2024-10-01DOI: 10.1523/ENEURO.0210-24.2024
Michael S A Graziano
Illusionism is a general philosophical framework in which specific theories of consciousness can be constructed without having to invoke a magical mind essence. The advantages of illusionism are not widely recognized, perhaps because scholars tend to think only of the most extreme forms and miss the range of possibilities. The brain's internal models are never fully accurate, nothing is exactly as the brain represents it, and therefore some element of illusionism is almost certainly necessary for any working theory of consciousness or of any other property that is accessed through introspection. Here I describe the illusionist framework and propose six specific theories. One purpose of this article is to demonstrate the range of possibilities in a domain that is not yet sufficiently explored. The second purpose is to argue that even existing, popular theories, such as the integrated information theory or the global workspace theory, can be transformed and greatly strengthened by adding an illusionist layer. The third purpose is to argue that when illusionist logic is used, even very disparate theories of consciousness that emerge from unrelated conceptual origins begin to converge onto a deeper, unified understanding.
{"title":"Illusionism Big and Small: Some Options for Explaining Consciousness.","authors":"Michael S A Graziano","doi":"10.1523/ENEURO.0210-24.2024","DOIUrl":"10.1523/ENEURO.0210-24.2024","url":null,"abstract":"<p><p>Illusionism is a general philosophical framework in which specific theories of consciousness can be constructed without having to invoke a magical mind essence. The advantages of illusionism are not widely recognized, perhaps because scholars tend to think only of the most extreme forms and miss the range of possibilities. The brain's internal models are never fully accurate, nothing is exactly as the brain represents it, and therefore some element of illusionism is almost certainly necessary for any working theory of consciousness or of any other property that is accessed through introspection. Here I describe the illusionist framework and propose six specific theories. One purpose of this article is to demonstrate the range of possibilities in a domain that is not yet sufficiently explored. The second purpose is to argue that even existing, popular theories, such as the integrated information theory or the global workspace theory, can be transformed and greatly strengthened by adding an illusionist layer. The third purpose is to argue that when illusionist logic is used, even very disparate theories of consciousness that emerge from unrelated conceptual origins begin to converge onto a deeper, unified understanding.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":"11 10","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29Print Date: 2024-10-01DOI: 10.1523/ENEURO.0436-23.2024
Maxime Villet, Patricia Reynaud-Bouret, Julien Poitreau, Jacopo Baldi, Sophie Jaffard, Ashwin James, Alexandre Muzy, Evgenia Kartsaki, Gilles Scarella, Francesca Sargolini, Ingrid Bethus
The rat dorsomedial (DMS) and dorsolateral striatum (DLS), equivalent to caudate nucleus and putamen in primates, are required for goal-directed and habit behaviour, respectively. However, it is still unclear whether and how this functional dichotomy emerges in the course of learning. In this study, we investigated this issue by recording DMS and DLS single neuron activity in rats performing a continuous spatial alternation task, from the acquisition to optimized performance. We first applied a classical analytical approach to identify task-related activity based on the modifications of single neuron firing rate in relation to specific task events or maze trajectories. We then used an innovative approach based on Hawkes process to reconstruct a directed connectivity graph of simultaneously recorded neurons, that was used to decode animal behavior. This approach enabled us to better unravel the role of DMS and DLS neural networks across learning stages. We showed that DMS and DLS display different task-related activity throughout learning stages, and the proportion of coding neurons over time decreases in the DMS and increases in the DLS. Despite these major differences, the decoding power of both networks increases during learning. These results suggest that DMS and DLS neural networks gradually reorganize in different ways in order to progressively increase their control over the behavioral performance.
{"title":"Coding Dynamics of the Striatal Networks During Learning.","authors":"Maxime Villet, Patricia Reynaud-Bouret, Julien Poitreau, Jacopo Baldi, Sophie Jaffard, Ashwin James, Alexandre Muzy, Evgenia Kartsaki, Gilles Scarella, Francesca Sargolini, Ingrid Bethus","doi":"10.1523/ENEURO.0436-23.2024","DOIUrl":"10.1523/ENEURO.0436-23.2024","url":null,"abstract":"<p><p>The rat dorsomedial (DMS) and dorsolateral striatum (DLS), equivalent to caudate nucleus and putamen in primates, are required for goal-directed and habit behaviour, respectively. However, it is still unclear whether and how this functional dichotomy emerges in the course of learning. In this study, we investigated this issue by recording DMS and DLS single neuron activity in rats performing a continuous spatial alternation task, from the acquisition to optimized performance. We first applied a classical analytical approach to identify task-related activity based on the modifications of single neuron firing rate in relation to specific task events or maze trajectories. We then used an innovative approach based on Hawkes process to reconstruct a directed connectivity graph of simultaneously recorded neurons, that was used to decode animal behavior. This approach enabled us to better unravel the role of DMS and DLS neural networks across learning stages. We showed that DMS and DLS display different task-related activity throughout learning stages, and the proportion of coding neurons over time decreases in the DMS and increases in the DLS. Despite these major differences, the decoding power of both networks increases during learning. These results suggest that DMS and DLS neural networks gradually reorganize in different ways in order to progressively increase their control over the behavioral performance.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521795/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}