首页 > 最新文献

eNeuro最新文献

英文 中文
Ventral pallidum neurons are necessary to generalize and express fear-related responding in a minimal threat setting. 脊髓外侧神经元是在最小威胁环境下泛化和表达恐惧相关反应的必要条件。
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-07 DOI: 10.1523/ENEURO.0124-24.2024
Emma L Russell, Michael A McDannald

Fear generalization is a hallmark of anxiety disorders. Experimentally, fear generalization can be difficult to dissociate from its counterpart, fear discrimination. Here we use minimal threat learning procedures to reveal such a dissociation. We show that in Long Evans rats, an auditory threat cue predicting foot shock on 10% of trials produces a discriminated fear response that does not generalize to a neutral auditory cue. Even slightly higher foot shock probabilities (30% and 20%) produce fear generalization. AAV-mediated, caspase-3 deletion of ventral pallidum neurons abolishes fear generalization and reduces threat cue responding during extinction. The ventral pallidum's contribution to fear generalization and extinction threat responding does not depend on inputs from the nucleus accumbens. The results demonstrate a minimal threat learning approach to dissociate fear discrimination from fear generalization, and a novel role for the ventral pallidum in generalizing and expressing fear.Significance Statement In the laboratory, healthy mice, rats, and people generalize fear responding to a neutral cue before showing fear discrimination. However, in the real world, fear generalization is not nearly as ubiquitous in healthy individuals. Here we show that in rats, minimal threat learning procedures manipulating foot shock probability identify a boundary at which fear discrimination proceeds in the absence of fear generalization. We exploit this boundary to reveal a novel and essential role for the ventral pallidum in fear generalization.

恐惧泛化是焦虑症的一个特征。在实验中,恐惧泛化很难与其对应的恐惧辨别区分开来。在这里,我们使用最小威胁学习程序来揭示这种分离。我们的研究表明,在 Long Evans 大鼠身上,如果听觉威胁线索预示 10%的试验中会出现脚击,那么大鼠就会产生辨别恐惧的反应,而这种反应不会泛化到中性听觉线索上。即使是稍高的脚震概率(30% 和 20%)也会产生恐惧泛化。AAV 介导的腹侧苍白球神经元 caspase-3 缺失可消除恐惧泛化,并在消退过程中减少对威胁线索的反应。腹侧苍白球对恐惧泛化和消退威胁反应的贡献并不依赖于来自伏隔核的输入。这些结果证明了一种最小威胁学习方法,可以将恐惧辨别与恐惧泛化区分开来,并证明了腹侧苍白球在泛化和表达恐惧中的新作用。 重要意义 声明 在实验室中,健康的小鼠、大鼠和人在表现出恐惧辨别之前会对中性线索做出恐惧泛化反应。然而,在现实世界中,恐惧泛化在健康人身上并不普遍。在这里,我们表明,在大鼠身上,操纵脚震概率的最小威胁学习程序确定了一个边界,在这个边界上,恐惧辨别会在没有恐惧泛化的情况下进行。我们利用这一边界揭示了腹侧苍白球在恐惧泛化中的一个新的重要作用。
{"title":"Ventral pallidum neurons are necessary to generalize and express fear-related responding in a minimal threat setting.","authors":"Emma L Russell, Michael A McDannald","doi":"10.1523/ENEURO.0124-24.2024","DOIUrl":"https://doi.org/10.1523/ENEURO.0124-24.2024","url":null,"abstract":"<p><p>Fear generalization is a hallmark of anxiety disorders. Experimentally, fear generalization can be difficult to dissociate from its counterpart, fear discrimination. Here we use minimal threat learning procedures to reveal such a dissociation. We show that in Long Evans rats, an auditory threat cue predicting foot shock on 10% of trials produces a discriminated fear response that does not generalize to a neutral auditory cue. Even slightly higher foot shock probabilities (30% and 20%) produce fear generalization. AAV-mediated, caspase-3 deletion of ventral pallidum neurons abolishes fear generalization and reduces threat cue responding during extinction. The ventral pallidum's contribution to fear generalization and extinction threat responding does not depend on inputs from the nucleus accumbens. The results demonstrate a minimal threat learning approach to dissociate fear discrimination from fear generalization, and a novel role for the ventral pallidum in generalizing and expressing fear.<b>Significance Statement</b> In the laboratory, healthy mice, rats, and people generalize fear responding to a neutral cue before showing fear discrimination. However, in the real world, fear generalization is not nearly as ubiquitous in healthy individuals. Here we show that in rats, minimal threat learning procedures manipulating foot shock probability identify a boundary at which fear discrimination proceeds in the absence of fear generalization. We exploit this boundary to reveal a novel and essential role for the ventral pallidum in fear generalization.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bilateral Alignment of Receptive Fields in the Olfactory Cortex. 嗅皮层感受野的双侧排列
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-06 Print Date: 2024-11-01 DOI: 10.1523/ENEURO.0155-24.2024
Julien Grimaud, William Dorrell, Siddharth Jayakumar, Cengiz Pehlevan, Venkatesh Murthy

Each olfactory cortical hemisphere receives ipsilateral odor information directly from the olfactory bulb and contralateral information indirectly from the other cortical hemisphere. Since neural projections to the olfactory cortex (OC) are disordered and nontopographic, spatial information cannot be used to align projections from the two sides like in the visual cortex. Therefore, how bilateral information is integrated in individual cortical neurons is unknown. We have found, in mice, that the odor responses of individual neurons to selective stimulation of each of the two nostrils are significantly correlated, such that odor identity decoding optimized with information arriving from one nostril transfers very well to the other side. Nevertheless, these aligned responses are asymmetric enough to allow decoding of stimulus laterality. Computational analysis shows that such matched odor tuning is incompatible with purely random connections but is explained readily by Hebbian plasticity structuring bilateral connectivity. Our data reveal that despite the distributed and fragmented sensory representation in the OC, odor information across the two hemispheres is highly coordinated.

