首页 > 最新文献

Electronics最新文献

英文 中文
Set Restabilization of Perturbed Boolean Control Networks 扰动布尔控制网络的集合重稳定
IF 2.9 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-12 DOI: 10.3390/electronics13183624
Yanfang Hou, Hui Tian
This paper develops a parameter tuning method for solving the set restabilization problem of perturbed Boolean control networks (BCNs). First, the absorbable attractor, which we previously proposed, is recalled. Based on the relationship between attractors, a necessary and sufficient restabilizability criterion is derived. This criterion is used to check whether a perturbed BCN can be stabilized to the original target set by modifying the least number of parameters to the old controller. Furthermore, a constructive method for fine-tuning the old controller is provided if the criterion condition derived above is satisfied. Compared with the existing relevant results, ours have clear advantages, since they can address the set restabilization problem of BCNs subject to multi-column function perturbations, which has not been solved yet. Finally, two examples are employed to show the effectiveness and advantages of our results.
本文为解决扰动布尔控制网络(BCN)的集重稳定性问题提出了一种参数调整方法。首先,回顾了我们之前提出的可吸收吸引子。根据吸引子之间的关系,推导出一个必要且充分的可重稳标准。利用这一准则,可以检查是否可以通过修改旧控制器的最少参数,将扰动 BCN 稳定到原始目标集。此外,如果满足上述准则条件,还提供了微调旧控制器的建设性方法。与现有的相关成果相比,我们的成果具有明显的优势,因为它们可以解决多列函数扰动下 BCN 的集合重稳定问题,而这一问题目前尚未解决。最后,我们用两个例子来说明我们的结果的有效性和优势。
{"title":"Set Restabilization of Perturbed Boolean Control Networks","authors":"Yanfang Hou, Hui Tian","doi":"10.3390/electronics13183624","DOIUrl":"https://doi.org/10.3390/electronics13183624","url":null,"abstract":"This paper develops a parameter tuning method for solving the set restabilization problem of perturbed Boolean control networks (BCNs). First, the absorbable attractor, which we previously proposed, is recalled. Based on the relationship between attractors, a necessary and sufficient restabilizability criterion is derived. This criterion is used to check whether a perturbed BCN can be stabilized to the original target set by modifying the least number of parameters to the old controller. Furthermore, a constructive method for fine-tuning the old controller is provided if the criterion condition derived above is satisfied. Compared with the existing relevant results, ours have clear advantages, since they can address the set restabilization problem of BCNs subject to multi-column function perturbations, which has not been solved yet. Finally, two examples are employed to show the effectiveness and advantages of our results.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"19 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stage-by-Stage Adaptive Alignment Mechanism for Object Detection in Aerial Images 航空图像中物体检测的逐级自适应对齐机制
IF 2.9 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-12 DOI: 10.3390/electronics13183640
Jiangang Zhu, Donglin Jing, Dapeng Gao
Object detection in aerial images has had a broader range of applications in the past few years. Unlike the targets in the images of horizontal shooting, targets in aerial photos generally have arbitrary orientation, multi-scale, and a high aspect ratio. Existing methods often employ a classification backbone network to extract translation-equivariant features (TEFs) and utilize many predefined anchors to handle objects with diverse appearance variations. However, they encounter misalignment at three levels, spatial, feature, and task, during different detection stages. In this study, we propose a model called the Staged Adaptive Alignment Detector (SAADet) to solve these challenges. This method utilizes a Spatial Selection Adaptive Network (SSANet) to achieve spatial alignment of the convolution receptive field to the scale of the object by using a convolution sequence with an increasing dilation rate to capture the spatial context information of different ranges and evaluating this information through model dynamic weighting. After correcting the preset horizontal anchor to an oriented anchor, feature alignment is achieved through the alignment convolution guided by oriented anchor to align the backbone features with the object’s orientation. The decoupling of features using the Active Rotating Filter is performed to mitigate inconsistencies due to the sharing of backbone features in regression and classification tasks to accomplish task alignment. The experimental results show that SAADet achieves equilibrium in speed and accuracy on two aerial image datasets, HRSC2016 and UCAS-AOD.
