Pub Date : 2024-12-01Epub Date: 2024-07-23DOI: 10.1080/10717544.2024.2381340
Aura Rocío Hernández, Ekaterina Bogdanova, Jesus E Campos Pacheco, Vitaly Kocherbitov, Mikael Ekström, Georgia Pilkington, Sabrina Valetti
Pulmonary delivery and formulation of biologics are among the more complex and growing scientific topics in drug delivery. We herein developed a dry powder formulation using disordered mesoporous silica particles (MSP) as the sole excipient and lysozyme, the most abundant antimicrobial proteins in the airways, as model protein. The MSP had the optimal size for lung deposition (2.43 ± 0.13 µm). A maximum lysozyme loading capacity (0.35 mg/mg) was achieved in 150 mM PBS, which was seven times greater than that in water. After washing and freeze-drying, we obtained a dry powder consisting of spherical, non-aggregated particles, free from residual buffer, or unabsorbed lysozyme. The presence of lysozyme was confirmed by TGA and FT-IR, while N2 adsorption/desorption and SAXS analysis indicate that the protein is confined within the internal mesoporous structure. The dry powder exhibited excellent aerodynamic performance (fine particle fraction <5 µm of 70.32%). Lysozyme was released in simulated lung fluid in a sustained kinetics and maintaining high enzymatic activity (71-91%), whereas LYS-MSP were shown to degrade into aggregated nanoparticulate microstructures, reaching almost complete dissolution (93%) within 24 h. MSPs were nontoxic to in vitro lung epithelium. The study demonstrates disordered MSP as viable carriers to successfully deliver protein to the lungs, with high deposition and retained activity.
生物制剂的肺部给药和制剂是给药领域较为复杂且不断发展的科学课题之一。在此,我们以无序介孔二氧化硅颗粒(MSP)为唯一辅料,以气道中最丰富的抗菌蛋白溶菌酶为模型蛋白,开发了一种干粉制剂。介孔二氧化硅颗粒具有肺部沉积的最佳尺寸(2.43 ± 0.13 µm)。溶菌酶在 150 mM PBS 中的负载量最大(0.35 mg/mg),是在水中负载量的七倍。经过洗涤和冷冻干燥后,我们得到了一种由球形、非聚集颗粒组成的干粉,其中没有残留的缓冲液或未被吸收的溶菌酶。TGA和FT-IR证实了溶菌酶的存在,而N2吸附/解吸和SAXS分析表明蛋白质被限制在内部介孔结构中。干粉在体外肺上皮细胞中表现出优异的空气动力学性能(细颗粒部分)。这项研究表明,无序介孔结构可作为一种可行的载体,成功地将蛋白质输送到肺部,并具有较高的沉积和保留活性。
{"title":"Disordered mesoporous silica particles: an emerging platform to deliver proteins to the lungs.","authors":"Aura Rocío Hernández, Ekaterina Bogdanova, Jesus E Campos Pacheco, Vitaly Kocherbitov, Mikael Ekström, Georgia Pilkington, Sabrina Valetti","doi":"10.1080/10717544.2024.2381340","DOIUrl":"10.1080/10717544.2024.2381340","url":null,"abstract":"<p><p>Pulmonary delivery and formulation of biologics are among the more complex and growing scientific topics in drug delivery. We herein developed a dry powder formulation using disordered mesoporous silica particles (MSP) as the sole excipient and lysozyme, the most abundant antimicrobial proteins in the airways, as model protein. The MSP had the optimal size for lung deposition (2.43 ± 0.13 µm). A maximum lysozyme loading capacity (0.35 mg/mg) was achieved in 150 mM PBS, which was seven times greater than that in water. After washing and freeze-drying, we obtained a dry powder consisting of spherical, non-aggregated particles, free from residual buffer, or unabsorbed lysozyme. The presence of lysozyme was confirmed by TGA and FT-IR, while N<sub>2</sub> adsorption/desorption and SAXS analysis indicate that the protein is confined within the internal mesoporous structure. The dry powder exhibited excellent aerodynamic performance (fine particle fraction <5 µm of 70.32%). Lysozyme was released in simulated lung fluid in a sustained kinetics and maintaining high enzymatic activity (71-91%), whereas LYS-MSP were shown to degrade into aggregated nanoparticulate microstructures, reaching almost complete dissolution (93%) within 24 h. MSPs were nontoxic to <i>in vitro</i> lung epithelium. The study demonstrates disordered MSP as viable carriers to successfully deliver protein to the lungs, with high deposition and retained activity.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2381340"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-23DOI: 10.1080/10717544.2024.2380538
Ming Jia, Wei Ren, Minrui Wang, Yan Liu, Chenglong Wang, Zongquan Zhang, Maochang Xu, Nianhui Ding, Chunhong Li, Hong Yang