每个嗅觉皮层半球直接从嗅球接收同侧气味信息,间接从另一个皮层半球接收对侧信息。由于神经投射到嗅觉皮层是无序和非拓扑的,因此不能像视觉皮层那样利用空间信息来调整两侧的投射。因此,双侧信息如何在单个皮层神经元中整合尚不清楚。我们在小鼠身上发现,单个神经元对两个鼻孔的选择性刺激所产生的气味反应具有显著的相关性,因此从一侧鼻孔传来的信息所优化的气味特征解码可以很好地转移到另一侧鼻孔。然而,这些对齐的反应是不对称的,足以对刺激的侧向性进行解码。计算分析表明,这种匹配的气味调谐与纯粹的随机连接不相容,但很容易用结构化双侧连接的希比可塑性来解释。我们的数据揭示,尽管嗅觉皮层中的感觉表征是分布式和片段式的,但两个半球的气味信息是高度协调的。意义声明 与其他感觉器官一样,动物通常有两个鼻孔,但来自两侧的气味信息是如何结合起来构建双侧嗅觉表征的,在很大程度上仍然是未知的。格里莫等人发现,清醒小鼠嗅觉皮层中的神经元对分别呈现在同侧或对侧鼻孔中的气味的反应具有显著的相关性,超出了偶然性。这种一致的反应可能来自半球间连接的海比可塑性,这种可塑性依赖于两个鼻孔的共同气味体验。虽然反应是相关的,但两个鼻孔反应的其余不对称性允许对刺激的侧向性进行解码。这项研究揭示了嗅觉回路中意想不到的秩序,并为今后研究嗅觉经验如何影响半球间信息整合提供了思路。
{"title":"Bilateral Alignment of Receptive Fields in the Olfactory Cortex.","authors":"Julien Grimaud, William Dorrell, Siddharth Jayakumar, Cengiz Pehlevan, Venkatesh Murthy","doi":"10.1523/ENEURO.0155-24.2024","DOIUrl":"10.1523/ENEURO.0155-24.2024","url":null,"abstract":"<p><p>Each olfactory cortical hemisphere receives ipsilateral odor information directly from the olfactory bulb and contralateral information indirectly from the other cortical hemisphere. Since neural projections to the olfactory cortex (OC) are disordered and nontopographic, spatial information cannot be used to align projections from the two sides like in the visual cortex. Therefore, how bilateral information is integrated in individual cortical neurons is unknown. We have found, in mice, that the odor responses of individual neurons to selective stimulation of each of the two nostrils are significantly correlated, such that odor identity decoding optimized with information arriving from one nostril transfers very well to the other side. Nevertheless, these aligned responses are asymmetric enough to allow decoding of stimulus laterality. Computational analysis shows that such matched odor tuning is incompatible with purely random connections but is explained readily by Hebbian plasticity structuring bilateral connectivity. Our data reveal that despite the distributed and fragmented sensory representation in the OC, odor information across the two hemispheres is highly coordinated.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540595/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Indirect Pathway from the Rat Interstitial Nucleus of Cajal to the Vestibulocerebellum Involved in Vertical Gaze Holding. 大鼠卡贾尔间质核到前庭小脑的间接通路参与垂直凝视保持。
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-06 Print Date: 2024-11-01 DOI: 10.1523/ENEURO.0294-24.2024
Taketoshi Sugimura, Toshio Miyashita, Mariko Yamamoto, Kenta Kobayashi, Yumiko Yoshimura, Yasuhiko Saito

The neural network, including the interstitial nucleus of Cajal (INC), functions as an oculomotor neural integrator involved in the control of vertical gaze holding. Impairment of the vestibulocerebellum (VC), including the flocculus (FL), has been shown to affect vertical gaze holding, indicating that the INC cooperates with the VC in controlling this function. However, a network between the INC and VC has not been identified. In this study, we aimed to obtain anatomical evidence of a neural pathway from the INC to the VC (the INC-VC pathway) in rats. Injection of dextran-conjugated Alexa Fluor 488 or adeno-associated virus 2-retro (AAV2retro) expressing GFP into the FL or another VC region (uvula/nodulus) did not reveal any retrogradely labeled neurons in the INC, suggesting that INC neurons do not project directly to the VC. Rabies virus-based transsynaptic tracing experiments revealed that the INC-VC pathway is mediated via synaptic connections with the prepositus hypoglossi nucleus (PHN) and medial vestibular nucleus (MVN). The INC neurons in the INC-VC pathway were mainly localized bilaterally within the rostral region of the INC. Transsynaptic tracing experiments involving the INC-FL pathway revealed that INC neurons connected to the FL via the bilateral PHN and MVN. These results indicate that the INC-VC pathway is not a direct pathway but is mediated via the PHN and MVN. These findings can provide clues for understanding the network mechanisms responsible for vertical gaze holding.