航空图像中的目标检测在过去几年中得到了更广泛的应用。与水平拍摄图像中的目标不同,航空照片中的目标通常具有任意方向、多尺度和高宽比等特点。现有的方法通常采用分类骨干网络来提取平移方差特征(TEF),并利用许多预定义的锚点来处理具有不同外观变化的物体。然而,这些方法在不同的检测阶段会遇到空间、特征和任务三个层面的错位。在本研究中,我们提出了一种名为 "分阶段自适应对齐检测器"(SAADet)的模型来解决这些难题。该方法利用空间选择自适应网络(SSANet)来实现卷积感受野的空间对齐,通过使用扩张率不断增加的卷积序列来捕捉不同范围的空间上下文信息,并通过模型动态加权来评估这些信息,从而使卷积感受野与物体的尺度保持一致。将预设的水平锚点修正为定向锚点后,通过定向锚点引导的对齐卷积实现特征对齐,使骨干特征与物体的方向对齐。使用有源旋转滤波器对特征进行解耦,以减少回归和分类任务中因共享骨干特征而产生的不一致性,从而完成任务对齐。实验结果表明,SAADet 在 HRSC2016 和 UCAS-AOD 这两个航空图像数据集上实现了速度和精度的平衡。
{"title":"Stage-by-Stage Adaptive Alignment Mechanism for Object Detection in Aerial Images","authors":"Jiangang Zhu, Donglin Jing, Dapeng Gao","doi":"10.3390/electronics13183640","DOIUrl":"https://doi.org/10.3390/electronics13183640","url":null,"abstract":"Object detection in aerial images has had a broader range of applications in the past few years. Unlike the targets in the images of horizontal shooting, targets in aerial photos generally have arbitrary orientation, multi-scale, and a high aspect ratio. Existing methods often employ a classification backbone network to extract translation-equivariant features (TEFs) and utilize many predefined anchors to handle objects with diverse appearance variations. However, they encounter misalignment at three levels, spatial, feature, and task, during different detection stages. In this study, we propose a model called the Staged Adaptive Alignment Detector (SAADet) to solve these challenges. This method utilizes a Spatial Selection Adaptive Network (SSANet) to achieve spatial alignment of the convolution receptive field to the scale of the object by using a convolution sequence with an increasing dilation rate to capture the spatial context information of different ranges and evaluating this information through model dynamic weighting. After correcting the preset horizontal anchor to an oriented anchor, feature alignment is achieved through the alignment convolution guided by oriented anchor to align the backbone features with the object’s orientation. The decoupling of features using the Active Rotating Filter is performed to mitigate inconsistencies due to the sharing of backbone features in regression and classification tasks to accomplish task alignment. The experimental results show that SAADet achieves equilibrium in speed and accuracy on two aerial image datasets, HRSC2016 and UCAS-AOD.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"58 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crowd Panic Behavior Simulation Using Multi-Agent Modeling 利用多代理建模模拟人群恐慌行为
IF 2.9 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-12 DOI: 10.3390/electronics13183622
Cătălin Dumitrescu, Valentin Radu, Radu Gheorghe, Alina-Iuliana Tăbîrcă, Maria-Cristina Ștefan, Liliana Manea
This research introduces a novel approach to crisis management by implementing a multi-agent algorithm within a strategic decision system. The proposed system harnesses multiple agents’ collective intelligence and adaptive capabilities to enhance decision-making processes during critical situations. The study first investigates the theoretical foundations of crisis management and multi-agent systems, emphasizing the need for an integrated approach that combines strategic decision-making with autonomous agents. Subsequently, the research presents the design and implementation of the multi-agent algorithm, outlining its ability to gather, process, and analyze diverse data sources in real time. The multi-agent algorithm is specifically tailored to adapt to dynamic crisis scenarios, ensuring a resilient decision-making framework. Experimental simulations present the implementation of a panic simulator and prediction of evacuation and intervention routes using multi-agent artificial intelligence algorithms. The results demonstrate the multi-agent algorithm-driven decision system’s superiority in response time, resource allocation, and overall crisis mitigation. Furthermore, the research explores the system’s scalability and adaptability to different crisis types, illustrating its potential applicability across diverse domains.