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease accompanied by energy depletion and accumulation of reactive oxygen species (ROS). Inorganic nanoparticles (NPs) offer great promise for the treatment of RA because they mostly have functions beyond being drug carriers. However, conventional nanomaterials become coated with a protein corona (PC) or lose their cargo prematurely in vivo, reducing their therapeutic efficacy. To avoid these problems, we loaded methotrexate (MTX) into hollow structured manganese dioxide nanoparticles (H-MnO2 NPs), then coated them with a 'pseudo-corona' of human serum albumin (HSA) at physiological concentrations to obtain HSA-MnO2@MTX NPs. Efficacy of MTX, MnO2@MTX, and HSA-MnO2@MTX NPs was compared in vitro and in vivo. Compared to MnO2@MTX, HSA-coated NPs were taken up better by lipopolysaccharide-activated RAW264.7 and were more effective at lowering levels of pro-inflammatory cytokines and preventing ROS accumulation. HSA-MnO2@MTX NPs were also more efficient at blocking the proliferation and migration of fibroblast-like synoviocytes from rats with collagen-induced arthritis. In this rat model, HSA-MnO2@MTX NPs showed better biodistribution than other treatments, specifically targeting the ankle joint. Furthermore, HSA-MnO2@MTX NPs reduced swelling in the paw, regulated pro-inflammatory cytokine production, and limited cartilage degradation and signs of inflammation. These results establish the therapeutic potential of HSA-MnO2@MTX NPs against RA.
{"title":"Surface saturation of drug-loaded hollow manganese dioxide nanoparticles with human serum albumin for treating rheumatoid arthritis.","authors":"Ming Jia, Wei Ren, Minrui Wang, Yan Liu, Chenglong Wang, Zongquan Zhang, Maochang Xu, Nianhui Ding, Chunhong Li, Hong Yang","doi":"10.1080/10717544.2024.2380538","DOIUrl":"10.1080/10717544.2024.2380538","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic inflammatory joint disease accompanied by energy depletion and accumulation of reactive oxygen species (ROS). Inorganic nanoparticles (NPs) offer great promise for the treatment of RA because they mostly have functions beyond being drug carriers. However, conventional nanomaterials become coated with a protein corona (PC) or lose their cargo prematurely <i>in vivo</i>, reducing their therapeutic efficacy. To avoid these problems, we loaded methotrexate (MTX) into hollow structured manganese dioxide nanoparticles (H-MnO<sub>2</sub> NPs), then coated them with a 'pseudo-corona' of human serum albumin (HSA) at physiological concentrations to obtain HSA-MnO<sub>2</sub>@MTX NPs. Efficacy of MTX, MnO<sub>2</sub>@MTX, and HSA-MnO<sub>2</sub>@MTX NPs was compared <i>in vitro</i> and <i>in vivo</i>. Compared to MnO<sub>2</sub>@MTX, HSA-coated NPs were taken up better by lipopolysaccharide-activated RAW264.7 and were more effective at lowering levels of pro-inflammatory cytokines and preventing ROS accumulation. HSA-MnO<sub>2</sub>@MTX NPs were also more efficient at blocking the proliferation and migration of fibroblast-like synoviocytes from rats with collagen-induced arthritis. In this rat model, HSA-MnO<sub>2</sub>@MTX NPs showed better biodistribution than other treatments, specifically targeting the ankle joint. Furthermore, HSA-MnO<sub>2</sub>@MTX NPs reduced swelling in the paw, regulated pro-inflammatory cytokine production, and limited cartilage degradation and signs of inflammation. These results establish the therapeutic potential of HSA-MnO<sub>2</sub>@MTX NPs against RA.