包括卡贾尔间质核(INC)在内的神经网络作为眼球运动神经整合器参与控制垂直凝视保持。前庭小脑(VC)包括绒球(FL)的损伤已被证明会影响垂直凝视保持,这表明 INC 与 VC 合作控制这一功能。然而,INC 和 VC 之间的网络尚未被发现。在这项研究中,我们旨在获得大鼠从 INC 到 VC 的神经通路(INC-VC 通路)的解剖学证据。向 FL 或另一个 VC 区域(悬雍垂/结节)注射表达 GFP 的葡聚糖结合 Alexa 488 或腺病毒 2-retro (AAV2-retro),并未在 INC 中发现任何逆行标记的神经元,这表明 INC 神经元不会直接投射到 VC。基于狂犬病毒的跨突触追踪实验显示,INC-VC 通路是通过与前舌下核(PHN)和内侧前庭核(MVN)的突触连接介导的。INC-VC 通路中的 INC 神经元主要分布在 INC 的喙侧区域。涉及 INC-FL 通路的跨突触追踪实验显示,INC 神经元通过双侧 PHN 和 MVN 与 FL 相连。这些结果表明,INC-VC 通路不是一条直接通路,而是通过 PHN 和 MVN 介导的。这些发现可为理解垂直凝视保持的网络机制提供线索。 重要意义 声明 凝视保持对于获得清晰的视觉至关重要。然而,由于我们对卡贾尔间质核(INC)和前庭小脑(VC)之间神经联系的了解有限,因此对垂直注视保持的机制还不完全清楚。在这项研究中,我们旨在确定从 INC 到 VC 的神经通路。使用示踪剂和病毒进行的逆行束追踪实验发现,INC神经元并不直接投射到VC;相反,INC到VC的通路是通过与PHN和MVN的突触连接介导的。这一发现明确了从 INC 到 VC 的一条新的间接通路,这条通路负责垂直凝视保持。
{"title":"An Indirect Pathway from the Rat Interstitial Nucleus of Cajal to the Vestibulocerebellum Involved in Vertical Gaze Holding.","authors":"Taketoshi Sugimura, Toshio Miyashita, Mariko Yamamoto, Kenta Kobayashi, Yumiko Yoshimura, Yasuhiko Saito","doi":"10.1523/ENEURO.0294-24.2024","DOIUrl":"10.1523/ENEURO.0294-24.2024","url":null,"abstract":"<p><p>The neural network, including the interstitial nucleus of Cajal (INC), functions as an oculomotor neural integrator involved in the control of vertical gaze holding. Impairment of the vestibulocerebellum (VC), including the flocculus (FL), has been shown to affect vertical gaze holding, indicating that the INC cooperates with the VC in controlling this function. However, a network between the INC and VC has not been identified. In this study, we aimed to obtain anatomical evidence of a neural pathway from the INC to the VC (the INC-VC pathway) in rats. Injection of dextran-conjugated Alexa Fluor 488 or adeno-associated virus 2-retro (AAV2retro) expressing GFP into the FL or another VC region (uvula/nodulus) did not reveal any retrogradely labeled neurons in the INC, suggesting that INC neurons do not project directly to the VC. Rabies virus-based transsynaptic tracing experiments revealed that the INC-VC pathway is mediated via synaptic connections with the prepositus hypoglossi nucleus (PHN) and medial vestibular nucleus (MVN). The INC neurons in the INC-VC pathway were mainly localized bilaterally within the rostral region of the INC. Transsynaptic tracing experiments involving the INC-FL pathway revealed that INC neurons connected to the FL via the bilateral PHN and MVN. These results indicate that the INC-VC pathway is not a direct pathway but is mediated via the PHN and MVN. These findings can provide clues for understanding the network mechanisms responsible for vertical gaze holding.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Whole-Brain Model of the Aging Brain During Slow Wave Sleep. 慢波睡眠中大脑老化的全脑模型
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-06 Print Date: 2024-11-01 DOI: 10.1523/ENEURO.0180-24.2024
Eleonora Lupi, Gabriele Di Antonio, Marianna Angiolelli, Maria Sacha, Mehmet Alihan Kayabas, Nicola Alboré, Riccardo Leone, Karim El Kanbi, Alain Destexhe, Jan Fousek

Age-related brain changes affect sleep and are reflected in properties of sleep slow-waves, however, the precise mechanisms behind these changes are still not completely understood. Here, we adapt a previously established whole-brain model relating structural connectivity changes to resting state dynamics, and extend it to a slow-wave sleep brain state. In particular, starting from a representative connectome at the beginning of the aging trajectory, we have gradually reduced the inter-hemispheric connections, and simulated sleep-like slow-wave activity. We show that the main empirically observed trends, namely a decrease in duration and increase in variability of the slow waves are captured by the model. Furthermore, comparing the simulated EEG activity to the source signals, we suggest that the empirically observed decrease in amplitude of the slow waves is caused by the decrease in synchrony between brain regions.

与年龄有关的大脑变化会影响睡眠,并反映在睡眠慢波的特性中,但这些变化背后的确切机制仍未完全明了。在此,我们对之前建立的结构连接变化与静息状态动态相关的全脑模型进行了调整,并将其扩展到大脑慢波睡眠状态。具体而言,我们从衰老轨迹开始时的代表性连接组开始,逐渐减少半球间的连接,并模拟类似睡眠的慢波活动。我们的研究表明,该模型捕捉到了经验观察到的主要趋势,即慢波持续时间的缩短和变异性的增加。此外,通过将模拟脑电图活动与源信号进行比较,我们发现,根据经验观察到的慢波振幅减小是由于脑区之间的同步性减小造成的。我们采用了一个基于连接体的模型,实现了与年龄相关的半球间连接的减少,成功地在模拟活动中复制了慢波的变化。我们对脑电图活动的模拟还表明,观察到的 SW 振幅下降源于大脑区域之间同步性的降低。我们的研究结果支持这样一种观点,即 SW 特性的改变源于大脑皮层兴奋驱动力的降低,而大脑半球间的连接在此起到了促进作用。我们的模型为扩展到群体研究和老龄化动物模型的干预工作奠定了坚实的基础,这些研究和工作旨在区分网络改变、局部神经质量特性变化和神经调控的贡献。
{"title":"A Whole-Brain Model of the Aging Brain During Slow Wave Sleep.","authors":"Eleonora Lupi, Gabriele Di Antonio, Marianna Angiolelli, Maria Sacha, Mehmet Alihan Kayabas, Nicola Alboré, Riccardo Leone, Karim El Kanbi, Alain Destexhe, Jan Fousek","doi":"10.1523/ENEURO.0180-24.2024","DOIUrl":"10.1523/ENEURO.0180-24.2024","url":null,"abstract":"<p><p>Age-related brain changes affect sleep and are reflected in properties of sleep slow-waves, however, the precise mechanisms behind these changes are still not completely understood. Here, we adapt a previously established whole-brain model relating structural connectivity changes to resting state dynamics, and extend it to a slow-wave sleep brain state. In particular, starting from a representative connectome at the beginning of the aging trajectory, we have gradually reduced the inter-hemispheric connections, and simulated sleep-like slow-wave activity. We show that the main empirically observed trends, namely a decrease in duration and increase in variability of the slow waves are captured by the model. Furthermore, comparing the simulated EEG activity to the source signals, we suggest that the empirically observed decrease in amplitude of the slow waves is caused by the decrease in synchrony between brain regions.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540593/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multi-paradigm approach to characterize dominance behaviors in CD1 and C57BL6 male mice. 采用多范式方法描述 CD1 和 C57BL6 雄性小鼠的支配行为。
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-05 DOI: 10.1523/ENEURO.0342-24.2024
Meghan Cum, Jocelyn A Santiago Pérez, Ryo L Iwata, Naeliz Lopez, Aidan Higgs, Albert Li, Charles Ye, Erika Wangia, Elizabeth S Wright, Catalina García Restrepo, Nancy Padilla-Coreano