本研究通过在战略决策系统中实施多代理算法,为危机管理引入了一种新方法。所提议的系统利用多个代理的集体智慧和适应能力来加强危急情况下的决策过程。研究首先探讨了危机管理和多代理系统的理论基础,强调了将战略决策与自主代理相结合的综合方法的必要性。随后,研究介绍了多代理算法的设计和实施,概述了其实时收集、处理和分析各种数据源的能力。多代理算法是专门为适应动态危机场景而定制的,确保了决策框架的弹性。实验模拟介绍了恐慌模拟器的实施情况,以及使用多代理人工智能算法预测疏散和干预路线的情况。结果表明,多代理算法驱动的决策系统在响应时间、资源分配和整体危机缓解方面具有优势。此外,研究还探讨了该系统的可扩展性和对不同危机类型的适应性,说明了它在不同领域的潜在适用性。
{"title":"Crowd Panic Behavior Simulation Using Multi-Agent Modeling","authors":"Cătălin Dumitrescu, Valentin Radu, Radu Gheorghe, Alina-Iuliana Tăbîrcă, Maria-Cristina Ștefan, Liliana Manea","doi":"10.3390/electronics13183622","DOIUrl":"https://doi.org/10.3390/electronics13183622","url":null,"abstract":"This research introduces a novel approach to crisis management by implementing a multi-agent algorithm within a strategic decision system. The proposed system harnesses multiple agents’ collective intelligence and adaptive capabilities to enhance decision-making processes during critical situations. The study first investigates the theoretical foundations of crisis management and multi-agent systems, emphasizing the need for an integrated approach that combines strategic decision-making with autonomous agents. Subsequently, the research presents the design and implementation of the multi-agent algorithm, outlining its ability to gather, process, and analyze diverse data sources in real time. The multi-agent algorithm is specifically tailored to adapt to dynamic crisis scenarios, ensuring a resilient decision-making framework. Experimental simulations present the implementation of a panic simulator and prediction of evacuation and intervention routes using multi-agent artificial intelligence algorithms. The results demonstrate the multi-agent algorithm-driven decision system’s superiority in response time, resource allocation, and overall crisis mitigation. Furthermore, the research explores the system’s scalability and adaptability to different crisis types, illustrating its potential applicability across diverse domains.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"176 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on Data Quality Governance for Federated Cooperation Scenarios 联盟合作场景下的数据质量管理研究
IF 2.9 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-11 DOI: 10.3390/electronics13183606
Junxin Shen, Shuilan Zhou, Fanghao Xiao
Exploring the data quality problems in the context of federated cooperation and adopting corresponding governance countermeasures can facilitate the smooth progress of federated cooperation and obtain high-performance models. However, previous studies have rarely focused on quality issues in federated cooperation. To this end, this paper analyzes the quality problems in the federated cooperation scenario and innovatively proposes a “Two-stage” data quality governance framework for the federated collaboration scenarios. The first stage is mainly local data quality assessment and optimization, and the evaluation is performed by constructing a metrics scoring formula, and corresponding optimization measures are taken at the same time. In the second stage, the outlier processing mechanism is introduced, and the Data Quality Federated Averaging (Abbreviation DQ-FedAvg) aggregation method for model quality problems is proposed, so as to train high-quality global models and their own excellent local models. Finally, experiments are conducted in real datasets to compare the model performance changes before and after quality governance, and to validate the advantages of the data quality governance framework in a federated learning scenario, so that it can be widely applied to various domains. The governance framework is used to check and govern the quality problems in the federated learning process, and the accuracy of the model is improved.
探讨联盟合作背景下的数据质量问题并采取相应的治理对策,可以促进联盟合作的顺利进行并获得高性能模型。然而,以往的研究很少关注联盟合作中的质量问题。为此,本文分析了联盟合作场景下的质量问题,并创新性地提出了联盟合作场景下的 "两阶段 "数据质量治理框架。第一阶段主要是本地数据质量评估和优化,通过构建指标评分公式进行评估,同时采取相应的优化措施。第二阶段引入离群点处理机制,针对模型质量问题提出数据质量联合平均(缩写 DQ-FedAvg)聚合方法,从而训练出高质量的全局模型和自身优秀的局部模型。最后,在真实数据集上进行实验,比较质量治理前后模型性能的变化,验证数据质量治理框架在联合学习场景下的优势,使其能广泛应用于各个领域。利用治理框架对联合学习过程中的质量问题进行检查和治理,提高了模型的准确性。
{"title":"Research on Data Quality Governance for Federated Cooperation Scenarios","authors":"Junxin Shen, Shuilan Zhou, Fanghao Xiao","doi":"10.3390/electronics13183606","DOIUrl":"https://doi.org/10.3390/electronics13183606","url":null,"abstract":"Exploring the data quality problems in the context of federated cooperation and adopting corresponding governance countermeasures can facilitate the smooth progress of federated cooperation and obtain high-performance models. However, previous studies have rarely focused on quality issues in federated cooperation. To this end, this paper analyzes the quality problems in the federated cooperation scenario and innovatively proposes a “Two-stage” data quality governance framework for the federated collaboration scenarios. The first stage is mainly local data quality assessment and optimization, and the evaluation is performed by constructing a metrics scoring formula, and corresponding optimization measures are taken at the same time. In the second stage, the outlier processing mechanism is introduced, and the Data Quality Federated Averaging (Abbreviation DQ-FedAvg) aggregation method for model quality problems is proposed, so as to train high-quality global models and their own excellent local models. Finally, experiments are conducted in real datasets to compare the model performance changes before and after quality governance, and to validate the advantages of the data quality governance framework in a federated learning scenario, so that it can be widely applied to various domains. The governance framework is used to check and govern the quality problems in the federated learning process, and the accuracy of the model is improved.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"53 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AiMap+: Guiding Technology Mapping for ASICs via Learning Delay Prediction AiMap+:通过学习延迟预测指导 ASIC 技术映射