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2380538"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The unavoidable residual tumor tissue from surgery and the strong aggressiveness of tumor cells pose challenges to the postoperative treatment of tumor patients, accompanied by in situ tumor recurrence and decreased quality of life. Therefore, there is an urgent need to explore appropriate postoperative therapeutic strategies to remove residual tumor cells after surgery to inhibit tumor recurrence and metastasis after surgery. In recent years, with the rapid development of biomedical materials, the study of local delivery systems as postoperative delivery of therapeutic agents has gradually attracted the attention of researchers. Injectable in situ-forming hydrogel is a locally administered agent injected in situ as a solution that can be loaded with various therapeutic agents and rapidly gels to form a semi-solid gel at the treatment site. This type of hydrogel tightly fills the surgical site and covers irregular excision surfaces. In this paper, we review the recent advances in the application of injectable in situ-forming hydrogels in postoperative therapy, focusing on the matrix materials of this type of hydrogel and its application in the postoperative treatment of different types of tumors, as well as discussing the challenges and prospects of its clinical application.
{"title":"Recent advances of injectable in situ-forming hydrogels for preventing postoperative tumor recurrence.","authors":"Zhanpeng Wang,Bingtao Zhai,Jing Sun,Xiaofei Zhang,Junbo Zou,Yajun Shi,Dongyan Guo","doi":"10.1080/10717544.2024.2400476","DOIUrl":"https://doi.org/10.1080/10717544.2024.2400476","url":null,"abstract":"The unavoidable residual tumor tissue from surgery and the strong aggressiveness of tumor cells pose challenges to the postoperative treatment of tumor patients, accompanied by in situ tumor recurrence and decreased quality of life. Therefore, there is an urgent need to explore appropriate postoperative therapeutic strategies to remove residual tumor cells after surgery to inhibit tumor recurrence and metastasis after surgery. In recent years, with the rapid development of biomedical materials, the study of local delivery systems as postoperative delivery of therapeutic agents has gradually attracted the attention of researchers. Injectable in situ-forming hydrogel is a locally administered agent injected in situ as a solution that can be loaded with various therapeutic agents and rapidly gels to form a semi-solid gel at the treatment site. This type of hydrogel tightly fills the surgical site and covers irregular excision surfaces. In this paper, we review the recent advances in the application of injectable in situ-forming hydrogels in postoperative therapy, focusing on the matrix materials of this type of hydrogel and its application in the postoperative treatment of different types of tumors, as well as discussing the challenges and prospects of its clinical application.","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"5 1","pages":"2400476"},"PeriodicalIF":6.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1080/10717544.2024.2337423
Shimul Halder, Sanjida Afrose, Manik Chandra Shill, Nahid Sharmin, Patricia Prova Mollick, Madhabi Lata Shuma, Md. Abdul Muhit, S. M. Abdur Rahman
The present study was designed to develop a self-micellizing solid dispersion (SMSD) containing Thymoquinone (TQM), a phytonutrient obtained from Nigella sativa seeds, aiming to improve its biophar...
{"title":"Self-micellizing solid dispersion of thymoquinone with enhanced biopharmaceutical and nephroprotective effects","authors":"Shimul Halder, Sanjida Afrose, Manik Chandra Shill, Nahid Sharmin, Patricia Prova Mollick, Madhabi Lata Shuma, Md. Abdul Muhit, S. M. Abdur Rahman","doi":"10.1080/10717544.2024.2337423","DOIUrl":"https://doi.org/10.1080/10717544.2024.2337423","url":null,"abstract":"The present study was designed to develop a self-micellizing solid dispersion (SMSD) containing Thymoquinone (TQM), a phytonutrient obtained from Nigella sativa seeds, aiming to improve its biophar...","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"1 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140568726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-21DOI: 10.1080/10717544.2024.2306231
Xiaofan Du, Meng Zhao, Le Jiang, Lihui Pang, Jing Wang, Yi Lv, Cuiping Yao, Rongqian Wu
Nanosecond pulsed laser induced photoporation has gained increasing attention from scholars as an effective method for delivering the membrane-impermeable extracellular materials into living cells....