Social status and dominance are critical factors influencing well-being and survival across multiple species. However, dominance behaviors vary widely across species, from elaborate feather displays in birds to aggression in chimps. To effectively study dominance, it is essential to clearly define and reliably measure dominance behaviors. In laboratory settings, C57BL/6 mice are commonly used to study dominance due to their stable and linear social hierarchies. However, other mouse strains are also used for laboratory research. Despite substantial evidence for strain effects on behavioral repertoires, the impact of strain on dominance in mice remains largely unstudied. To address this gap, we compared dominance behaviors between CD1 and C57BL/6 male mice across four assays: observation of agonistic behaviors, urine marking, tube test, and a reward competition. We found that CD1 mice demonstrate increased fighting, increased territorial marking through urination, and increased pushing and resisting in the tube test. We used unsupervised machine learning and pose estimation data from the reward competitions to uncover behavioral differences across strains and across rank differences between competing pairs. Of the four assays, urine marking and agonistic behaviors showed the strongest correlation with dominance in both strains. Most notably, we found that CD1 dominance rankings based on the tube test negatively correlated with rankings from all three other assays, suggesting that the tube test may measure a different behavior in CD1 mice. Our results highlight that behaviors can be strain-specific in mice and studies that measure social rank should consider assays carefully to promote reproducibility.Significance Statement Recent studies have highlighted that social dominance can significantly impact behavior and the brain. As such, accurately measuring dominance behavior in laboratory settings is crucial in neuroscience research. In this study, we investigated the consistency of four dominance assays for male mice across two common mouse strains. We find that not all assays result in the same dominance rankings and dominance behaviors differ across strains. Our study sheds light on the importance of considering strains for assay selection, rigor, and reproducibility.

在多个物种中,社会地位和支配地位是影响福祉和生存的关键因素。然而,统治行为在不同物种间差异很大,从鸟类精心设计的羽毛展示到黑猩猩的攻击行为,不一而足。要有效地研究支配行为,必须明确定义并可靠地测量支配行为。在实验室环境中,C57BL/6小鼠因其稳定和线性的社会等级制度而常用于研究支配地位。不过,其他品系的小鼠也可用于实验室研究。尽管有大量证据表明品系对小鼠行为的影响,但品系对小鼠支配性的影响在很大程度上仍未得到研究。为了填补这一空白,我们比较了 CD1 和 C57BL/6 雄性小鼠在四种试验中的支配行为:激动行为观察、尿液标记、试管试验和奖励竞争。我们发现,CD1小鼠在试管试验中表现出更多的打斗行为、更多的通过排尿进行领地标记的行为以及更多的推搡和反抗行为。我们利用无监督机器学习和奖励竞赛中的姿势估计数据,发现了不同品系之间的行为差异和不同竞争对之间的等级差异。在四项检测中,尿液标记和激动行为与两个品系的优势相关性最强。最值得注意的是,我们发现基于试管测试的 CD1 优势度排名与其他三种测试的排名呈负相关,这表明试管测试可能测量了 CD1 小鼠的不同行为。我们的研究结果突出表明,小鼠的行为可能具有品系特异性,因此测量社会等级的研究应仔细考虑各种测定方法,以提高可重复性。因此,在实验室环境中准确测量优势行为对神经科学研究至关重要。在这项研究中,我们调查了两种常见小鼠品系中雄性小鼠的四种支配性测定的一致性。我们发现,并非所有测定都能得出相同的支配力排名,而且不同品系的支配力行为也不尽相同。我们的研究揭示了考虑品系对测定选择、严谨性和可重复性的重要性。
{"title":"A multi-paradigm approach to characterize dominance behaviors in CD1 and C57BL6 male mice.","authors":"Meghan Cum, Jocelyn A Santiago Pérez, Ryo L Iwata, Naeliz Lopez, Aidan Higgs, Albert Li, Charles Ye, Erika Wangia, Elizabeth S Wright, Catalina García Restrepo, Nancy Padilla-Coreano","doi":"10.1523/ENEURO.0342-24.2024","DOIUrl":"https://doi.org/10.1523/ENEURO.0342-24.2024","url":null,"abstract":"<p><p>Social status and dominance are critical factors influencing well-being and survival across multiple species. However, dominance behaviors vary widely across species, from elaborate feather displays in birds to aggression in chimps. To effectively study dominance, it is essential to clearly define and reliably measure dominance behaviors. In laboratory settings, C57BL/6 mice are commonly used to study dominance due to their stable and linear social hierarchies. However, other mouse strains are also used for laboratory research. Despite substantial evidence for strain effects on behavioral repertoires, the impact of strain on dominance in mice remains largely unstudied. To address this gap, we compared dominance behaviors between CD1 and C57BL/6 male mice across four assays: observation of agonistic behaviors, urine marking, tube test, and a reward competition. We found that CD1 mice demonstrate increased fighting, increased territorial marking through urination, and increased pushing and resisting in the tube test. We used unsupervised machine learning and pose estimation data from the reward competitions to uncover behavioral differences across strains and across rank differences between competing pairs. Of the four assays, urine marking and agonistic behaviors showed the strongest correlation with dominance in both strains. Most notably, we found that CD1 dominance rankings based on the tube test negatively correlated with rankings from all three other assays, suggesting that the tube test may measure a different behavior in CD1 mice. Our results highlight that behaviors can be strain-specific in mice and studies that measure social rank should consider assays carefully to promote reproducibility.<b>Significance Statement</b> Recent studies have highlighted that social dominance can significantly impact behavior and the brain. As such, accurately measuring dominance behavior in laboratory settings is crucial in neuroscience research. In this study, we investigated the consistency of four dominance assays for male mice across two common mouse strains. We find that not all assays result in the same dominance rankings and dominance behaviors differ across strains. Our study sheds light on the importance of considering strains for assay selection, rigor, and reproducibility.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Analysis of Six Adeno-Associated Viral Vector Serotypes in Mouse Inferior Colliculus and Cerebellum. 小鼠下丘和小脑中六种腺相关病毒载体血清型的比较分析
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-04 Print Date: 2024-11-01 DOI: 10.1523/ENEURO.0391-24.2024
Isabelle Witteveen, Timothy Balmer