IF 2.9 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-11 DOI: 10.3390/electronics13183614
Junfeng Liu, Qinghua Zhao
Technology mapping is an essential process in the Electronic Design Automation (EDA) flow which aims to find an optimal implementation of a logic network from a technology library. In application-specific integrated circuit (ASIC) designs, the non-linear delay behaviors of cells in the library essentially guide the search direction of technology mappers. Existing methods for cell delay estimation, however, rely on approximate simplifications that significantly compromise accuracy, thereby limiting the achievement of better Quality-of-Result (QoR). To address this challenge, we propose formulating cell delay estimation as a regression learning task by incorporating multiple perspective features, such as the structure of logic networks and non-linear cell delays, to guide the mapper search. We design a learning model that incorporates a customized attention mechanism to be aware of the pin delay and jointly learns the hierarchy between the logic network and library through a Neural Tensor Network, with the help of proposed parameterizable strategies to generate learning labels. Experimental results show that (i) our proposed method noticeably improves area by 9.3% and delay by 1.5%, and (ii) improves area by 12.0% for delay-oriented mapping, compared with the well-known mapper.
技术映射是电子设计自动化(EDA)流程中的一个重要过程,其目的是从技术库中找到逻辑网络的最佳实施方案。在特定应用集成电路(ASIC)设计中,库中单元的非线性延迟行为基本上是技术映射人员的搜索方向。然而,现有的单元延迟估算方法依赖于近似简化,大大降低了准确性,从而限制了更好的结果质量(QoR)的实现。为了应对这一挑战,我们建议将电池延时估算作为回归学习任务,结合逻辑网络结构和非线性电池延时等多种视角特征来指导映射器搜索。我们设计了一种学习模型,该模型结合了一种定制的关注机制,以了解引脚延迟,并通过神经张量网络共同学习逻辑网络和库之间的层次结构,同时借助提出的可参数化策略生成学习标签。实验结果表明:(i) 与众所周知的映射器相比,我们提出的方法明显改善了 9.3% 的面积和 1.5% 的延迟;(ii) 对于面向延迟的映射,面积改善了 12.0%。
{"title":"AiMap+: Guiding Technology Mapping for ASICs via Learning Delay Prediction","authors":"Junfeng Liu, Qinghua Zhao","doi":"10.3390/electronics13183614","DOIUrl":"https://doi.org/10.3390/electronics13183614","url":null,"abstract":"Technology mapping is an essential process in the Electronic Design Automation (EDA) flow which aims to find an optimal implementation of a logic network from a technology library. In application-specific integrated circuit (ASIC) designs, the non-linear delay behaviors of cells in the library essentially guide the search direction of technology mappers. Existing methods for cell delay estimation, however, rely on approximate simplifications that significantly compromise accuracy, thereby limiting the achievement of better Quality-of-Result (QoR). To address this challenge, we propose formulating cell delay estimation as a regression learning task by incorporating multiple perspective features, such as the structure of logic networks and non-linear cell delays, to guide the mapper search. We design a learning model that incorporates a customized attention mechanism to be aware of the pin delay and jointly learns the hierarchy between the logic network and library through a Neural Tensor Network, with the help of proposed parameterizable strategies to generate learning labels. Experimental results show that (i) our proposed method noticeably improves area by 9.3% and delay by 1.5%, and (ii) improves area by 12.0% for delay-oriented mapping, compared with the well-known mapper.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"23 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a High-Precision Deep-Sea Magnetic Survey System for Human-Occupied Vehicles 为载人飞行器开发高精度深海磁力勘测系统
IF 2.9 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-11 DOI: 10.3390/electronics13183611
Qimao Zhang, Keyu Zhou, Ming Deng, Qisheng Zhang, Yongqiang Feng, Leisong Liu
The high-precision magnetic survey system is crucial for ocean exploration. However, most existing systems face challenges such as high noise levels, low sensitivity, and inadequate magnetic compensation effects. To address these issues, we developed a high-precision magnetic survey system based on the manned submersible “Deep Sea Warrior” for deep-ocean magnetic exploration. This system incorporates a compact optically pumped cesium (Cs) magnetometer sensor to measure the total strength of the external magnetic field. Additionally, a magnetic compensation sensor is included at the front end to measure real-time attitude changes of the platform. The measured data are then transmitted to a magnetic signal processor, where an algorithm compensates for the platform’s magnetic interference. We also designed a deep pressure chamber to allow for a maximum working depth of 4500 m. Experiments conducted in both indoor and field environments verified the performance of the proposed magnetic survey system. The results showed that the system’s sensitivity is ≤0.5 nT, the noise level of the magnetometer sensor is ≤1 pT/√Hz at 1 Hz, and the sampling rate is 10 Hz. The proposed system has potential applications in ocean and geophysical exploration.