{"title":"A mini-review on gene delivery technique using nanoparticles-mediated photoporation induced by nanosecond pulsed laser","authors":"Xiaofan Du, Meng Zhao, Le Jiang, Lihui Pang, Jing Wang, Yi Lv, Cuiping Yao, Rongqian Wu","doi":"10.1080/10717544.2024.2306231","DOIUrl":"https://doi.org/10.1080/10717544.2024.2306231","url":null,"abstract":"Nanosecond pulsed laser induced photoporation has gained increasing attention from scholars as an effective method for delivering the membrane-impermeable extracellular materials into living cells....","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"17 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139506701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-11DOI: 10.1080/10717544.2023.2288801
Sheetal S. Buddhadev, Kevinkumar C. Garala, Saisivam S, Mohamed Rahamathulla, Mohammed Muqtader Ahmed, Syeda Ayesha Farhana, Ismail Pasha
The primary objective of the research effort is to establish efficient solid self-nanoemulsifying drug delivery systems (S-SNEDDS) for benidipine (BD) through the systematic application of a qualit...
{"title":"Quality by design aided self-nano emulsifying drug delivery systems development for the oral delivery of Benidipine: Improvement of biopharmaceutical performance","authors":"Sheetal S. Buddhadev, Kevinkumar C. Garala, Saisivam S, Mohamed Rahamathulla, Mohammed Muqtader Ahmed, Syeda Ayesha Farhana, Ismail Pasha","doi":"10.1080/10717544.2023.2288801","DOIUrl":"https://doi.org/10.1080/10717544.2023.2288801","url":null,"abstract":"The primary objective of the research effort is to establish efficient solid self-nanoemulsifying drug delivery systems (S-SNEDDS) for benidipine (BD) through the systematic application of a qualit...","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"15 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138581003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1080/10717544.2023.2189630
Nabil A Shoman, Marwa Saady, Mahmoud Teaima, Rehab Abdelmonem, Mohamed A El-Nabarawi, Sammar Fathy Elhabal
This study aimed to formulate and evaluate a floating raft system for the co-delivery of etoricoxib (ETO) and famotidine (FAM) using a combination of glucomannan with natural/semi-synthetic polysaccharides. Formulation variables affect gelation lag time (GLT), floating lag time (FLT), and release percentage of drugs after 1-8 h, Stability, and viscosity parameters were evaluated. In vivo X-ray studies, followed by the pharmacokinetic study, were performed on human volunteers. Formulations exhibited pseudoplastic behavior for ease of swallowing. The optimum raft system (ORS) comprised 1% Na alginate, 0.1% Low Methoxyl (LM) pectin, 0.8% Konjac glucomannan (KGL), 1% Precirol, and 1% CaCO3. ORS exhibited rapid GLT and FLT (around 42 and 8 sec respectively) in 0.1 N HCl as well as controlled release of ETO (15% in 1 h and 82% in 8 h) and FAM (29% in 1 h and 85% in 8 h). Formulation stability with the absence of any drug-excipient interactions was observed. The X-ray imaging showed a promising buoyancy ability for approximately 8 h. Compared with marketed products, ORS showed superior relative bioavailability for both drugs. These findings revealed the successful preparation of a promising raft system with improved dual drug delivery.