Adeno-associated viral vector (AAV) serotypes vary in how effectively they express genes across different cell types and brain regions. Here we report a systematic comparison of the AAV serotypes 1, 2, 5, 8, 9, and the directed evolution derived AAVrg, in the inferior colliculus (IC) and cerebellum. The AAVs were identical apart from their different serotypes, each having a synapsin promotor and expressing GFP (AAV-hSyn-GFP). Identical titers and volumes were injected into the IC and cerebellum of adult male and female mice, and brains were sectioned and imaged 2 weeks later. Transduction efficacy, anterograde labeling of axonal projections, and retrograde labeling of somata were characterized and compared across serotypes. Cell-type tropism was assessed by analyzing the morphology of the GFP-labeled neurons in the cerebellar cortex. In both the cerebellum and IC, AAV1 expressed GFP in more cells, labeled a larger volume, and produced significantly brighter labeling than all other serotypes, indicating superior transgene expression. AAV1 labeled more Purkinje cells, unipolar brush cells, and molecular layer interneurons than the other serotypes, while AAV2 labeled a greater number of granule cells. These results provide guidelines for the use of AAVs as gene delivery tools in these regions.

腺相关病毒载体(AAV)血清型在不同细胞类型和脑区表达基因的效率各不相同。在这里,我们报告了 AAV 血清型 1、2、5、8、9 以及定向进化衍生的 AAVrg 在下丘脑和小脑中的系统比较。这些 AAV 除了血清型不同外完全相同,都有突触素启动子并表达 GFP(AAV-hSyn-GFP)。将相同滴度和体积的 AAV 注入成年雌雄小鼠的下丘和小脑,2 周后对大脑进行切片和成像。对不同血清型的转导效果、轴突突起的前向标记和体节的逆行标记进行了表征和比较。通过分析小脑皮层中被GFP标记的神经元的形态,评估了细胞类型的趋向性。在小脑和下丘,AAV1在更多细胞中表达了GFP,标记的体积更大,标记的亮度也明显高于所有其他血清型,这表明其转基因表达能力更强。与其他血清型相比,AAV1 标记了更多的浦肯野细胞、单极刷状细胞和分子层中间神经元,而 AAV2 标记了更多的颗粒细胞。这些结果为在这些区域使用 AAV 作为基因递送工具提供了指导。意义声明 AAV 已成为神经科学研究中无处不在的基因表达工具,在临床中也越来越常见。天然和工程血清型感染神经元并使其产生相关蛋白质的能力各不相同。AAV 在特定细胞类型中的转导效果取决于许多因素,仍然难以预测,因此通常需要采用经验方法来确定在每种细胞群体中表现最佳的血清型。在本研究中,我们发现 AAV1 在这两个区域的表达量最高,标记的轴突突起最多,对浦肯野细胞和单极刷状细胞的标记效果优于其他测试的血清型,而 AAV2 对颗粒细胞的标记效果最好。
{"title":"Comparative Analysis of Six Adeno-Associated Viral Vector Serotypes in Mouse Inferior Colliculus and Cerebellum.","authors":"Isabelle Witteveen, Timothy Balmer","doi":"10.1523/ENEURO.0391-24.2024","DOIUrl":"10.1523/ENEURO.0391-24.2024","url":null,"abstract":"<p><p>Adeno-associated viral vector (AAV) serotypes vary in how effectively they express genes across different cell types and brain regions. Here we report a systematic comparison of the AAV serotypes 1, 2, 5, 8, 9, and the directed evolution derived AAVrg, in the inferior colliculus (IC) and cerebellum. The AAVs were identical apart from their different serotypes, each having a synapsin promotor and expressing GFP (AAV-hSyn-GFP). Identical titers and volumes were injected into the IC and cerebellum of adult male and female mice, and brains were sectioned and imaged 2 weeks later. Transduction efficacy, anterograde labeling of axonal projections, and retrograde labeling of somata were characterized and compared across serotypes. Cell-type tropism was assessed by analyzing the morphology of the GFP-labeled neurons in the cerebellar cortex. In both the cerebellum and IC, AAV1 expressed GFP in more cells, labeled a larger volume, and produced significantly brighter labeling than all other serotypes, indicating superior transgene expression. AAV1 labeled more Purkinje cells, unipolar brush cells, and molecular layer interneurons than the other serotypes, while AAV2 labeled a greater number of granule cells. These results provide guidelines for the use of AAVs as gene delivery tools in these regions.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GABA-Induced Seizure-Like Events Caused by Multi-ionic Interactive Dynamics. 多离子交互动力学引发的 GABA 诱导的癫痫样事件。
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-10-30 Print Date: 2024-10-01 DOI: 10.1523/ENEURO.0308-24.2024
Zichao Liu, Erik De Schutter, Yinyun Li