高精度磁测量系统对海洋勘探至关重要。然而,大多数现有系统都面临着高噪声、低灵敏度和磁补偿效应不足等挑战。为了解决这些问题,我们在载人潜水器 "深海勇士 "号的基础上开发了用于深海磁探测的高精度磁测量系统。该系统包含一个紧凑型光学泵浦铯(Cs)磁力计传感器,用于测量外部磁场的总强度。此外,前端还包括一个磁补偿传感器,用于测量平台的实时姿态变化。测量到的数据随后被传输到磁信号处理器,由算法对平台的磁干扰进行补偿。我们还设计了一个深压室,最大工作深度可达 4500 米。在室内和野外环境中进行的实验验证了所建议的磁测量系统的性能。结果表明,该系统的灵敏度≤0.5 nT,磁力计传感器在 1 Hz 频率下的噪声水平≤1 pT/√Hz,采样率为 10 Hz。该系统有望应用于海洋和地球物理勘探领域。
{"title":"Development of a High-Precision Deep-Sea Magnetic Survey System for Human-Occupied Vehicles","authors":"Qimao Zhang, Keyu Zhou, Ming Deng, Qisheng Zhang, Yongqiang Feng, Leisong Liu","doi":"10.3390/electronics13183611","DOIUrl":"https://doi.org/10.3390/electronics13183611","url":null,"abstract":"The high-precision magnetic survey system is crucial for ocean exploration. However, most existing systems face challenges such as high noise levels, low sensitivity, and inadequate magnetic compensation effects. To address these issues, we developed a high-precision magnetic survey system based on the manned submersible “Deep Sea Warrior” for deep-ocean magnetic exploration. This system incorporates a compact optically pumped cesium (Cs) magnetometer sensor to measure the total strength of the external magnetic field. Additionally, a magnetic compensation sensor is included at the front end to measure real-time attitude changes of the platform. The measured data are then transmitted to a magnetic signal processor, where an algorithm compensates for the platform’s magnetic interference. We also designed a deep pressure chamber to allow for a maximum working depth of 4500 m. Experiments conducted in both indoor and field environments verified the performance of the proposed magnetic survey system. The results showed that the system’s sensitivity is ≤0.5 nT, the noise level of the magnetometer sensor is ≤1 pT/√Hz at 1 Hz, and the sampling rate is 10 Hz. The proposed system has potential applications in ocean and geophysical exploration.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"11 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Algorithm for Detecting and Restoring Tampered Images Using Chaotic Watermark Embedding 利用混沌水印嵌入检测和恢复篡改图像的算法
IF 2.9 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-11 DOI: 10.3390/electronics13183604
Zijie Xu, Erfu Wang
In recent years, the advancement of digital image processing technology and the proliferation of image editing software have reduced the technical barriers to digital image processing, enabling individuals without professional training to modify and edit images at their discretion. Consequently, the integrity and authenticity of the original image content assume greater significance. The current techniques for detecting tampering in watermark embedding are inadequate in terms of security, efficiency, and image restoration quality. In light of the aforementioned considerations, this paper puts forth an algorithm for the detection and restoration of tampered images, which employs a chaotic watermark embedding technique. The algorithm employs a chaotic system to establish a mapping relationship between image sub-blocks, thereby ensuring the randomness of the watermark information with respect to the positioning of the original image block and enhancing the security of the algorithm. Furthermore, the detection algorithm utilizes layered tampering detection to enhance the overall accuracy of the detection process and facilitate the extraction of the fundamental information required for image restoration. The restoration algorithm partially designs a weight assignment function to distinguish between the original image block and the main restored image block, thereby enhancing restoration efficiency and quality. The experimental results demonstrate that the proposed algorithm exhibits superior tamper detection accuracy compared to traditional algorithms, and the quality of the restored images is also enhanced under various simulated tamper attacks.