{"title":"Merging konjac glucomannan with other copolymeric hydrogels as a cutting-edge liquid raft system for dual delivery of etoricoxib and famotidine.","authors":"Nabil A Shoman, Marwa Saady, Mahmoud Teaima, Rehab Abdelmonem, Mohamed A El-Nabarawi, Sammar Fathy Elhabal","doi":"10.1080/10717544.2023.2189630","DOIUrl":"10.1080/10717544.2023.2189630","url":null,"abstract":"<p><p>This study aimed to formulate and evaluate a floating raft system for the co-delivery of etoricoxib (ETO) and famotidine (FAM) using a combination of glucomannan with natural/semi-synthetic polysaccharides. Formulation variables affect gelation lag time (GLT), floating lag time (FLT), and release percentage of drugs after 1-8 h, Stability, and viscosity parameters were evaluated. In vivo X-ray studies, followed by the pharmacokinetic study, were performed on human volunteers. Formulations exhibited pseudoplastic behavior for ease of swallowing. The optimum raft system (ORS) comprised 1% Na alginate, 0.1% Low Methoxyl (LM) pectin, 0.8% Konjac glucomannan (KGL), 1% Precirol, and 1% CaCO<sub>3</sub>. ORS exhibited rapid GLT and FLT (around 42 and 8 sec respectively) in 0.1 N HCl as well as controlled release of ETO (15% in 1 h and 82% in 8 h) and FAM (29% in 1 h and 85% in 8 h). Formulation stability with the absence of any drug-excipient interactions was observed. The X-ray imaging showed a promising buoyancy ability for approximately 8 h. Compared with marketed products, ORS showed superior relative bioavailability for both drugs. These findings revealed the successful preparation of a promising raft system with improved dual drug delivery.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"30 1","pages":"2189630"},"PeriodicalIF":6.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184610/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9527845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-22DOI: 10.1080/10717544.2023.2284683
Carlos Rodríguez-Nogales, Joke Meeus, Gaby Thonus, Sam Corveleyn, Eric Allémann, Olivier Jordan
Nano- and micro-technologies can salvage drugs with very low solubility that were doomed to pre-clinical and clinical failure. A unique design approach to develop drug nanocrystals (NCs) loaded in extended release polymeric microparticles (MPs) for local treatments is presented here through the case of a potential osteoarthritis (OA) drug candidate for intra-articular (IA) administration. Optimizing a low-shear wet milling process allowed the production of NCs that can be subsequently freeze-dried (FD) and redispersed in a hydrophobic polymer-organic solvent solution to form spray-dried MPs. Results demonstrated a successful development of a ready-to-upscale formulation containing PLGA MPs with high drug NC encapsulation rates that showed a continuous and controlled drug release profile over four months. The screenings and procedures described allowed for identifying and overcoming common difficulties and challenges raised along the drug reduction to nano-size and spray-drying process. Above all, the technical knowledge acquired is intended for formulation scientists aiming to improve the therapeutic perspectives of poorly soluble drugs.
{"title":"Spray-dried nanocrystal-loaded polymer microparticles for long-term release local therapies: an opportunity for poorly soluble drugs.","authors":"Carlos Rodríguez-Nogales, Joke Meeus, Gaby Thonus, Sam Corveleyn, Eric Allémann, Olivier Jordan","doi":"10.1080/10717544.2023.2284683","DOIUrl":"10.1080/10717544.2023.2284683","url":null,"abstract":"<p><p>Nano- and micro-technologies can salvage drugs with very low solubility that were doomed to pre-clinical and clinical failure. A unique design approach to develop drug nanocrystals (NCs) loaded in extended release polymeric microparticles (MPs) for local treatments is presented here through the case of a potential osteoarthritis (OA) drug candidate for intra-articular (IA) administration. Optimizing a low-shear wet milling process allowed the production of NCs that can be subsequently freeze-dried (FD) and redispersed in a hydrophobic polymer-organic solvent solution to form spray-dried MPs. Results demonstrated a successful development of a ready-to-upscale formulation containing PLGA MPs with high drug NC encapsulation rates that showed a continuous and controlled drug release profile over four months. The screenings and procedures described allowed for identifying and overcoming common difficulties and challenges raised along the drug reduction to nano-size and spray-drying process. Above all, the technical knowledge acquired is intended for formulation scientists aiming to improve the therapeutic perspectives of poorly soluble drugs.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"30 1","pages":"2284683"},"PeriodicalIF":6.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138294946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}