Experimental evidence showed that an increase in intracellular chloride concentration [Formula: see text] caused by gamma-aminobutyric acid (GABA) input can promote epileptic firing activity, but the actual mechanisms remain elusive. Here in this theoretical work, we show that influx of chloride and concomitant bicarbonate ion [Formula: see text] efflux upon GABA receptor activation can induce epileptic firing activity by transition of GABA from inhibition to excitation. We analyzed the intrinsic property of neuron firing states as a function of [Formula: see text] We found that as [Formula: see text] increases, the system exhibits a saddle-node bifurcation, above which the neuron exhibits a spectrum of intensive firing, periodic bursting interrupted by depolarization block (DB) state, and eventually a stable DB through a Hopf bifurcation. We demonstrate that only GABA stimuli together with [Formula: see text] efflux can switch GABA's effect to excitation which leads to a series of seizure-like events (SLEs). Exposure to a low [Formula: see text] can drive neurons with high concentrations of [Formula: see text] downward to lower levels of [Formula: see text], during which it could also trigger SLEs depending on the exchange rate with the bath. Our analysis and simulation results show how the competition between GABA stimuli-induced accumulation of [Formula: see text] and [Formula: see text] application-induced decrease of [Formula: see text] regulates the neuron firing activity, which helps to understand the fundamental ionic dynamics of SLE.

实验证据表明,γ-氨基丁酸(GABA)输入引起的细胞内氯离子浓度([式:见正文])增加可促进癫痫发作活动,但其实际机制仍难以捉摸。在这项理论研究中,我们证明了 GABA 受体激活时氯离子的流入和随之而来的碳酸氢根离子([式:见正文])的流出可以通过 GABA 从抑制到兴奋的转变诱发癫痫发射活动。我们分析了神经元发射状态作为[公式:见正文]函数的内在特性,发现随着[公式:见正文]的增加,系统会出现马鞍节点分岔(SN),在SN之上,神经元会出现密集发射、被去极化阻滞(DB)状态打断的周期性爆发,最终通过霍普夫分岔(HB)达到稳定的DB。我们证明,只有 GABA 刺激加上[计算公式:见正文]外流才能将 GABA 的效应转换为兴奋,从而导致一系列类似癫痫发作(SLE)的事件。暴露于低浓度的[公式:见正文]可促使高浓度[公式:见正文]的神经元向下移动到较低浓度的[公式:见正文],在此期间,根据与浴槽的交换率,它也可能触发 SLE。我们的分析和模拟结果显示了 GABA 刺激诱导的[式:见正文]积累与[式:见正文]应用诱导的[式:见正文]减少之间的竞争如何调节神经元的发射活动,这有助于理解系统性癫痫的基本离子动力学。然而,人们对抑制如何失效以及锥体神经元(PY)为何会产生失控的发射活动并不十分清楚。我们描述了神经元的发射活动如何受到细胞内氯化物动态的影响[公式:见正文],并发现了在何种条件下 GABA 刺激会变成兴奋性而非抑制性。神经元的发射模式关键取决于两种对立效应的竞争:一种是 GABA 输入诱导的[公式:见正文]积累,另一种是应用低钾浴诱导的[公式:见正文]减少;这一机制以前从未涉及。我们的工作有助于理解抑制作用在癫痫发生中失效的原因和时间,以及如何预防此类癫痫发作。
{"title":"GABA-Induced Seizure-Like Events Caused by Multi-ionic Interactive Dynamics.","authors":"Zichao Liu, Erik De Schutter, Yinyun Li","doi":"10.1523/ENEURO.0308-24.2024","DOIUrl":"10.1523/ENEURO.0308-24.2024","url":null,"abstract":"<p><p>Experimental evidence showed that an increase in intracellular chloride concentration [Formula: see text] caused by gamma-aminobutyric acid (GABA) input can promote epileptic firing activity, but the actual mechanisms remain elusive. Here in this theoretical work, we show that influx of chloride and concomitant bicarbonate ion [Formula: see text] efflux upon GABA receptor activation can induce epileptic firing activity by transition of GABA from inhibition to excitation. We analyzed the intrinsic property of neuron firing states as a function of [Formula: see text] We found that as [Formula: see text] increases, the system exhibits a saddle-node bifurcation, above which the neuron exhibits a spectrum of intensive firing, periodic bursting interrupted by depolarization block (DB) state, and eventually a stable DB through a Hopf bifurcation. We demonstrate that only GABA stimuli together with [Formula: see text] efflux can switch GABA's effect to excitation which leads to a series of seizure-like events (SLEs). Exposure to a low [Formula: see text] can drive neurons with high concentrations of [Formula: see text] downward to lower levels of [Formula: see text], during which it could also trigger SLEs depending on the exchange rate with the bath. Our analysis and simulation results show how the competition between GABA stimuli-induced accumulation of [Formula: see text] and [Formula: see text] application-induced decrease of [Formula: see text] regulates the neuron firing activity, which helps to understand the fundamental ionic dynamics of SLE.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Zebrafish Cerebellar Neural Circuits Are Involved in Orienting Behavior. 斑马鱼小脑神经回路参与定向行为。
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-10-29 Print Date: 2024-10-01 DOI: 10.1523/ENEURO.0141-24.2024
Shiori Hosaka, Miu Hosokawa, Masahiko Hibi, Takashi Shimizu

Deficits in social behavior are found in neurodevelopmental disorders, including autism spectrum disorders (ASDs). Since abnormalities in cerebellar morphology and function are observed in ASD patients, the cerebellum is thought to play a role in social behavior. However, it remains unknown whether the cerebellum is involved in social behavior in other animals and how cerebellar circuits control social behavior. To address this issue, we employed zebrafish stereotyped orienting behavior as a model of social behaviors, in which a pair of adult zebrafish in two separate tanks approach each other, with one swimming at synchronized angles (orienting angles) with the other. We harnessed transgenic zebrafish that express botulinum toxin, which inhibits the release of neurotransmitters, in either granule cells or Purkinje cells (PCs), and zebrafish mutants of reelin, which is involved in the positioning of cerebellar neurons, including PCs. These zebrafish, deficient in the function or formation of cerebellar neural circuits, showed a significantly shorter period of orienting behavior compared with their control siblings. We found an increase in c-fos and egr1 expression in the cerebellum after the orienting behavior. These results suggest that zebrafish cerebellar circuits play an important role in social orienting behavior.