近年来,数字图像处理技术的发展和图像编辑软件的普及降低了数字图像处理的技术门槛,使没有受过专业培训的个人也能随意修改和编辑图像。因此,原始图像内容的完整性和真实性变得更加重要。目前的水印嵌入篡改检测技术在安全性、效率和图像还原质量方面都存在不足。鉴于上述考虑,本文提出了一种采用混沌水印嵌入技术的篡改图像检测和修复算法。该算法利用混沌系统建立图像子块之间的映射关系,从而确保了水印信息相对于原始图像块定位的随机性,提高了算法的安全性。此外,检测算法采用分层篡改检测,提高了检测过程的整体准确性,便于提取图像复原所需的基本信息。修复算法部分设计了权值分配函数,以区分原始图像块和主要修复图像块,从而提高修复效率和质量。实验结果表明,与传统算法相比,所提出的算法具有更高的篡改检测精度,在各种模拟篡改攻击下,还原图像的质量也得到了提高。
{"title":"An Algorithm for Detecting and Restoring Tampered Images Using Chaotic Watermark Embedding","authors":"Zijie Xu, Erfu Wang","doi":"10.3390/electronics13183604","DOIUrl":"https://doi.org/10.3390/electronics13183604","url":null,"abstract":"In recent years, the advancement of digital image processing technology and the proliferation of image editing software have reduced the technical barriers to digital image processing, enabling individuals without professional training to modify and edit images at their discretion. Consequently, the integrity and authenticity of the original image content assume greater significance. The current techniques for detecting tampering in watermark embedding are inadequate in terms of security, efficiency, and image restoration quality. In light of the aforementioned considerations, this paper puts forth an algorithm for the detection and restoration of tampered images, which employs a chaotic watermark embedding technique. The algorithm employs a chaotic system to establish a mapping relationship between image sub-blocks, thereby ensuring the randomness of the watermark information with respect to the positioning of the original image block and enhancing the security of the algorithm. Furthermore, the detection algorithm utilizes layered tampering detection to enhance the overall accuracy of the detection process and facilitate the extraction of the fundamental information required for image restoration. The restoration algorithm partially designs a weight assignment function to distinguish between the original image block and the main restored image block, thereby enhancing restoration efficiency and quality. The experimental results demonstrate that the proposed algorithm exhibits superior tamper detection accuracy compared to traditional algorithms, and the quality of the restored images is also enhanced under various simulated tamper attacks.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"270 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hardware-in-the-Loop Simulation of Flywheel Energy Storage Systems for Power Control in Wind Farms 用于风电场功率控制的飞轮储能系统的硬件在环仿真
IF 2.9 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-11 DOI: 10.3390/electronics13183610
Li Yang, Qiaoni Zhao
Flywheel energy storage systems (FESSs) are widely used for power regulation in wind farms as they can balance the wind farms’ output power and improve the wind power grid connection rate. Due to the complex environment of wind farms, it is costly and time-consuming to repeatedly debug the system on-site. To save research costs and shorten research cycles, a hardware-in-the-loop (HIL) testing system was built to provide a convenient testing environment for the research of FESSs on wind farms. The focus of this study is the construction of mathematical models in the HIL testing system. Firstly, a mathematical model of the FESS main circuit is established using a hierarchical method. Secondly, the principle of the permanent magnet synchronous motor (PMSM) is analyzed, and a nonlinear dq mathematical model of the PMSM is established by referring to the relationship among d-axis inductance, q-axis inductance, and permanent magnet flux change with respect to the motor’s current. Then, the power grid and wind farm test models are established. Finally, the established mathematical models are applied to the HIL testing system. The experimental results indicated that the HIL testing system can provide a convenient testing environment for the optimization of FESS control algorithms.