包括自闭症谱系障碍(ASD)在内的神经发育障碍会导致社交行为障碍。由于在自闭症谱系障碍患者中观察到小脑形态和功能异常,人们认为小脑在社会行为中扮演着重要角色。然而,小脑是否参与了其他动物的社会行为以及小脑回路是如何控制社会行为的仍是未知数。为了解决这个问题,我们采用了斑马鱼的刻板定向行为作为社会行为的模型。在这个模型中,一对成年斑马鱼在两个独立的水箱中相互靠近,其中一条斑马鱼以与另一条斑马鱼同步的角度(定向角)游动。我们利用了在颗粒细胞或浦肯野细胞中表达抑制神经递质释放的肉毒杆菌毒素的转基因斑马鱼,以及参与包括浦肯野细胞在内的小脑神经元定位的缫丝蛋白斑马鱼突变体。这些斑马鱼缺乏小脑神经回路的功能或形成,其定向行为的时间明显短于对照组同胞。我们发现,在定向行为之后,小脑中的c-fos和egr1表达量增加。这些结果表明,斑马鱼的小脑回路在社会定向行为中发挥着重要作用。意义声明 ASD患者的小脑形态和功能经常出现异常。我们利用斑马鱼的刻板定向行为描述了小脑神经环路在社会行为中的作用。在刻板定向行为中,一对斑马鱼在两个独立的水箱中相互靠近并表现出同步游动。神经毒素介导的小脑神经元抑制或小脑神经回路正常形成所需的realin基因突变缩短了定向行为的周期。此外,我们还发现小脑对定向行为做出了激活反应。我们的研究结果表明,对斑马鱼小脑神经回路的研究可为研究社会行为异常(如ASD)提供一个模型。
{"title":"The Zebrafish Cerebellar Neural Circuits Are Involved in Orienting Behavior.","authors":"Shiori Hosaka, Miu Hosokawa, Masahiko Hibi, Takashi Shimizu","doi":"10.1523/ENEURO.0141-24.2024","DOIUrl":"10.1523/ENEURO.0141-24.2024","url":null,"abstract":"<p><p>Deficits in social behavior are found in neurodevelopmental disorders, including autism spectrum disorders (ASDs). Since abnormalities in cerebellar morphology and function are observed in ASD patients, the cerebellum is thought to play a role in social behavior. However, it remains unknown whether the cerebellum is involved in social behavior in other animals and how cerebellar circuits control social behavior. To address this issue, we employed zebrafish stereotyped orienting behavior as a model of social behaviors, in which a pair of adult zebrafish in two separate tanks approach each other, with one swimming at synchronized angles (orienting angles) with the other. We harnessed transgenic zebrafish that express botulinum toxin, which inhibits the release of neurotransmitters, in either granule cells or Purkinje cells (PCs), and zebrafish mutants of <i>reelin</i>, which is involved in the positioning of cerebellar neurons, including PCs. These zebrafish, deficient in the function or formation of cerebellar neural circuits, showed a significantly shorter period of orienting behavior compared with their control siblings. We found an increase in c-<i>fos</i> and <i>egr1</i> expression in the cerebellum after the orienting behavior. These results suggest that zebrafish cerebellar circuits play an important role in social orienting behavior.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Illusionism Big and Small: Some Options for Explaining Consciousness. 幻觉的大与小:解释意识的若干选择》(Illusionism Big and Small: Some Options for Explaining Consciousness)。
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-10-29 Print Date: 2024-10-01 DOI: 10.1523/ENEURO.0210-24.2024
Michael S A Graziano

Illusionism is a general philosophical framework in which specific theories of consciousness can be constructed without having to invoke a magical mind essence. The advantages of illusionism are not widely recognized, perhaps because scholars tend to think only of the most extreme forms and miss the range of possibilities. The brain's internal models are never fully accurate, nothing is exactly as the brain represents it, and therefore some element of illusionism is almost certainly necessary for any working theory of consciousness or of any other property that is accessed through introspection. Here I describe the illusionist framework and propose six specific theories. One purpose of this article is to demonstrate the range of possibilities in a domain that is not yet sufficiently explored. The second purpose is to argue that even existing, popular theories, such as the integrated information theory or the global workspace theory, can be transformed and greatly strengthened by adding an illusionist layer. The third purpose is to argue that when illusionist logic is used, even very disparate theories of consciousness that emerge from unrelated conceptual origins begin to converge onto a deeper, unified understanding.

幻觉主义是一种普遍的哲学框架,在此框架内可以构建具体的意识理论,而无需援引神奇的心灵本质。也许是因为学者们往往只考虑最极端的形式,而忽略了各种可能性,幻觉论的优势并未得到广泛认可。大脑的内部模型从来都不是完全准确的,没有任何事物是完全符合大脑的表述的,因此,几乎可以肯定的是,任何关于意识或任何其他通过内省获得的属性的有效理论都需要一定的幻觉元素。在此,我将描述幻觉框架,并提出六种具体理论。这篇文章的目的之一是展示在一个尚未得到充分探索的领域中存在的各种可能性。第二个目的是论证,即使是现有的流行理论,如综合信息理论或全局工作空间理论,也可以通过添加幻觉层而得到改变和极大的加强。第三个目的是要论证,当使用幻觉逻辑时,即使是从毫不相关的概念起源中产生的非常不同的意识理论,也会开始汇聚到一种更深刻、更统一的理解上。
{"title":"Illusionism Big and Small: Some Options for Explaining Consciousness.","authors":"Michael S A Graziano","doi":"10.1523/ENEURO.0210-24.2024","DOIUrl":"10.1523/ENEURO.0210-24.2024","url":null,"abstract":"<p><p>Illusionism is a general philosophical framework in which specific theories of consciousness can be constructed without having to invoke a magical mind essence. The advantages of illusionism are not widely recognized, perhaps because scholars tend to think only of the most extreme forms and miss the range of possibilities. The brain's internal models are never fully accurate, nothing is exactly as the brain represents it, and therefore some element of illusionism is almost certainly necessary for any working theory of consciousness or of any other property that is accessed through introspection. Here I describe the illusionist framework and propose six specific theories. One purpose of this article is to demonstrate the range of possibilities in a domain that is not yet sufficiently explored. The second purpose is to argue that even existing, popular theories, such as the integrated information theory or the global workspace theory, can be transformed and greatly strengthened by adding an illusionist layer. The third purpose is to argue that when illusionist logic is used, even very disparate theories of consciousness that emerge from unrelated conceptual origins begin to converge onto a deeper, unified understanding.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":"11 10","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coding Dynamics of the Striatal Networks During Learning. 学习过程中纹状体网络的编码动态
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-10-29 Print Date: 2024-10-01 DOI: 10.1523/ENEURO.0436-23.2024
Maxime Villet, Patricia Reynaud-Bouret, Julien Poitreau, Jacopo Baldi, Sophie Jaffard, Ashwin James, Alexandre Muzy, Evgenia Kartsaki, Gilles Scarella, Francesca Sargolini, Ingrid Bethus

The rat dorsomedial (DMS) and dorsolateral striatum (DLS), equivalent to caudate nucleus and putamen in primates, are required for goal-directed and habit behaviour, respectively. However, it is still unclear whether and how this functional dichotomy emerges in the course of learning. In this study, we investigated this issue by recording DMS and DLS single neuron activity in rats performing a continuous spatial alternation task, from the acquisition to optimized performance. We first applied a classical analytical approach to identify task-related activity based on the modifications of single neuron firing rate in relation to specific task events or maze trajectories. We then used an innovative approach based on Hawkes process to reconstruct a directed connectivity graph of simultaneously recorded neurons, that was used to decode animal behavior. This approach enabled us to better unravel the role of DMS and DLS neural networks across learning stages. We showed that DMS and DLS display different task-related activity throughout learning stages, and the proportion of coding neurons over time decreases in the DMS and increases in the DLS. Despite these major differences, the decoding power of both networks increases during learning. These results suggest that DMS and DLS neural networks gradually reorganize in different ways in order to progressively increase their control over the behavioral performance.

大鼠背内侧纹状体(DMS)和背外侧纹状体(DLS)相当于灵长类动物的尾状核和普塔门,分别是目标定向行为和习惯行为所必需的。然而,这种功能上的二分法是否以及如何在学习过程中出现,目前仍不清楚。在本研究中,我们通过记录大鼠在执行连续空间交替任务时从习得到优化的 DMS 和 DLS 单神经元活动来研究这一问题。我们首先采用经典的分析方法,根据单神经元发射率与特定任务事件或迷宫轨迹相关的变化来识别与任务相关的活动。然后,我们采用了一种基于霍克斯过程的创新方法,重建了同时记录的神经元的有向连接图,用于解码动物行为。这种方法使我们能够更好地揭示 DMS 和 DLS 神经网络在不同学习阶段的作用。我们发现,DMS 和 DLS 在整个学习阶段表现出不同的任务相关活动,而且随着时间的推移,编码神经元的比例在 DMS 中减少,在 DLS 中增加。尽管存在这些重大差异,但在学习过程中,两个网络的解码能力都在增强。我们的研究有助于理解背内侧纹状体(DMS)和背外侧纹状体(DLS)在行为策略的习得和优化过程中的作用。一般认为,背内侧纹状体介导行动-结果关联,而背外侧纹状体支持习惯行为,但这些过程在学习过程中是如何出现的仍不清楚。为了分析DMS和DLS网络活动在不同学习阶段的动态变化,我们使用了一种结合单神经元发射率和神经元之间连接的数学分析方法来解码大鼠在目标定向空间任务中的行为。我们证明,在所有学习阶段,DMS 和 DLS 活动都支持行为表现,从而对 DMS 活动逐渐转向 DLS 活动的假说提出了质疑。
{"title":"Coding Dynamics of the Striatal Networks During Learning.","authors":"Maxime Villet, Patricia Reynaud-Bouret, Julien Poitreau, Jacopo Baldi, Sophie Jaffard, Ashwin James, Alexandre Muzy, Evgenia Kartsaki, Gilles Scarella, Francesca Sargolini, Ingrid Bethus","doi":"10.1523/ENEURO.0436-23.2024","DOIUrl":"10.1523/ENEURO.0436-23.2024","url":null,"abstract":"<p><p>The rat dorsomedial (DMS) and dorsolateral striatum (DLS), equivalent to caudate nucleus and putamen in primates, are required for goal-directed and habit behaviour, respectively. However, it is still unclear whether and how this functional dichotomy emerges in the course of learning. In this study, we investigated this issue by recording DMS and DLS single neuron activity in rats performing a continuous spatial alternation task, from the acquisition to optimized performance. We first applied a classical analytical approach to identify task-related activity based on the modifications of single neuron firing rate in relation to specific task events or maze trajectories. We then used an innovative approach based on Hawkes process to reconstruct a directed connectivity graph of simultaneously recorded neurons, that was used to decode animal behavior. This approach enabled us to better unravel the role of DMS and DLS neural networks across learning stages. We showed that DMS and DLS display different task-related activity throughout learning stages, and the proportion of coding neurons over time decreases in the DMS and increases in the DLS. Despite these major differences, the decoding power of both networks increases during learning. These results suggest that DMS and DLS neural networks gradually reorganize in different ways in order to progressively increase their control over the behavioral performance.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521795/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
eNeuro
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1