飞轮储能系统(FESS)可平衡风电场的输出功率,提高风电并网率,因此被广泛用于风电场的功率调节。由于风电场环境复杂,现场反复调试成本高、耗时长。为了节约研究成本,缩短研究周期,我们建立了硬件在环(HIL)测试系统,为风电场 FESS 的研究提供了便捷的测试环境。本研究的重点是在 HIL 测试系统中构建数学模型。首先,采用分层方法建立了 FESS 主电路的数学模型。其次,分析了永磁同步电机(PMSM)的原理,并参考 d 轴电感、q 轴电感和永磁磁通随电机电流变化的关系,建立了 PMSM 的非线性 dq 数学模型。然后,建立电网和风电场测试模型。最后,将建立的数学模型应用于 HIL 测试系统。实验结果表明,HIL 测试系统可为 FESS 控制算法的优化提供便利的测试环境。
{"title":"Hardware-in-the-Loop Simulation of Flywheel Energy Storage Systems for Power Control in Wind Farms","authors":"Li Yang, Qiaoni Zhao","doi":"10.3390/electronics13183610","DOIUrl":"https://doi.org/10.3390/electronics13183610","url":null,"abstract":"Flywheel energy storage systems (FESSs) are widely used for power regulation in wind farms as they can balance the wind farms’ output power and improve the wind power grid connection rate. Due to the complex environment of wind farms, it is costly and time-consuming to repeatedly debug the system on-site. To save research costs and shorten research cycles, a hardware-in-the-loop (HIL) testing system was built to provide a convenient testing environment for the research of FESSs on wind farms. The focus of this study is the construction of mathematical models in the HIL testing system. Firstly, a mathematical model of the FESS main circuit is established using a hierarchical method. Secondly, the principle of the permanent magnet synchronous motor (PMSM) is analyzed, and a nonlinear dq mathematical model of the PMSM is established by referring to the relationship among d-axis inductance, q-axis inductance, and permanent magnet flux change with respect to the motor’s current. Then, the power grid and wind farm test models are established. Finally, the established mathematical models are applied to the HIL testing system. The experimental results indicated that the HIL testing system can provide a convenient testing environment for the optimization of FESS control algorithms.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"53 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fundus Image Generation and Classification of Diabetic Retinopathy Based on Convolutional Neural Network 基于卷积神经网络的糖尿病视网膜病变眼底图像生成与分类
IF 2.9 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-11 DOI: 10.3390/electronics13183603
Peiming Zhang, Jie Zhao, Qiaohong Liu, Xiao Liu, Xinyu Li, Yimeng Gao, Weiqi Li
To detect fundus diseases, for instance, diabetic retinopathy (DR) at an early stage, thereby providing timely intervention and treatment, a new diabetic retinopathy grading method based on a convolutional neural network is proposed. First, data cleaning and enhancement are conducted to improve the image quality and reduce unnecessary interference. Second, a new conditional generative adversarial network with a self-attention mechanism named SACGAN is proposed to augment the number of diabetic retinopathy fundus images, thereby addressing the problems of insufficient and imbalanced data samples. Next, an improved convolutional neural network named DRMC Net, which combines ResNeXt-50 with the channel attention mechanism and multi-branch convolutional residual module, is proposed to classify diabetic retinopathy. Finally, gradient-weighted class activation mapping (Grad-CAM) is utilized to prove the proposed model’s interpretability. The outcomes of the experiment illustrates that the proposed method has high accuracy, specificity, and sensitivity, with specific results of 92.3%, 92.5%, and 92.5%, respectively.
为了早期检测眼底疾病,例如糖尿病视网膜病变(DR),从而提供及时的干预和治疗,本文提出了一种基于卷积神经网络的新型糖尿病视网膜病变分级方法。首先,进行数据清理和增强,以提高图像质量并减少不必要的干扰。其次,提出了一种名为 SACGAN 的具有自注意机制的新型条件生成对抗网络,以增加糖尿病视网膜病变眼底图像的数量,从而解决数据样本不足和不平衡的问题。接着,提出了一种名为 DRMC Net 的改进型卷积神经网络,它将 ResNeXt-50 与通道注意机制和多分支卷积残差模块相结合,用于对糖尿病视网膜病变进行分类。最后,利用梯度加权类激活映射(Grad-CAM)来证明所提模型的可解释性。实验结果表明,所提出的方法具有较高的准确性、特异性和灵敏度,特异性结果分别为 92.3%、92.5% 和 92.5%。
{"title":"Fundus Image Generation and Classification of Diabetic Retinopathy Based on Convolutional Neural Network","authors":"Peiming Zhang, Jie Zhao, Qiaohong Liu, Xiao Liu, Xinyu Li, Yimeng Gao, Weiqi Li","doi":"10.3390/electronics13183603","DOIUrl":"https://doi.org/10.3390/electronics13183603","url":null,"abstract":"To detect fundus diseases, for instance, diabetic retinopathy (DR) at an early stage, thereby providing timely intervention and treatment, a new diabetic retinopathy grading method based on a convolutional neural network is proposed. First, data cleaning and enhancement are conducted to improve the image quality and reduce unnecessary interference. Second, a new conditional generative adversarial network with a self-attention mechanism named SACGAN is proposed to augment the number of diabetic retinopathy fundus images, thereby addressing the problems of insufficient and imbalanced data samples. Next, an improved convolutional neural network named DRMC Net, which combines ResNeXt-50 with the channel attention mechanism and multi-branch convolutional residual module, is proposed to classify diabetic retinopathy. Finally, gradient-weighted class activation mapping (Grad-CAM) is utilized to prove the proposed model’s interpretability. The outcomes of the experiment illustrates that the proposed method has high accuracy, specificity, and sensitivity, with specific results of 92.3%, 92.5%, and 92.5%, respectively.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"9 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning for Network Intrusion Detection in Virtual Networks 深度学习用于虚拟网络中的网络入侵检测
IF 2.9 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-11 DOI: 10.3390/electronics13183617
Daniel Spiekermann, Tobias Eggendorfer, Jörg Keller
As organizations increasingly adopt virtualized environments for enhanced flexibility and scalability, securing virtual networks has become a critical part of current infrastructures. This research paper addresses the challenges related to intrusion detection in virtual networks, with a focus on various deep learning techniques. Since physical networks do not use encapsulation, but virtual networks do, packet analysis based on rules or machine learning outcomes for physical networks cannot be transferred directly to virtual environments. Encapsulation methods in current virtual networks include VXLAN (Virtual Extensible LAN), an EVPN (Ethernet Virtual Private Network), and NVGRE (Network Virtualization using Generic Routing Encapsulation). This paper analyzes the performance and effectiveness of network intrusion detection in virtual networks. It delves into challenges inherent in virtual network intrusion detection with deep learning, including issues such as traffic encapsulation, VM migration, and changing network internals inside the infrastructure. Experiments on detection performance demonstrate the differences between intrusion detection in virtual and physical networks.
随着企业越来越多地采用虚拟化环境来提高灵活性和可扩展性,确保虚拟网络安全已成为当前基础设施的重要组成部分。本研究论文以各种深度学习技术为重点,探讨了与虚拟网络入侵检测相关的挑战。由于物理网络不使用封装,而虚拟网络使用封装,因此基于物理网络的规则或机器学习结果的数据包分析无法直接移植到虚拟环境中。当前虚拟网络的封装方法包括 VXLAN(虚拟可扩展局域网)、EVPN(以太网虚拟专用网)和 NVGRE(使用通用路由封装的网络虚拟化)。本文分析了虚拟网络中网络入侵检测的性能和有效性。它深入探讨了利用深度学习进行虚拟网络入侵检测所面临的固有挑战,包括流量封装、虚拟机迁移和基础设施内部网络内部结构变化等问题。有关检测性能的实验证明了虚拟网络和物理网络中入侵检测的不同之处。
{"title":"Deep Learning for Network Intrusion Detection in Virtual Networks","authors":"Daniel Spiekermann, Tobias Eggendorfer, Jörg Keller","doi":"10.3390/electronics13183617","DOIUrl":"https://doi.org/10.3390/electronics13183617","url":null,"abstract":"As organizations increasingly adopt virtualized environments for enhanced flexibility and scalability, securing virtual networks has become a critical part of current infrastructures. This research paper addresses the challenges related to intrusion detection in virtual networks, with a focus on various deep learning techniques. Since physical networks do not use encapsulation, but virtual networks do, packet analysis based on rules or machine learning outcomes for physical networks cannot be transferred directly to virtual environments. Encapsulation methods in current virtual networks include VXLAN (Virtual Extensible LAN), an EVPN (Ethernet Virtual Private Network), and NVGRE (Network Virtualization using Generic Routing Encapsulation). This paper analyzes the performance and effectiveness of network intrusion detection in virtual networks. It delves into challenges inherent in virtual network intrusion detection with deep learning, including issues such as traffic encapsulation, VM migration, and changing network internals inside the infrastructure. Experiments on detection performance demonstrate the differences between intrusion detection in virtual and physical networks.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"26 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Electronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1